
Robustness of the Moore-Greitzer

Compressor Model’s Surge Subsystem with

New Dynamic Output Feedback Controllers ⋆

Alina Andersson ∗ Anders Robertsson ∗

Anton S. Shiriaev ∗∗,∗∗∗ Leonid B. Freidovich ∗∗

Rolf Johansson ∗

∗ Department of Automatic Control LTH, Lund University, Sweden
(e-mail: alina@control.lth.se, andersro@control.lth.se,

rolf.johansson@control.lth.se)
∗∗ Department of Applied Physics and Electronics Ume̊a University,

Sweden (e-mail: leonid.freidovich@umu.se)
∗∗∗ Department of Engineering Cybernetics Norwegian University of

Science and Technology, Norway (e-mail: anton.shiriaev@itk.ntnu.no)

Abstract: This work presents an extension of a design procedure for dynamic output feedback
design for systems with nonlinearities satisfying quadratic constraints. In this work we used an
axial gas compressor model described by the 3-state Moore-Greitzer compressor model (MG)
that has some challenges for output feedback control design (Planovsky and Nikolaev 1990),
(Rubanova 2013). The more general constraints for the investigation of the robustness with
respect to parametric uncertainties and measurement noise are shown.
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1. INTRODUCTION

A gas compressor is a mechanical device for compressing
and supplying the air or other gas under a certain pressure.
An axial gas compressor is one of the main components of
gas turbines, aircraft jet engines, high-speed ship engines
and small-scale power stations (Greitzer 1976). They are
also widely used in high-voltage installations in the blast
furnaces, in the chemical and petroleum industries (Ved-
ernikov 1974).

In 1986 Moore and Greitzer published a differential equa-
tions model describing the airflow through the compression
system in turbomachines (such as gas turbines, fans, etc.)
(Moore and Greitzer 1986). The Moore-Greitzer model
includes the differential equations:

d

dt
φ = −ψ +

3

2
φ+

1 − (1 + φ)3

2
− 3R(1 + φ)

d

dt
ψ =

1

β2
(φ − u)

d

dt
R = −σR2 − σR(2φ+ φ2), R(0) ≥ 0

y = ψ

(1)

Here, both φ and ψ represent the deviations of the av-
eraged flow and pressure from their respective nominal
values. The variable u is the control variable and y is the
measurement (with only deviation of the averaged pressure
available).
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The stall R is the squared amplitude of oscillations of the
rotary derangement. An inlet flow deformation may result
in the rotating stall, surge (or axi-symmetric stall), or a
combination of them (Greitzer 1976). The flow oscillations
and strong vibrations of the blades in the machine may
cause damage to the complete engine and even flow re-
versal is possible (Ng 2007). The fully developed surge is
not viewed as an unstable state of the compressor but as
a set of equilibria along which R is nonzero Paduano et al.
(2001).

Subsequently we thus want to control the compressor dy-
namics to the appropriate set-point (φ, ψ, R) = (0, 0, 0).

The challenges to stabilize the origin of the 3-state Moore-
Greitzer model that were presented before in (Moore
and Greitzer 1986), (Shiriaev 2009), (Shiriaev 2010),
(Rubanova 2013) are:

• the linearized dynamics are not stabilizable;
• the fact that R cannot be measured or used for

feedback design;
• the presence of non-globally Lipschitz (cubic) nonlin-

earity;
• the nonlinearity in φ-dynamics is known only approx-

imately.

In this work we discuss the degree of robustness and
present the method that will simplify the controller choice
based on a specific task. By this method and with the help
of the previous project results one can choose the optimal
controller for the given model and analyze the quality of
the controller design.
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2. THE CONTROL SYNTHESIS METHOD
(SHIRIAEV 2010)

We will apply this method to the surge subsystem of the
MG compressor model (1). The surge subsystem is:

d

dt
φ = −ψ +

3

2
φ+

1 − (1 + φ)3

2
d

dt
ψ =

1

β2
(φ− u)

y = ψ

(2)

with the nonlinearity

W {φ}(φ) = 1 − (1 + φ)3 (3)

We used the general form of a dynamic output feedback
control law (Shiriaev 2010):

u = U(z, y), ż = F(z, y) (4)

where U(·) and F(·) are smooth functions of appropriate
dimensions. The family of stabilizing output feedback
controllers has the following structure:

u = Λ
{u}
ψ ψ + Λ{u}

z z + ωu ·W (ψ, z)

d

dt
z = Λ

{z}
ψ ψ + Λ{z}

z z + ωz ·W (ψ, z)
(5)

with z ∈ R, where Λ{u}, Λ
{u}
z , Λ

{z}
ψ , Λ

{z}
z , ωu, ωz are

constants to be defined.

