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Abstract: This work focuses on the nonlinear control of instabilities in the combustion of a
diluted dimethyl ether (DME) / air mixture under low temperature conditions. A nonlinear
model predictive control (NMPC) is utilized to stabilize the combustion in simulation with the
aim to specify minimum actuation dynamic requirements and develop control strategies for an
existing experimental chemical reactor.

1. INTRODUCTION

Common experimental setups for gathering reaction and
kinetic data of combustion processes are based upon shock
tubes, flow- or stirred reactors in which the reaction takes
place. This work focuses on a continuous jet stirred reactor
(CSTR) operated by the CRC 686 at low-temperature
conditions. Under these conditions the reactor system is
showing an oscillatory behavior resulting from periodical
ignitions and quenching effects. Because of the importance
of low-temperature combustion for emission reduction, the
dynamics of low-temperature oscillations and damping by
active control methods is a subject of research in the CRC.

In preliminary works Jarmolowitz et al. [2009] applied a
MPC using a trajectory piecewise linear model (TPWL)
to control the reactor system and gain a steady and
continuous combustion process for the operation with a
methane-air mixture. A further approach used a one-step
reaction model to control oscillations occurring during the
combustion of methane, see Wada et al. [2011]. Due to the
more complex ignition process of dimethyl ether (DME)
a one-step model is not able to capture the dynamics of
this process in a sufficient way. Lammersen et al. [2013]
applied a linear model predictive control using a detailed
chemical reaction mechanism by Beeckmann et al. [2010].
Because of the extreme dynamics of the reactor, the
resulting system of differential equations shows eigenvalues
with large magnitudes and both signs. Although the linear
MPC is capable of stabilizing the system in simulations,
there are two major drawbacks: First, the resulting control
trajectory would require a very high actuation dynamic.
Second, and even more important is, that a stabilization
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with a linear MPC was only possible by using a nonlinear
prediction of the free system response. Due to the systems
unstable behavior and the numerical properties a single-
shooting forward simulation is not possible for relevant
horizon lengths under real-time conditions, therefore not
applicable to the experimental setup.

This work is evaluating the use of a nonlinear model
predictive control to stabilize the reactor system using
the multiple-shooting principle introduced by Bock and
Plitt [1983]. The control results are then used to specify
minimum requirements to the actuation system while the
possibility of parallel evaluation of the horizon prediction
can be used to establish real-time capability on a multi-
core HIL-system which is available to the CRC 686.
The reactor temperature as well as the concentrations
of all species occurring during the combustion process
are reconstructed by an extended Kalman filter using
a cumulated carbon hydrogen (CH) concentration signal
and a temperature signal provided by a flame ionization
detector. The controller setup is using the equivalence ratio
φ defined as

φ =
3 ·XDME

XO2
, (1)

with the inlet mole fractions of dimethyl ether (XDME)
and oxygen (XO2) and the residence time of the gas
mixture inside the reactor τ as manipulated variables.
A mixture with φ = 1 is a stoichiometric fuel / oxygen
mixture. After a short description and a brief overview of
the modeling approach for the reactor system, the used
observer and MPC are presented, followed by a discussion
of the results.
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Fig. 1. Sketch of the experimental setup

2. JET STIRRED REACTOR

2.1 Experimental setup

Fig. 1 shows a sketch of the experimental setup. The
JSR itself consists of a glass bulb with three fuel nozzles,
ensuring a homogeneous mixture inside the reactor. The
fuel nozzles are fed by a preheated fuel, oxygen and
nitrogen mixture from the mass flow controllers (MFC).
The burned mixture is exiting the reactor through the
exhaust line leading to gas chromatography and mass
spectrometry systems, while a small amount of burned
gas is sucked into the inlet of the CH-FID-sensor. To
minimize heat losses through the wall and ensure a well
defined boundary condition for simulation purposes, the
complete JSR is surrounded by a heating and an insulation
which keeps the relevant ambient temperature at inlet
temperature Tin.

The operating conditions are given by the composition,
temperature and amount of the inlet gas stream, defined
by the actual gas mixture, the equivalence ratio φ, the
dilution with nitrogen d, the temperature Tin and the
massflow ṁin of the mixture. Since the reactor is working
as a continuous system, the mass of gas inside the reactor
will assumed to be constant, resulting in ṁin = ṁout.
According to usual practice, the inlet massflow will be
substituted by the residence time

τ =
ρV

ṁin

where V denotes the reactor volume and ρ the density
of the inlet mixture. The main manipulated variable for
stabilization purposes in this work is the equivalence ration
φ

The signal produced by the CH-sensor corresponds to the
cumulated concentrations of several species with different
weighting coefficients. These coefficients are available for
a broad spectrum of species in literature. In this work the
weighting factors supplied by Dietz [1967] are used.

