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Abstract:
This paper compares the robustness of three different battery State of Charge (SoC) estimation
algorithms: the Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF) and the
H∞ filter. Their performance when subject to disturbances such as parameter uncertainties,
different sensor noise characteristics and sensitivity to tuning of the filter are examined.
Simulations show that the appropriate choice of observer algorithm will depend on battery
chemistry as well as on the intended application. For batteries with a strong correlation between
SoC and OCV, the UKF is robust to disturbances such as sensor bias. The H∞ observer shows
performance on par with the UKF but the variability of the estimation errors are larger. The
EKF is a good all-round choice.

Keywords: State estimation; Kalman filters; Robustness; H-infinity; Automotive; Hybrid
vehicles

1. INTRODUCTION

To secure safety, reliability and performance of an electri-
fied vehicle, it is important to monitor the State of Charge
(SoC) of the battery system [Lu et al., 2013]. Batteries
are electrochemical components and there are currently no
sensors that can measure SoC directly. Instead, electrical
signals, such as current and voltages of the battery are used
to estimate the SoC via some algorithm. There are several
approaches to model based SoC estimation available in
literature, such as the Extended Kalman Filter (EKF)
[Plett, 2004], the Unscented Kalman Filter (UKF) [Plett,
2006], Luenberger Observers (LO) [Hu et al., 2010], Sliding
Mode Observers (SMO) [Kim, 2006] and H∞ observers
[Yan et al., 2010].

There are also several types of Li-Ion batteries in produc-
tion today. These differ in electrode materials, leading to
different electrical behaviour when subject to a charging
or discharging current. Due to these differences, the model
used in the observers are not necessarily the same for
different cell chemistries [Hu et al, 2012a].

Another aspect to consider when evaluating SoC estima-
tors is that the battery usage is different depending on
vehicle application. In a Battery Electric Vehicle (BEV),
the battery is the only energy source and thus a large part
of the SoC range will be used. In a Hybrid Electric Vehicle
(HEV), the electric system is mainly used to boost power
in accelerations and thus the battery will be designed to
handle large charge and discharge power, but the used SoC
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range is normally rather small. A Plug-In Hybrid Electric
Vehicle (PHEV) can be used as either a BEV or HEV or
any combination in between.

Comparative studies of SoC estimators have been per-
formed before, [Li et al., 2013] compare EKF, UKF and LO
while [Chen et al., 2012] focus on LO compared to SMO.
The main focus in those papers are on the algorithms and
implementation aspects of the observers. In [Hu et al.,
2012b], the robustness of an EKF is analysed with respect
to temperature and ageing for two different battery types.
However, there has been no thorough comparison of the
performance of different observers for different battery
chemistries.

This paper compares the performance of the EKF to that
of the UKF and the H∞ filter for two different battery
chemistries. Using a Monte Carlo simulation approach,
robustness to problems such as parameter uncertainties,
sensor noise characteristics and observer tuning is anal-
ysed. The choice of observers is based on promising results
shown in [Plett, 2004], [Plett, 2006] and [Yan et al., 2010].
These observers can also be implemented by simple and
efficient recursive algorithms. In [Kim, 2006], Kim show
the potential of the SMO. The implementation is, however,
complex compared to the chosen observers, and it is thus
left out of the evaluation.

The paper is structured as follows: Section 2 presents
the test environment used in the evaluation with battery
model, observers and the considered use cases. In Sec-
tion 3, the robustness evaluation is presented. In Section 4
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some conclusions of the tests are drawn and the results are
discussed.

2. EXPERIMENT SETUP

This section describes the test setup used, i.e. the simula-
tion environment consisting of battery and sensor models
and the evaluated observers. Also the drive cycles used in
the tests are presented, together with metrics to evaluate
the observers.

2.1 Battery Model

The observers evaluated are all model based and require a
model of the process. The general nonlinear discrete time
state space form

xk+1 = f (xk, uk, wk)
yk = h (xk, uk, vk)
wk ∼ N (w̄k,Σw,k)
vk ∼ N (v̄k,Σv,k)

(1)

is used, where N (ν̄,Σ) denotes normally distributed noise
with mean ν̄ and variance Σ.