The nonlinearities in the controller of Eq. (5) are static
nonlinearities and defined as

W (ψ, z) = 1 − (1 + tψψ + tzz)3 (6)

where tψ, tz are constants to be defined too.

The closed-loop system with the surge subsystem of Eq.
(2) and the controller of Eq. (5) takes the form:





φ̇
ψ̇
ż



 =









3

2
−1 0
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β2
−

Λ
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β2
−
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{u}
z

β2

0 Λ
{z}
ψ Λ

{z}
z




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


︸ ︷︷ ︸

=Acl

[
φ
ψ
z

]

+







1

2
0

0 −
ωu
β2

0 ωz







︸ ︷︷ ︸

Bcl=[Bcl1
, Bcl2

]

[

W {φ}(φ)
W (ψ, z)

]

(7)

with z ∈ R and the output matrix Ccl2 = [0, tψ, tz].

In (Rubanova 2013) we presented some stabilizing con-
trollers and new constraints for the corresponding param-
eters.

The task now is to analyze the quality of the set of the
stabilizing controllers presented.

3. ROBUSTNESS OF THE CLOSED-LOOP SURGE
SUBSYSTEM

The synthesis of stabilizing controllers and their applica-
tion to the surge subsystem of the MG compressor model
was presented in (Rubanova 2013). The alternative proof

of stability of the closed-loop system of Eq. (7) is based on
the Circle criterion (Yakubovich 2004), (Khalil 2002).

As we already know, in the closed-loop system of Eq. (7)
there are two nonlinearities of Eqs. (3) and (6). We will
simplify the notation

W {φ}(υ1) = W {φ}(φ)

W (υ2) = W (ψ, z)
(8)

where

υ1 = Ccl1

[
φ
ψ
z

]

= [ 1 0 0 ]

[
φ
ψ
z

]

υ2 = Ccl2

[
φ
ψ
z

]

= [ 0 tψ tz ]

[
φ
ψ
z

] (9)

One of the main parts of the constructive steps in design
is that nonlinearities W {φ}(υ1) and W (υ2) have to satisfy
the quadratic constraints

−Ccl1

[
φ
ψ
z

]

W {φ}(υ1) −
3

4

[
φ
ψ
z

]T

CTcl1Ccl1

[
φ
ψ
z

]

≥ 0

−Ccl2

[
φ
ψ
z

]

W (υ2) −
3

4

[
φ
ψ
z

]T

CTcl2Ccl2

[
φ
ψ
z

]

≥ 0

(10)

By using the simplified notation of Eq. (8) we can rewrite
the quadratic constraints of Eq. (10)

−W {φ}(υ1)υ1 −
3

4
|υ1|2 ≥ 0

−W (υ2)υ2 −
3

4
|υ2|2 ≥ 0

(11)

Since the static nonlinearity W (υ2) is assumed to resemble
the original nonlinearity W {φ}(υ1) of the system of Eq.
(2) we need to have one additional constraint that will be
connected to both nonlinearities

−(W {φ}(υ1) −W (υ2))(υ1 − υ2) ≥ 0 (12)

The three quadratic constraints of Eqs. (11-12) should be
satisfied ∀φ, ψ, z.

In general we have

ẋ = Aclx+ [Bcl1, Bcl2 ]

[
ω̃1

ω̃2

]

(13)

where x = [φ ψ z]T and ω̃1, ω̃2 represent the nonlinearities
of the form W {φ}(φ) and W (ψ, z) and satisfy the given
conditions of Eqs. (11-12).

To check the stability of the closed-loop system of Eq. (7)
we will use the Circle criterion (CC) (Yakubovich 2004),
(Shiriaev 2010).