2.2 Modeling of the Jet Stirred Reactor

The reactor model is based upon a chemical reaction
mechanism published by Beeckmann et al. [2010] describes

the oxidation of dimethyl ether by a 49-step reaction
scheme involving a total of 31 different chemical species
including several radicals which are occurring during the
combustion process. Therefor the reactor can be modeled
as an open thermodynamical system with one energy
conservation equation and a mass balancing equation
per each species, resulting in a system of 32 differential
equations.

The balancing equations are

cp ρ V
dT

dt
= (∆hin −∆hout) · ṁin − Q̇loss + Q̇chem (2)

and

ρ V
dYj
dt

= (Yj,in − Yj) · ṁin + ṁj,chem (3)

for 1 ≤ j ≤ NS . cp, V , ρ, α, A, Tamb are specific
heat capacity, reactor volume, density, wall heat transfer
coefficient, reactor surface area and ambient temperature,
NS is denoting the number of species. ∆hin is the specific
enthalpy of the inlet mixture, ∆hout is the specific enthalpy
of the current reactor mixture relative to the reference
enthalpy at normal conditions (T0 = 300K).

The heat loss through the reactor wall evaluates to

Q̇loss = αA (T − Tamb) , (4)

while the chemical source terms are given by

Q̇chem = −V ·
NS∑
j=1

vj · hj,m (5)

and

ṁj,chem = V ·Mj · vj , (6)

where NS is the total number of species and vj , hj,m and
Mi denoting the net production rate, the molar enthalpy
and the molar weight of species j. The thermodynamical
properties (cp,j,m, hj,m) are calculated by making use of
the NASA polynomials, while the chemical production
rates are calculated as described in Lammersen et al.
[2013]. Detailed information on the used modeling ap-
proach can be found in Poinsot and Veynante [2005]. The
model can then be written in standard state space form

ẋ = f (x, u) (7)

with

f (x, u) =


dT

dt

dYj
dt

 , i = j..NS , (8)

and the state vector x and input vector u, given by

x =


T
Y1
...

YNS

 and u =

 Tin
τ
d
φ

 . (9)
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3. CONTROL SYSTEM

3.1 State observer

Since the current experimental setup is only supplying
temperature and a HC concentration as measurement
data, the full system state required by the MPC is being
reconstructed by an extended Kalman filter, i.e. a non-
linear prediction is corrected by using a linear updated
covariance matrix:

Pk|k−1 = Ak−1Pk−1Ak−1 + Qk−1 , (10)

where P, Q and A are denoting the covariance matrix,
state noise covariance matrix and the linear state transi-
tion or sensitivity matrix. Due to the very limited sensor
information available an exact determination of the state
transition matrix is crucial for state vector reconstruction.
Due to performance requirements of an exact sensitivity
calculation using

∂Ak−1

∂t
=

∂

∂x
f(x, u) (11)

is not applicable. The exact linear solution

Ak−1 = exp
(
Ã∆t

)
(12)

with Ã = ∂f
∂x is especially for large matrices with large

norms (see Higham [2005]) very expensive and thus un-
suitable for real-time application in this case. Instead the
approximation

Ak−1 =

(
I +

∆t

2
Ã

)−1 (
I− ∆t

2
Ã

)
(13)

with the identity matrix I is used. This approach is still
more expensive than the simple approach Ak−1 = I + tÃ
but accounting for model stiffness and avoiding numerical
instabilities because of its implicit character. Fig. 2 shows a
comparison between simulation and experimental results.
The simulated model is showing an offset in temperature
and DME concentration. The exact reason for this offset
is subject of current work and not yet fully explainable.
As the closeup in the lower two graphics shows that the
simulation is exactly matching the oscillation frequency
and phase. A further model validation would require more
measurement signals which are not available at the current
point. In this work it is therefor assumed that the model
is reflecting the system behavior in a sufficient way.

