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Abstract: Hit-and-Run is known to be one of the best versions of Markov Chain Monte
Carlo sampler. Nevertheless, in practice the number of iterations required to achieve uniformly
distributed samples is rather high. We propose new random walk algorithm based on billiard
trajectories and prove its asymptotic uniformity. Numerical experiments demonstrate much
faster convergence to uniform distribution for Billiard Walk algorithm compared to Hit-and-
Run. We discuss a class of global optimization problems that can be efficiently solved with
Monte Carlo sampler.
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1. INTRODUCTION

Generating points uniformly distributed in an arbitrary
bounded region Q ⊂ Rn (sampling) finds applications
in many computational problems (Tempo et al. [2004],
Rubinstein and Kroese [2008]). Straightforward sampling
techniques are usually based on one of three approaches:
rejection, transformation and composition. Rejection im-
plies enclosure of Q within the region with available uni-
form sampler B (usually a box or a ball). At the next
step, samples that do not belong to Q are rejected. Trans-
formation fits the case when we can map region B onto Q
via smooth deterministic function with constant Jacobian.
Composition works well when Q can be partitioned for
finite number of sets that can be efficiently sampled.

Other sampling procedures use modern versions of Monte
Carlo technique, based on Markov Chain Monte Carlo
(MCMC) approach (Gilks et al. [1996], Diaconis [2009]).
Hit-and-Run (HR) is known as one of the most famous
and effective algorithms of MCMC type, it is originally
proposed by Turchin [1971] and independently by Smith
[1984]. We used to apply HR to various control and op-
timization problems: Polyak and Gryazina [2008, 2011].
Unfortunately, even for simple bad-shaped regions, such
as level sets of ill-posed functions, HR techniques fail or
turn out computationally inefficient. HR algorithm orig-
inated numerous extensions. For instance, Barrier Monte
Carlo method (Polyak and Gryazina [2010]) exploits the
approach developed for interior-point methods of convex
optimization (Nesterov and Nemirovsky [1994]). It gen-
erates random points that are preferable in comparison
with standard Hit-and-Run. But the complexity of each
⋆ The study was supported by Laboratory of Structural Methods
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Physics and Technology (“mega-grant” of Russian Government) and
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iteration in general is high enough (the calculation of(
∇2F (x)

)−1/2
, where F (x) is a barrier function for Q,

is needed). Moreover such approach can not accelerate
convergence for sets like simplices.

We propose a new random walk algorithm motivated by
physical phenomena of a gas filling uniformly a vessel.
A gas particle moves with constant speed reflecting from
a boundary of the vessel (the angle of incidence equals
the angle of reflection) and colliding with other particles.
The mean free path can be simulated as ℓ ∼ −logη, η
being uniform random in [0, 1]. In our simplified model we
assume that after collision the direction changes as uniform
random on the unit sphere while speed remains the same.
Thus we combine ideas of Hit-and-Run technique with use
of billiard trajectories. Traditional mathematical billiards
theory (Tabachnikov [1995], Sinai [1970]) addresses the
behavior of one particular billiard trajectory, its ergodic
properties and the conditions for existence of periodic
orbits. We extend billiard trajectories with random change
of directions and use it to sample for interior of Q.

Besides, we distinguish a class of global optimization
problems that can be efficiently solved with Monte Carlo
approach. In particular, search for a most distant point
from a given one in the polytope.

The paper is organized as follows. In Section 2 we present
novel sampling algorithm Billiard Walk (BW) and prove
that it produces asymptotically uniformly distributed sam-
ples in Q. Simulation of BW for particular test domains is
presented in Section 3. Much attention is devoted to ability
of BW to escape from the corner in comparison to HR. In
Section 4 we briefly discuss possible applications of the
algorithm and propose some optimistic estimates on the
probability to obtain suboptimal solution via multi-start
technique. Section 5 contains conclusive remarks.
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Fig. 1. The scheme of the Billiard Walk algorithm.

2. ALGORITHM

Let Q ⊂ Rn be an open, bounded and connected region
and a point x0 ∈ Q. Our aim is to generate asymptotically
uniform samples xi ∈ Q, i = 1, . . . , N .

The brief description of Hit-and-Run algorithm is as
follows. At every step HR generates a random direction
uniformly over the unit sphere and chooses next point
uniformly from the segment of the line in given direction
in Q.