Two different batteries are considered in the study; one
lithium iron phosphate (LFP) and one lithium nickel man-
ganese cobalt oxide (NMC). Equivalent circuit models, see
Figure 1, were fitted to lab data for both batteries. While
it was concluded that both batteries can be suitably mod-
elled by single RC-circuit models, the LFP battery needed
a hysteresis state, uh, to improve the fit to measured data.
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Fig. 1. Equivalent circuit battery model

The model equations for both batteries are given in the
following sections. For further descriptions of the models,
see [Hu et al, 2012a] and [Plett, 2004].

NMC In room temperature, the NMC battery can
be modelled with sufficient accuracy using the following
model:

uRC,k+1 = e
− ∆t

τ1,k uRC,k +R1,k

(
1− e

− ∆t
τ1,k

)
ibatt,k

zk+1 = zk +
ηi∆t

Cn
ibatt,k

ubatt,k = UOCV(zk) + uRC,k +R0(zk)ibatt,k

Here, uRC, R1 and τ1 = R1C1 are the voltage, resistance
and time constant of the RC network, ∆t is the sampling
time, ibatt and ubatt are battery current and voltage, z is

the battery SoC, ηi is the Coulombic efficiency, Cn is the
nominal capacity of the battery, UOCV is the open circuit
voltage and R0 is the internal resistance of the battery.
Note that the circuit parameters are varying with SoC,
i.e. τ1, R1, R0 and UOCV are all functions of SoC.

LFP The LFP battery needs an additional hysteresis
state. The model used is

uRC,k+1 = e
− ∆t

τ1,k uRC,k +R1,k

(
1− e

− ∆t
τ1,k

)
ibatt,k

uh,k+1 = e−κk∆tuh,k +
(
1− e−κk∆t

)
Uh,max(zk)

zk+1 = zk +
ηi∆t

Cn
ibatt,k

ubatt,k = UOCV(zk) + uRC,k + uh,k +R0(zk)ibatt,k

where uh is the hysteresis voltage, κ is the time con-
stant of the hysteresis which is a function of the battery
current and Uh,max is the maximum hysteresis. For the
LFP battery, also variations with respect to current and
charge/discharge are needed, and thus τk and R1 are
functions of battery current as well as SoC.

2.2 State of Charge Observers

Three SoC observers were implemented, sharing battery
model and parameters according to Section 2.1.

Extended Kalman Filter The EKF treats the nonlinear-
ities by linearizing the state space representation (1) at
each time step. It is a two-step procedure where the a
priori state and covariance estimates, x̂− and Σ−

x̃ , are
first calculated using the state space model. Based on
the predicted and measured system output, the estimates
are then corrected by the Kalman gain K to form the a
posteriori estimate, x̂+ and Σ+

x̃ .

A recursive algorithm suited for real-time implementation
is described by

x̂−
k = f

(
x̂+
k−1, uk−1, w̄k−1

)
Σ−

x̃,k = Âk−1Σ
+
x̃,k−1Â

T
k−1 + Ŵk−1Σw,kŴ

T
k−1 (2)

ŷk = h
(
x̂−
k , uk, v̄k

)
Kk = Σ−

x̃,kĈ
T
k

[
ĈkΣ

−
x̃,kĈ

T
k + V̂kΣv,kV̂

T
k

]−1

x̂+
k = x̂−

k +Kk (yk − ŷk)

Σ+
x̃,k =

(
I −KkĈk

)
Σ−

x̃,k

where Âk, Ŵk, Ĉk and V̂k are the Jacobians:

Âk =
∂f (xk, uk, wk)

∂xk
|xk=x̂+

k

Ŵk =
∂f (xk, uk, wk)

∂wk
|wk=w̄k

Ĉk =
∂h (xk, uk, vk)

∂xk
|xk=x̂−

k

V̂k =
∂h (xk, uk, vk)

∂vk
|vk=v̄k

Note that in (2), the Jacobians Âk−1 and Ŵk−1 from the
previous time step are used. For more information on how
to derive the EKF, the user is referred to e.g. [Plett, 2004],
[Simon, 2006] and [Welch and Bishop, 1995].
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Unscented Kalman Filter The UKF uses a similar pre-
dict/correct procedure as the EKF, but rather than using
the Jacobians to linearize the system, the UKF lets several
perturbed versions of the current state vector, called sigma
points, pass the nonlinear system (1). The estimated state
is calculated as a weighted mean of the result, in general
providing a better approximation for strong nonlinearities
[Simon, 2006].