3.2 Multiple Shooting NMPC

To stabilize the reactor system, a nonlinear MPC is being
used in this work. The overall task is to solve the problem

min
u(·)

J(u(·), x(·)) (14)

s.t. ẋ(t) = f (x (t)), u (t))) (15)

Cx x(·) ≤ bx (16)

Cu u(·) ≤ bu (17)

where the convex cost function is defined as
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Fig. 2. Comparison of simulation, experiment and observer
results for Temperature and DME mass fraction in
two different time resolutions

J(u(·), x(·)) =

H2∑
i=1

(x(ti)− xref )
T
Qi (x(ti)− xref )

+

Hu−1∑
j=0

(u(tj)− uref )
T
Rj (u(tj)− uref )

T
.(18)

As in most MPC applications, the system state at a given
time tk is defined by an initial system state x(t0) and the
past inputs u(t0), ..., u(tk). Applying a multiple shooting
algorithm, this connection can be resolved by an iterative
procedure of forward simulation and solution of sequential
quadratic by programs Bock and Plitt [1983].

Let xn,k be an approximation to x(tk) and un,k ≈ u(tk).
Using an arbitrary discretization scheme the differential
equality constraint (15) can be turned into the discrete
equation

xn,k+1 = F (xn,k, un,k) . (19)

Using a past solution (index n− 1) (19) can be linearized,
resulting in the recursion

xn,1 = xn−1,1 + Su,k (un,k − un−1,k) (20)

xn,k+1 = xn−1,k+1 + Sx,k

(
xn,k − xn,k−1|k

)
+ Su,k (un,k − un−1,k) (21)

with the sensitivity matrices
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Sx,k =
∂F (xn,k−1, un,k)

∂xn,k−1
and Su,k =

∂F (xn,k−1, un,k)

∂un,k−1
(22)

and the one step prediction

xn,k−1|k = F (xn−1,k−1, un−1,k−1) . (23)

Using the block matrices

Vx =


0

Sx,1 0

Sx,2 0

. . .
. . .

 (24)

and

Vu =


Su,1

Su,2

. . .

 (25)

the differential constraint (15) is finally turned into a
algebraic equality constraint

(I−Vx −Vu) ·

(
Xn+1

Un+1

)
= Xn −VxX̃n −VxUn−1(26)

using

Xn =


xn,1

...

xn,H2

 Un =


un,0

...

un,Hu−1

 (27)

and

X̃n =


xn,0|1

...

xn,H2−1|H2

 (28)

Starting now from an initial solution X0 and U0 the
prediction vector X̃1 can be calculated by evaluating H2

one step forward predictions (23) using the current input
vector U0. Since these prediction steps are not relying on
each other they can a) be evaluated in parallel and b) an
unstable system behaviour is only carried further for one
prediction step.

Solving (14) with constraints (15) through (17) and (26)
with an arbitrary QP-Solver gives an updated solution Xn

and Un. Iterating this process then leads to a solution of
the nonlinear optimal control problem.

3.3 Implementational remarks

Discretization A consequence of the harsh numerical
properties of the model equations is, that discretization
using a fixed time step approximation requires unrealistic
small time step sizes. Here a variable-step BDF-solver (see
Hairer and Wanner [2010]) was used, yielding acceptable
average time step sizes.
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Fig. 3. Comparison between single shooting or linear MPC
with the multiple shooting approach.

Calculation of the sensitivity matrices: Since (19) is only
implicitly defined by applying the BDF-solver to (7) the
sensitivity matrices Sx,k and Su,k cannot be evaluated
analytically but are themselves solutions of the ODEs

Ṡx =
∂

∂x
ẋ =

(
∂f

∂x

)T

f(x, t) (29)

Ṡu =
∂

∂u
ẋ =

(
∂f

∂u

)T

f(x, t) . (30)

An exact solution would result in an extreme computa-
tional effort, instead a linear approximation to the state
transition matrix

Sx = exp
(
Ã∆t

)
(31)

is used, where again Ã = ∂f
∂x . This matrix is than evaluated

by the approximation (13) used in the EKF as well.

Condensation and Solution The disadvantage of the
multiple shooting approach is, that the model equations
are explicitly treated as constraints resulting in a large
number of additional constraints compared to a linear
MPC approach. Here a condensation technique introduced
by Bock and Plitt [1983] and described by Peifer and
Timmer [2007] in detail was applied to reduce the resulting
QP-problem to the same size a linear MPC would require.
The resulting QP-Problem is solved by using qpOASES
Ferreau et al. [2008].