The new BW algorithm generates a random direction
uniformly as Hit-and-Run. But the next point is chosen as
the end of the billiard trajectory of length ℓ. The scheme
of the method is given in Fig. 1 while the precise routine
is as follows.

Billiard Walk algorithm.

1. Starting point x0 ∈ Int Q is given; i = 0, x = x0.
2. Generate the length of the trajectory ℓ = −τ logη,

η being uniform random in [0, 1], τ is a specified
parameter of the algorithm.

3. Pick random direction d ∈ Rn uniformly distributed
on the unit sphere (i.e., di = ξ/∥ξ∥, where ξ is a stan-
dard Gaussian vector in n dimensions. Construct a
billiard trajectory starting at xi with initial direction
d = di. When the trajectory meets a boundary with
internal normal s, ||s|| = 1, the direction is changed
as

d → d− 2(d, s)s.

4. Calculate the end of the trajectory of length ℓ. If a
point with nonsmooth boundary is met or the number
of reflections exceeds R go to step 2.

5. i = i+1, take the end point as xi+1 and go to step 2.

We prove asymptotical uniformity of the samples produced
by BW for convex and nonconvex cases separately. The
requirements for Q are different for these two cases, while
the sampling algorithm remains the same. Consider the
Markov Chain induced by the BW algorithm x0, x1, . . . .
For an arbitrary measurable set A ⊆ Q, denote by P(A|x)
the probability of obtaining xi+1 ∈ A for xi = x by the BW
algorithm. Then PN (A|x) is the probability to get xi+N ∈

A for xi = x. We also denote by p(y|x) the probability
density function for P(A|x), i.e. P(A|x) =

∫
A

p(y|x)dy.

Theorem 1. Assume Q is an open bounded convex set
in Rn, the boundary of Q is piecewise smooth. Then the
distribution of points xi sampled by the BW algorithm
tends to the uniform one over Q, i.e.

lim
N→∞

PN (A|x) = λ(A)

for any measurable A ⊆ Q, λ(A) = Vol(A)/Vol(Q) and
any starting point x.

Proof. First, the algorithm is well-defined: at step 4 with
zero probability the algorithm sticks at a point with
nonsmooth boundary. On the other hand ℓ and d are
chosen such that with positive probability xi+1 is obtained
by less than R reflections.

In view of Theorem 2 in Smith [1984] based on the asymp-
totic properties of Markov Chains, the two assumptions
on p(y|x) imply that the uniform distribution over Q is a
unique stationary distribution, and it is achieved for any
starting point x ∈ Q. The first assumption requires the ex-
istence of p(y|x) and its symmetry; the second assumption
claims its positivity p(y|x) > 0 for all x, y ∈ Q.

The existence of a probability density means that for any
x, y ∈ Q, the transition probability from x to a small
neighborhood δy of y is proportional to the volume of
δy. Among the trajectories proceeding from x to δy, there
are a conic bundles of trajectories with no reflections and
with 1, 2, . . . , R reflections. These bundles of trajectories
are cones with small spatial angle δθ. The area of reflection
with a smooth boundary can be approximated as plain
region. Then a reflection does not change the geometry of
the bundle and the reasonings for these bundles remain the
same as for the bundle of trajectories with no reflections.
P(δy|x) ∼ P(δθ)P(δℓ), where P(δθ) ∼ S is the probability
of choosing the spatial angle (proportional to the volume
of the base of the cone) and P(δℓ) ∼ δℓ is the probability
of choosing a certain trajectory length ℓ ∈ δℓ. Thus
P(δy|x) ∼ vol(δy) and p(y|x) exists for all x, y ∈ Q.

For convex bodies, the positivity of p(y|x) is obvious,
all the points are reachable by the trajectory with no
reflections. The symmetry of the probability density func-
tion follows from the uniformity of the distribution of the
directions and reversibility of a billiard trajectory due to
the reflection law: the angle of incidence equals the angle of
reflection. Thus all the assumptions on p(y|x) are satisfied
and the distribution of points xi generated by the BW
algorithm tends to uniform distribution on Q. 2

Theorem 2. Assume Q is connected, bounded and open
set, the boundary of Q is piecewise smooth and for all
x, y ∈ Q there exists a piecewise-linear path such that it
connects x and y, lies inside Q and has no more than B+1
linear parts. Then the distribution of points xi generated
by the BW algorithm tends to the uniform distribution on
Q in the same sense as in Theorem 1.