The recursive algorithm is more complex than the EKF.
First, define the augmented state and sigma point vectors

xa
k =

[
xT
k , w

T
k , v

T
k

]T
χa
k =

[
(χx

k)
T
, (χw

k )
T
, (χv

k)
T
]T

State and covariance estimate predictions are given by

χa,+
k−1 =

{
x̂a,+
k−1, x̂

a,+
k−1 + γ

√
Σa,+

x̃,k−1, x̂
a,+
k−1 − γ

√
Σa,+

x̃,k−1

}
χx,−
k,i = f

(
χx,+
k−1,i, uk−1, χ

w,+
k−1,i

)
x̂−
k =

p∑
i=0

α
(m)
i χx,−

k,i

Σ−
x̃,k =

p∑
i=0

α
(c)
i

(
χx,−
k,i − x̂−

k

)(
χx,−
k,i − x̂−

k

)T

An estimate of the output is calculated from the predicted
state

Yk,i = h
(
χx,−
k,i , uk, χ

v,+
k−1,i

)
ŷk =

p∑
i=0

α
(m)
i Yk,i

The gain of the estimator is

Σỹ,k =

p∑
i=0

α
(c)
i (Yk,i − ŷk) (Yk,i − ŷk)

T

Σ−
x̃ỹ,k =

p∑
i=0

α
(c)
i

(
χx,−
k,i − x̂−

k

)
(Yk,i − ŷk)

T

Kk = Σ−
x̃ỹ,kΣ

−1
ỹ,k

Finally, the state and covariance estimates are corrected
according to

x̂+
k = x̂−

k +Kk (yk − ŷk)

Σ+
x̃,k = Σ−

x̃,k −KkΣỹ,kK
T
k

A thorough background to the unscented transformation
and derivation of the UKF can be found in [Simon, 2006]
and [Plett, 2006].

Extended H∞ Filter H∞ filters have close similarities to
Kalman filters, as pointed out by [Simon, 2006]. They are
just like Kalman filters for linear systems, but can also
be used for nonlinear systems by extended [Seo et al.,
2005] and unscented [Ni , 2011] transformations. In the
SoC estimation field, [Yan et al., 2010] promotes the use
of the H∞ filter, based on the fact that it does not require
information on noise characteristics.

In [Hassibi et al., 1996], the sub-optimal H∞ filtering
problem is formulated as that of finding an estimate x̂
such that

sup
x0,w∈H2,v∈H2

=
∥Lkxk − Lkx̂k∥22

∥x0 − x̂0∥2P−1
0

+ ∥wk∥22 + ∥vk∥22
< γ2 (3)

for some predefined error bound γ and state weight matrix
L. A solution to the problem is given by the recursion

x̂−
k =f

(
x̂+
k−1, uk−1, w̄k−1

)
Rk =

[
I 0
0 −γ2I

]
+

[
Ĉk

Lk

]
Pk−1

[
ĈT

k L
T
k

]
Pk =ÂkPk−1Â

T
k + ŴkŴ

T
k

− ÂkPk−1

[
ĈT

k LT
k

]
R−1

k

[
Ĉk

Lk

]
Pk−1Â

T
k

Kk =PkĈ
T
k

[
V̂kV̂

T
k + ĈkPkĈ

T
k

]−1

x̂+
k =x̂−

k +Kk

(
yk − h

(
x̂−
k , uk, v̄k

))
For the solution to actually solve the sub-optimal H∞
filtering problem, the following condition must also hold:

P−1
k + ĈT

k Ĉk − γ−2LT
k Lk > 0 (4)

2.3 Filter Tuning

The H∞ filter is not relying on the noise covariance
estimates, Σw and Σv. The only parameters chosen by the
user is the state weight matrix L and error bound γ. They
must be chosen such that (4) is fulfilled, but otherwise the
estimate is rather insensitive to tuning, as will be shown
later in Section 3.