Parallelization At the current point the nonlinear for-
ward simulation of the reactor system can be performed in
about 30% of real time, i.e. to calculate 100ms of system
behavior 30ms are needed. It follows, that for any form
of nonlinear prediction further than three steps ahead a
sequential calculation is not possible (see fig. 3). Since
even the linear MPC requires a nonlinear prediction of
the free control variable due to the numerical properties
of the reactor system, neither a linear nor a single shooting
approach are estimated to work on the experimental setup.
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MPC setup

pred. horizon length 10
control horizon length 10
sampling time 0.01 s
controlled variable T
manipulated variable φ

Inlet conditions

dilution with nitrogen 80%
residence time 0.5s
fuel equivalence ratio 0.85

Constraints and Penalties

state constraints -
φ (absolute) 0.2 ≤ φ ≤ 2
∆φ −0.1 ≤ ∆φ ≤ 0.1
state penalty Qi 0.001
input penalty Ri 1

Table 1. Data for simulations
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mass fraction (middle) and input trajectory (bottom)

4. CONTROL RESULTS

The multiple shooting MPC was applied to a simulation
of the reactor to gain experience regarding the system
behavior and dynamics as well as to get a theoretical
minimum of necessary actuation dynamics to control and
stabilize the combustion process in the experimental setup.
In the simulation the parameter shown in table 4 have been
used.

As the controlled variable the reactor temperature is used.
The manipulated variable is the fuel equivalence ratio φ.
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Fig. 5. Phase diagram of temperature / HC mass fraction
curve of the reactor system with linear MPC and
nonlinear MPC (top) and a closeup to the marked
area (bottom).

Figure 4 shows the results of the control simulation. With-
out the MPC running, the reactor temperature is oscil-
lating in a stable limit cycle. At t = 2s the controller
is turned on and damping out the oscillations. The com-
parison between the linear MPC presented in Lammersen
et al. [2013] and the now implemented nonlinear multiple
shooting NMPC demonstrates the structural advantages
of the NMPC scheme. The temperature and HC results in
the top and middle figure are showing a significant over-
shooting for the system controlled with the linear MPC.
The resulting input trajectories are plotted in the bottom
figure. Although the control actions are less aggressive, the
total duration of the damping phase is about half a second
shorter when using an NMPC and the generated control
trajectory is easier to be reproduced on the experimental
setup by the mass flow controllers.

A phase plot of the reactor state trajectory in the tem-
perature / HC - space is shown in fig. 5. The arrows
are marking the traversing directions. Clearly visible is
the systems limit cycle without active control forming the
elliptic trajectory in the red rectangle. When the controller
is switched on the system is leaving the limit cycle tem-
porarily before running into its stable point within the
limit cycle. The system behavior is confined to a much
smaller area when controlled by a nonlinear MPC com-
pared to the result when applying a linear MPC.

The tracking behavior of the controlled system for a
variable reference is shown in fig. 6. The controller is
turned on at t = 1s. Again, the linear MPC leads to
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significant overshooting amplitudes when sudden changes
are applied to the reference. For smooth changes in the
reference a difference in the performance of the linear and
nonlinear controller is not detectable.

A possible approach to identify minimum actuation dy-
namics is to tighten the constraints for the maximal change
in the manipulated variable up to the point where a stabi-
lization is not possible anymore. Starting from |∆φ| < 0.01
several simulations were performed to identify a critical
constraint. The results are shown in fig. 7. A stabiliza-
tion could not be achieved anymore, if |∆φ| is bounded
to 0.001 while 0.0025 was still sufficient. Considering a
total operating range of the inlet mass flow controllers of
0.2 ≤ φ ≤ 2 and the MPC sampling time of ∆t = 0.01
a change of about 14% of the total range per second can
therefor regarded es sufficient to control the experimental
setup.

5. CONCLUSION

It was demonstrated that an oscillating chemical com-
bustion system can be controlled and stabilized with a

nonlinear model predictive control using a detailed chem-
ical model, evaluated using a multiple shooting approach.
The results have been compared to the results in a pre-
liminary work where a linear MPC has been used. The
nonlinear approach is showing a significantly better per-
formance regarding actuation requirements and duration
of the damping phase. As an important result minimum
requirements of the mass flow controller performance in
the experiment could be derived. The required actuation
dynamics lies well within the capacity of commercially
available products.
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