Proof. Again, the algorithm is well defined: with probabil-
ity one xi+1 ̸= xi is found for arbitrary xi ∈ Q.

All the constraints on Q are important. Connectedness
guarantees that starting from any point, we can reach a
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measurable neighborhood of any other point of Q. Bound-
edness is necessary to define the uniform distribution on
Q and to avoid the trajectories going to infinity. Openness
allows us to connect any two points with a tube of nonzero
measure. Thus, there exists a piecewise linear trajectory
connecting two arbitrary points.

Consider pN (y|x), the probability density function of
PN (A|x). The inequality pN (y|x) > 0 holds for all integer
N > B. The equality p(xi+1|xi) = p(xi|xi+1) (reversibil-
ity) holds for every pair of consecutive points due to the
reflection law: the angle of incidence is equal to the angle
of reflection. Therefore, pN (y|x) = pN (x|y).
The subsequences xi, xN+i, x2N+i, . . . , N > B have
asymptotically uniform distribution, thus the distribution
of points xi generated by the BW algorithm tends to the
uniform distribution on Q. 2

There exist plenty of nonconvex domains that satisfy the
conditions of Theorem 2. For instance, an estimate of B
for the toroid is given in Subsection 4.8. Note that the
constant B characterizes the geometry of Q.

2.1 Choice of τ and R.

We need to specify parameter τ to run the algorithm. The
value of τ strongly influences the behavior of the method.
When τ is small enough BW becomes slower that HR, it
behaves as a ball walk with radius τ . Empirical observa-
tions show that fast convergence to uniform distribution
is achieved for τ ≈ diamQ, where diamQ is the diameter
of the set Q.

We restrict the number of reflections by R for every
trajectory (step 4 of the Algorithm). The goal is to avoid
situations when the trajectory length remains less than ℓ
after a large number of reflections (a typical example is
addressed in Subsection 3.3). The choice of R is mostly
focused on eliminating computationally hard trajectories.
We usually take R = 10n to make it dimension dependent.

2.2 Preliminary transformation of Q.

Some “ill-shaped” domains Q can be improved with linear
transformation. For instance, a simple scaling transforms
a stretched box Q = {x ∈ Rn : |xi| ≤ ai, i = 1, . . . , n} with
min ai/max ai ≪ 1 into a cube. In general case for convex
domains the linear mapping d′ = Td can be helpfull, where

T =
(
∇2F (x∗)

)−1/2
, F (x) is a barrier function for Q.

However sometimes none of transformations can improve
the shape of the set, a simplex is known to be the worst-
case example.

2.3 Boundary oracle and normals

Both algorithms HR and BW require a calculation of an
intersection of a straight line (defined by the point xk

and the direction d of the trajectory) with the set Q. We
call the procedure for a segment bounds computing [t, t]
Boundary Oracle (BO), where

t = max
t<0

{t : xk + td ∈ ∂Q}, t = min
t>0

{t : xk + td ∈ ∂Q}

(here we suppose that Q is convex, otherwise the points of
the first intersection of a straight line and ∂Q are taken). In

most applications finding BO is an easy task. For instance,
if Q is a polytope defined by m linear inequalities

Q = {x ∈ Rn : (ai, x) ≤ bi, i = 1, . . . ,m}
then [t, t] can be written explicitly. Calculate ti =
bi−(ai,xk)

(ai,d) , i = 1, . . . ,m, and take

t = max
i: ti<0

ti, t = min
i: ti>0

ti. (1)

Numerous examples of BO for other sets Q can be found
in Polyak and Gryazina [2008, 2011]. Up to our knowledge
the first attempt to apply HR for uniform sampling in
the interior of an LMI feasible domain is performed in
Calafiore [2004]. Consider a typical set described by linear
matrix inequalities with matrix variable:

Q = {X ∈ Sn×n : X ≻ 0, AX +XAT ≼ 0},
where Sn×n is the space of symmetric n × n matrices,
A is a stable matrix and H ≺ 0. A random direction
in Sn×n is a matrix D = DT , ||D||F = 1 uniformly
distributed on the unit sphere in Frobenius norm. BO
provides L = {t ∈ R : X0 + tD ∈ Q} and it can be found
explicitly. Indeed, we reach the boundary of Q at such t
that either matrix X0 + tD or matrix AX0 + X0AT −
H + t

(
AD +DAT

)
becomes singular and L = (t, t) with

t = minλi, t = maxµi, λi are positive real eigenvalues and
µi are negative real eigenvalues of matrix pencils (X0,−D)
and

(
AX0 +X0AT −H,−(AD +DAT )

)
.