The performance of the EKF and UKF observers depend
on the tuning of the covariance matrices Σw and Σv. To
make a fair comparison, an automatic procedure for tuning
the covariance matrices was implemented. The procedure,
presented by [Abbeel et al., 2005], uses information from
an improved set of measurements, y∗, compared to the
final application. Here, it is assumed that the improved
output has a linear relation to the state, i.e. y∗ = Hx.
The prediction likelihood is maximized by solving the
optimization problem

⟨Σw,Σv⟩ = arg max
Σw,Σv

N∑
k=0

−log|2πΩk| − ỹ∗k
TΩ−1

k ỹ∗k (5)

with Ωk = HkΣx̃,kH
T
k +Σy∗ , where Σy∗ is the variance of

the improved measurement, N is the number of samples
in the test and ỹ∗k = (y∗k − ŷk).

This work is simulation based, and thus the true SoC is
available to use as y∗. For the uRC and uh voltages, no
individual measurements are available. However, they are
related to the SoC via circuit parameters and the output
equation, so it is possible to get an estimate of the complete
covariance matrix.

Having only the SoC as y∗, (5) can be simplified. First
note that Hk = 1 in this case and secondly that Σy∗

was assumed small compared to the variance of the SoC
estimate Σẑ, and was discarded. The optimization problem
(5) then simplifies to the scalar expression

⟨Σw,Σv⟩ = arg max
Σw,Σv

N∑
k=0

−log|2πΣẑ,k| −
(y∗k − ẑk)

2

Σẑ,k

which was solved using a simple search algorithm pre-
sented in [Abbeel et al., 2005].
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Fig. 2. Drive cycles for the PHEV and HEV use case, note
the different scaling of the y-axis

The two main difficulties found using the method were:

• The result is sensitive to initial estimates. This was
overcome by using several different initial estimates.

• The improved SoC signal uses Coulomb counting,
as do the estimators. In order to find a trade-off
between Coulomb counting and the information from
the measured cell voltage, an initial SoC estimation
error was needed.

2.4 Use Cases

Depending on the level of electrification of the target
vehicle, the use of the battery will be different. An HEV
using only a small part of the SoC range will have fewer
possibilities to calibrate the estimation, while a PHEV or
BEV must handle larger SoC ranges and may also need
higher precision in their estimates. In the evaluation, two
cycles were used, see Figure 2. One for HEV where the SoC
swing is approximately 10 % and one PHEV cycle starting
from a fully charged battery and then slowly draining it to
empty with a charge sustaining part in the middle. BEV
is considered to be similar to PHEV with the exception
of the charge sustaining portion of the cycle and thus no
additional cycle was added for this case.

2.5 Performance Indicators

In order to assess the performance of the different ob-
servers, a set of metrics is needed. The evaluations are
based on 100 Monte Carlo simulations and the perfor-
mance indicators used must give a representative value

over all these simulations. In [Li et al., 2001], several as-
pects of the choice of performance indicators are discussed.
In this evaluation, the following were selected:

Mean Absolute Percentage Error The average error in
percent was considered an appropriate measure since it
has a direct interpretation. The MAPE is given by

MAPE =
1

MN

M∑
j=1

N∑
i=1

|z̃i,j |

where M is the number of Monte Carlo simulations, N is
the number of samples in one simulation and z̃ = z − ẑ is
the SoC error in percent.

Max Percentage Error The max error gives an impor-
tant worst case measure. It is taken over all simulations
according to

MAX = max
i,j

|z̃i,j |

Note that the first n samples of each simulation is left out
in order to reduce the influence of the initial error. In this
work, n = 1000 seconds was used.

2.6 Limitations

There are some limitations imposed on the test setup and
evaluation.

Tuning To reduce the time needed for tuning of the
observers, the procedure presented in Section 2.3 is used to
optimize the covariance matrix over the whole SoC range.
Improved estimates may be achieved using matrices that
depend on SoC. The same tuning is also used for both the
HEV and PHEV cycles.

Unmodelled Behaviour The performance of the ob-
servers is highly dependent on the quality of the model
used. To minimize the influence of unmodelled behaviour
in the evaluation, the same model is used to provide the
reference SoC as is used in the observers.