BW walks requires also calculation of normals s for bound-
ary points. In most applications it is not hard. For in-
stance, for a polytope s = ai, i being an index where
maximum or minimum in (1) is achieved. For boundary
point X0 of linear matrix inequality X ≽ 0 the normal is

S = eeT ,

e being the eigenvector corresponding to the zero eigen-
value of X0 (X0 is singular since it is a boundary of the
domain described by LMI). For matrix case the direction
is changed as D → D − 2 trace(DS)S, trace serves as an
inner product.

3. TEST SETS AND SIMULATION

Our goal in test examples below is to compare HR and
BW. We estimate the number of iterations to escape
from the corner, demonstrate strong serial correlation in
samples, use parametric partition of Q and compare the
number of samples in every part with the theoretical
number for uniform distribution. To make final conclusions
on comparison we keep in mind that every sample of BW is
computationally harder than of HR. We characterize the
computational complexity by the number of calls to the
BO and compare the outcomes of HR and BW obtained
from the same number of BO calls (the number of samples
is different in this case). Every HR sample needs two BO,
for a BW sample number of BP calls equals to the number
of reflections.

3.1 Plane angle and polyhedral cone

Let Q ⊂ R2 be the plane angle α < π. We say that a
billiard trajectory quits the corner if it goes to infinity,
for HR it means to choose the direction such that BO
gives the unbounded segment. Then billiard trajectory
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independently of initial point and initial direction quits
Q after no more than N∗ = ⌈π/α⌉ reflections, here ⌈a⌉
stands for smallest integer ≥ a. The hint for the proof:
if we reflect our angle N times around its side, billiard
trajectory will become a straight line. It can not intersect
any straight line (noncoinciding with itself) twice.

For HR we quit Q with probability 1 − (1 − α/π)N after
N iterations. For N = N∗ large enough we quit Q with
probability 1 − 1/e = 0.63 after N∗ iterations, while for
BW we do it w.p.1.

It is of interest to estimate an average number of reflections
(over random initial directions). Consider the triangle
Q = {x ∈ R2 : |x1| ≤ atanα

2 , x2 ≤ 1}. Let BW trajectories
start at [0; 0.1] and calculate the number of reflections
until the trajectory reaches the line x2 = 1. The results
for 5000 runs and various α are given in Table 1. For HR
we calculate the number of iterations until BO reaches the
line x2 = 1.

α BW HR

π/2 2.28 (0.87) 2.37 (1.74)
π/4 3.08 (1.3) 3.75 (2.98)
π/10 5.94 (2.93) 8.23 (7.1)
π/50 25.08 (14.46) 39.25 (34.54)

Table 1. The mean and standard deviation (in
parentheses) for the number of BW reflections
and the number of HR iterations required to

quit the angle α.

For polyhedral cone there exists M independent of initial
data such that billiard trajectory escapes from Q after no
more thanM reflections (see Tabachnikov [1995], Theorem
7.17). If M is large (M > R) BW algorithm sometimes
returns to the initial point but it remains well defined
w.p.1.

3.2 Orthant Q = {x ∈ Rn : x > 0}

It is easy to note that billiard trajectory independently
of initial point and initial direction quits Q after no more
than n reflections. Indeed, if d is direction of trajectory,
I = {i : di < 0} then at each reflection I decreases, and
after ≤ n reflections I = ∅.

HR trajectory quits Q with probability 2−(n−1) after
a single iteration, thus it requires approximately 2n−1

iterations to quit Q with probability 1−1/e = 0.63. Hence
BW is much more effective than HR for this case.

3.3 Concave corner

In concave corners some directions produce a billiard
trajectory with a large number of reflections. Consider a
typical domain

Q = {x ∈ R2 : −x4
1 < x2 < x4

1, x1 ≥ 1}. (2)

Start a trajectory at the point x0 = [0.9; ε], ε being small
enough, fix ℓ = 1, d = (−1; 0) and compute the number
of reflections needed to calculate the end of the trajectory.
Table 2 demonstrates the results.

As one can notice, the number of reflections increases
dramatically as the second coordinate of x0 tends to
zero and even for x0

1 = 10−4 the trajectory becomes

ε Number of reflections

1e-3 746
5e-4 1851
4e-4 2480
3e-4 3617
2e-4 6158
1.1e-4 13496
1.01e-4 >5e+6

Table 2. The number of reflections for the
billiard trajectory for domain (2).

unrealizable. So to be on the safe side of situations like
this we restrict the number of reflections in the algorithm.

Nevertheless these “bad” directions are rare. Fig. 2 depicts
200 points for domain (2), the average number of reflec-
tions per point is 5.2.

−0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. BW samples for domain (2), NBW = 200.

3.4 Cube

For the unit cube Q = {x ∈ Rn : 0 < x < 1} (inequality is
understood component-wise) we can derive the next point
of the BW algorithm explicitly.

At the current point x for the given ℓ and d calculate
ki = ⌊xi + ℓdi⌋ (⌊x⌋ is maximal integer less than or equal
to x) and walk to y:

yi =

{
xi + ℓdi − ki, ki is even
1− (xi + ℓdi − ki), ki is odd

, i = 1, . . . , n.

In fact, there is no need to apply MCMC algorithms for
random sampling in a cube, one can generate a vector
of n independent uniform random variables over [0, 1].
Moreover, the shape of a cube is so nice that distribution of
HR points converges to uniform fast enough. Nevertheless
Hit-and-Run demonstrates strong serial correlation. We
compare rk = E||xk − x0||∞ for n = 50 averaged over 500
runs, rk tends to r∗ = Ex∈Q||x − x0||∞. For the ”warm-
start” initial point x0 = [1/2, . . . , 1/2]T we obtain that it
requires 3 iterations for BW and around 30 iterations for
HR to converge to r∗. For the ”cold-start” initial point
x0 = [1/n, . . . , 1/n]T BW demonstrates convergence in
3-5 iterations while HR requires thousands iterations to
converge to r∗.

Then we make χ2 frequency test for 10000 HR points and
2148 BW point both requiring 20000 BO procedures in
R10. We take 10 equal volume slabs in the ith coordinate
direction for i = 1, . . . , 10, and make 10 χ2 tests all
together. HR fails all 10 χ2 tests while BW fails just 2
out of 10 tests.
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3.5 Simplex

The next test set is a standard n-dimensional simplex

Q = {xi > 0,
∑

xi = 1, i = 0, 1, . . . , n}.

The simplex is a set with many corners and the geometry
of the simplex can’t be improved by any affine transforma-
tion. We know that for HR walk it takes a lot of iterations
to get out of a corner, thus it is interesting to compare HR
and BW.

For n = 2 samples look uniformly distributed for both
algorithms. To judge about uniformity more rigorously in
multidimensional case we consider the sequence of enclosed
simplices Sα = {x ∈ Rn+1 : xi ≥ α,

∑
xi = 1},

0 ≤ α ≤ 1
n+1 . For α = 0, S0 is the initial simplex

Q, for α = 1
n+1 , simplex Sα becomes empty. Let f̂(α)

be the portion of points contained in Sα, and denote

f(α) = volSα/volS0 = (1− (n+ 1)α)n. Fig. 3 shows f̂(α)
for n = 50, N = 300, x0 = {1/(n+ 1), . . . 1/(n+ 1)}. Red
line corresponds to uniformly distributed points, black line
describes the distribution for HR points and blue line for
BW points. We conclude that for BW samples empirical

values of f̂(α) are much closer to mean value f(α) than
for HR samples.
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Fig. 3. Portion of points contained in Sα for uniformly
distributed points (red), HR (black) and BW (blue).
n = 50, 300 points. Horizontal line corresponds to
parameter α.

3.6 Toroid

Both the HR and BW algorithms are applicable to non-
convex sets. Consider a toroid formed by an n-dimensional
ball of radius r with its center rotating over a circle in the
(x1, x2)-plane:

Q = {x ∈ Rn : ||x− cx|| ≤ r}, (3)

where cxi =
xi√
x2
1+x2

2

, i = 1, 2, cxi = 0, i > 2.