3. ROBUSTNESS ANALYSIS

This section presents the different test cases and the results
of the robustness evaluation.

3.1 Benchmark Test

The first test uses correct model and observer parameters
and only adds Gaussian noise on the current and voltage
sensors. Also, based on this noise, an initial SoC error
is imposed on the observers. The results from this test
provide an indication on the best performance that can be
expected from each observer type.

In Figure 3 the results of 100 Monte Carlo simulations
are plotted. It can be seen that the errors are small in
almost all cases. Only the UKF for the LFP battery has
trouble finding the correct SoC due to the flat OCV curve,
see Figure 4a. Note that the tuning used is a compromise
between the HEV and PHEV cycles. The UKF can be
tuned to produce slightly better estimates for HEV, but
that negatively impacts the performance for PHEV case.
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Fig. 3. Benchmark simulation only adding Gaussian noise with small variance to current and voltage sensor values.
Most simulated cases are acceptable from a SoC accuracy perspective, but the UKF estimate for the LFP battery
on the HEV cycle shows an almost constant offset depending on the initial estimation error.

3.2 Model Parameter Uncertainties

The characteristics of a battery depends on several factors,
e.g. SoC, temperature and age. Even if the battery model
parameters are calibrated on-line, the algorithm must
be robust to deviations from optimal parameters in the
model. In the evaluation, the reasons for a deviation
in parameter values are not considered. Instead, it is
the algorithms’ ability to handle the erroneous model
parameters that is in focus. The parameters of the battery
model used in the observers were randomly distorted from
the values used in the reference model. Gaussian noise was
also added to the measurement signals as in the benchmark
test.

For the analysis, the case where the OCV is uncertain was
separated from the other parameter variations since the
impact of an erroneous OCV can be severe.

OCV Errors In Figure 4, the OCV curves of the two
batteries are shown. The OCV robustness tests evaluate
how the observers handle perturbations of magnitudes up
to 0.01V compared to the nominal OCV curve.

In Figure 5, the results of 100 Monte Carlo simulations are
shown for all four combinations of battery and use case.
In general, the impact of an uncertain OCV curve is most
severe for the NMC battery. The reason for this is that the
observers use the OCV curve more for the NMC battery
compared to the LFP battery. For the NMC battery all
three estimators show similar results, both for HEV and
PHEV cycles. For the LFP battery the UKF have trouble
converging with a more or less constant estimation error
for most part of the SoC range. The impact of this is most
severe on the HEV cycle. The estimation error of the H∞
filter is varying a lot during the cycle, but the convergence
rate is fast also for the combination of LFP battery and
HEV cycle, which is the most difficult combination.

Parameter Errors The parameters of the battery model
used by the observer will vary with SoC, temperature,
age, etc. This test is designed to examine the ability
of the respective observer to handle uncertainties in the
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Fig. 4. OCV curve of the evaluated batteries

model parameters. Random perturbations are added to
the resistances R0 and R1, to the time constant τ1 and to
the capacity of the battery Cn. The worst-case errors are
rather large in order to push the observers to the limits of
what they can handle. The results of the simulations are
shown in Figure 6.

The H∞ observer is most sensitive to errors in model
parameters for both batteries. The differences between
observers are, however, rather small for all but the PHEV
cycle with the LFP battery.
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Fig. 5. Results from Monte Carlo simulations for with perturbations of OCV curve
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Fig. 6. Results from Monte Carlo simulations with perturbations of model parameters.

3.3 Sensor Noise

Gaussian noise is added to the sensors in all the tests
in this evaluation. Two tests were specifically designed
to evaluate the robustness to erroneous assumptions of
noise characteristics, one adding bias to the current sensor
estimate and the other increasing the variance of the
voltage measurement.

Current Sensor Bias In this test, the bias of the current
sensor is chosen as a normally distributed random variable
with variance chosen to give a maximum deviation over the
realizations of approximately 1A. The results are shown
in Figure 7. For the LFP battery, the H∞ filter shows
no drift of the estimation. However, just as in all other
cases, the variability of the estimates are large. The EKF
performance is on par with H∞ for the whole cycle, but is
also constantly drifting which means that it is not suitable
for a long-term drive with biased current sensor. The
UKF also shows drift and is further set back by its poor
performance for the LFP battery. When the OCV curve
provides the observer with more information, like in the
case of the NMC battery, the UKF handles the bias well
for both the HEV and PHEV cycles. We may also note that

the H∞ estimate is slightly better than the EKF estimate
for the NMC battery.