The conditions of Theorem 2 are satisfied with B =⌈
π

2 arccos 1−r
1+r

⌉
+ 1, i.e. for all x, y ∈ Q there exists a

piecewise-linear path such that it connects x and y, lies
inside Q, and has no more than B linear parts. Fig. 4

demonstrates N = 1000 samples (projected onto (x1, x2)-
plane) for the set (3) with r = 1/3 of dimension 10. HR
points are plotted with black dots, BW points with blue
ones.
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Fig. 4. (x1, x2)-projection for HR (black) and BW (blue)
points for (3). n = 10, NBW = 500, NHR = 1764.

Note that angle distribution of BW points is close to
uniform. HR points mostly remain in the neighborhood of
the initial point. Radial distribution looks far from uniform
both for HR and BW; this is visual effect (we have 2D
projection of 10D points).

4. APPLICATIONS IN CONTROL AND
OPTIMIZATION

Here we briefly mention possible applications of new
version of random sampling: control problems and global
optimization.

Control systems design discover many situations when
sampling of systems with prescribed properties is of inter-
est. Static output feedback, robust fixed order control as
well as other design problems converted to Bilinear Matrix
Inequalities (BMI) (VanAntwerp and Braatz [2000]), or
recasted as concave optimization problems (Apkarian and
Tuan [1999]), — all these problems admit efficient ran-
domized solutions. Besides, numerous problems of robust
stability analysis and design can be solved by generation
of admissible uncertainties. The examples can be found in
Polyak and Gryazina [2011].

In our previous works we developed cutting plane meth-
ods for convex optimization, exploiting Monte Carlo tech-
niques. They are based on Hit-and-Run algorithm for gen-
erating samples in Q, and definitely all previous techniques
can be strongly improved by replacing standard Hit-and-
Run with Billiard Walk algorithm.

Consider a general global optimization problem

min f(x), x ∈ Q,

where f(x) is a nonconvex function while Q is a convex
domain. We apply multi-start framework containing two
steps: generate uniform samples in Q and implement
local descent procedure for every sample as a starting
point. Every single starting point gives a local optimum.
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Sampling in Q serves as diversification to overcome local
optimality since various local optima have various basins of
attraction and uniform samplings tends to capture mostly
all of them. These approach is well tailored for concave
f(x) and polyhedral Q. The local search problems are
linear programming ones:

min(∇f(xi), x) x ∈ Q

and can be solved fast. There exist the huge literature on
deterministic methods for concave optimization; see, e.g.,
Horst and Tuy [1996]; we conjecture that the proposed
randomized methods could be good competitors to them
for some classes of f .

General estimates for the number of function calculations
(calls of oracle) are quite disappointing for global optimiza-
tion. For x ∈ R10 and f(x) being Lipschitz continuous on
the box with L = 2 it requires no less that 1020 calls of
oracle to guarantee 1% accuracy Nesterov [2004]. It is the
worst case example where global optimum has very small
basin of attraction.

In contrast, we propose a class of problems with a promis-
ing trade-off between the basins of attraction and the
value difference for local and global optima. For instance,
consider the search of the most distant point in a cube:

max ||x− a||2 (4)

−1 ≤ xi ≤ 1, i = 1, . . . , n.

It may look as a toy problem – the exact solution is
straightforward – but we treat it as a representative
problem of concave optimization. In general it is a hard
combinatorial problem, every vertex is a local optimum
and the number of vertices grows exponentially with
dimension n.

For problem (4) we observe large basin of attraction
for local optima close to global one. Thus we have an
opportunity to obtain rather accurate suboptimal value
with high probability. We take N = 1000 uniform initial

samples and estimate the probability to obtain f̂ such that

fmax − f̂

fmax
≤ 0.01

fmax − fmin

fmax
,

where fmax =
n∑

i=1

(1 + |ai|)2, fmin =
n∑

i=1

(1− |ai|)2 are the

largest and the smallest local solutions to (4). Table 3
shows the numerical results averaged over 100 random a.

n Probability

20 0.9995
25 0.95
30 0.7

Table 3. The probability to guarantee 1% rel-
ative accuracy by multi-start algorithm with

1000 starting samples for problem (4).

The data show that problem (4) can be efficiently solved
up to n = 30.

5. CONCLUSION

We introduce the new uniform sampling algorithm – Bil-
liard Walk and provide its theoretical validation. Test
simulations show that random points produced by BW
are preferable in comparison with standard Hit-and-Run.

Applications of BW to control problems and global opti-
mization are briefly discussed. We demonstrate that for
a certain class of problems suboptimal solution can be
obtained with high probability via multi-start technique.
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