Voltage Sensor Variance In this test, the variance of
the voltage sensor is varied. The standard deviation of
the voltage sensor used in the simulations are 0.1-1mV,
compared to 0.3mV used in the other simulations. The
main observation in this test is the poor performance
of the H∞ filter, particularly for the NMC battery, see
Figure 8. This makes the H∞ filter less suited if the
uncertainty of the voltage measurement is large. This
result can seem surprising, given that the H∞ filter does
not use any information on the noise characteristics of the
measurement signals. For this reason, it is easy to assume
that it is robust to differences in variance. However, a
closer study of the robustness bound (3) using the actual
values for L and γ, gives a bound that is actually larger
than the full SoC range.

3.4 Sensitivity to Observer Tuning

The EKF and UKF have covariance matrix parameters,
Σw and Σv, that must be tuned. Tuning is expensive and
in real world applications it is not feasible to expect that
an optimal set of observer parameters is used. For this
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Fig. 7. Results from Monte Carlo simulations with biased current sensor
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Fig. 8. Results from Monte Carlo simulations with different variance on the voltage sensor. Note the scaling on the H∞
filter for NMC and PHEV cycle.

reason it is interesting to see how sensitive the algorithms
are to perturbations in parameter tuning.

In this test, two versions of the observers using the same
measurement signals and battery models were run. A
reference observer using parameters from the procedure in
Section 2.3 was compared to an observer where uniformly
distributed noise was added to the covariance matrices, Σw

and Σv. For the UKF, also the parameter controlling the
distance and weight of the sigma points was changed. For
the H∞ observer, the L matrix was changed in the same
manner.

The results are shown in Figure 9, where the differences
between the reference observer estimates and the estimates
using the perturbed covariances are plotted. The results
are similar for all simulations. H∞ produces the same esti-
mate as long as the requirement of positive definitiveness of
(4) is met. For the EKF, it is mainly the convergence rate
that is affected by the tuning and the estimation converged
for all simulations. The UKF is most sensitive to tuning,
and especially the tuning of the parameter controlling the
distance and weight of the sigma points. Also note that
the UKF estimation diverges for some simulations on the
HEV cycle with the LFP battery.

3.5 Comparison

Figure 10 provides an overview of the performance of the
different observers. The main findings are:

• For the NMC battery, with strong correlation be-
tween OCV and SoC, the UKF outperforms the other
observers. On the other hand, when the SoC–OCV
relation is flat, the UKF is not a good option since it
has convergence problems in several test cases.

• The EKF shows robust behaviour in most cases,
except for biased current sensor readings. The impact
of the drift is not so obvious in Figure 10, but is best
studied in Figure 7.

• The H∞ observer performs very well considering that
there are basically no tuning parameters. However,
the estimates for the H∞ observer are somewhat
unpredictable, sometimes giving large errors.

4. CONCLUSIONS

The simulation study reveals significant differences in
observer performance that can not be purely attributed
to tuning of the observers. Some influence of the tuning
can, however, not be ruled out.
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Fig. 9. Difference between reference observer estimation and estimation using perturbed covariance matrices
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Fig. 10. Comparison of the performance in the different cases. Caution should be taken when looking at the absolute
values of the estimator performance. It is the relative differences that are in focus here.

The general finding is that when the observability of the
system is poor, e.g. on the flat part of OCV curve for
the LFP chemistry, it is important that the observer can
do controlled Coulomb counting. EKF proved to be best
at this task. When the observability is stronger, e.g. for

the NMC chemistry, the choice of observer will affect the
performance. In this study, UKF performed best for most
cases, while H∞ provided the most consistent estimates
with respect to different uncertainties.
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The guaranteed robustness bounds of theH∞ filter are too
generous for practical use in SoC estimation. However, the
performance of the observer was good in the case of good
observability.
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