Stability conditions by using the Circle criterion
Following the CC, to claim stability of the closed-loop
system of Eq. (7) it is enough to check the following two
conditions:

(1) There are constants τ1 ≥ 0, τ2 ≥ 0, τ3 ≥ 0 such that
τ1 + τ2 + τ3 > 0 and there are transfer functions

G11(jω) = Ccl1(jωIn − Acl)
−1Bcl1

G12(jω) = Ccl1(jωIn − Acl)
−1Bcl2

G21(jω) = Ccl2(jωIn − Acl)
−1Bcl1

G22(jω) = Ccl2(jωIn − Acl)
−1Bcl2

(14)
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Fig. 1. The example of the possibility to move the sector
condition for the nonlinearity (loop-shaping).

such

− τ1Re{ω̃∗
1 υ̃1 +

3

4
|υ̃1|2} − τ2Re{ω̃∗

2 υ̃2 +
3

4
|υ̃2|2}

− τ3Re{(ω̃1 − ω̃2)∗(υ̃1 − υ̃2)} < 0
(15)

holds ∀ω̃1 ∈ C, ∀ω̃2 ∈ C, ∀ω ∈ R, where

υ̃1 = G11(jω)ω̃1 +G12(jω)ω̃2

υ̃2 = G21(jω)ω̃1 +G22(jω)ω̃2
(16)

(2) There are row matrices K1 and K2 such that K1x
and K2x are linear relations satisfy all the quadtaric
constraints and the matrix

(Acl + Bcl1K1 + Bcl2K2) (17)

is Hurwitz.

First, in order to be able to use these two conditions we
will choose the gains K1 and K2. In Fig. 1 the sector
condition for some nonlinearity Ψ̃(x̃, t) is illustrated as an
example. The given nonlinearity never leaves the sector
area between two lines

k2x̃ ≥ Ψ̃(x̃, t) ≥ k1x̃ (18)

We can move the whole sector and the given nonlinearity
clockwise on the same angle as the angle between the
zero and the line k1x̃. As a result, we will have a new
nonlinearity and a new sector condition for it to simplify
the following calculations.

We will rewrite the closed-loop system of Eq. (7) and Eq.
(13) as follows

ẋ = Aclx+ [Bcl1Bcl2 ]






ω̃1 +
3

4
Ccl2x

ω̃2 +
3

4
Ccl2x






− [Bcl1Bcl2]






3

4
Ccl2x

3

4
Ccl2x






(19)

That gives us

ẋ = Aclx− [Bcl1 Bcl2]






3

4
Ccl2x

3

4
Ccl2x






+ [Bcl1 Bcl2 ]

[
ω̂1

ω̂2

]

=

[

Acl −
3

4
Bcl1Ccl2 −

3

4
Bcl2Ccl2

]

x

+ [Bcl1 Bcl2 ]

[
ω̂1

ω̂2

]

(20)

where

Âcl =

[

Acl −
3

4
Bcl1Ccl2 −

3

4
Bcl2Ccl2

]

(21)

is new state matrix of a form of Eq. (17) and ω̂1, ω̂2 are
new nonlinearities such that

ω̂1 = ω̃1 +
3

4
Ccl2x, ω̂2 = ω̃2 +

3

4
Ccl2x (22)

and satisfy the same conditions of Eqs. (11-12).

The new quadratic constraints are

ω̂∗
2υ2 ≤ 0

(ω̂1 − ω̂2)∗(υ1 − υ2) ≤ 0
(23)

Second, as presented in (Shiriaev 2010), by choosing τ1, τ2

or τ3 equal to zero we can remove one of the terms of
Eq. (25). For a start, we have to introduce the following
notations for new transfer functions in order to avoid the
presence of long expressions:

Ĝ11(jω) = Ccl1(jωIn − Âcl)
−1Bcl1

Ĝ12(jω) = Ccl1(jωIn − Âcl)
−1Bcl2

Ĝ21(jω) = Ccl2(jωIn − Âcl)
−1Bcl1

Ĝ22(jω) = Ccl2(jωIn − Âcl)
−1Bcl2

G1(jω) = Ĝ22(jω) + Ĝ21(jω)

G2(jω) = Ĝ11(jω) − Ĝ21(jω)

G3(jω) = Ĝ12(jω) − Ĝ22(jω)

G4(jω) = G3(jω) +G2(jω)

(24)

We will use τ1 = 0 and τ2 = 1 to be able to reduce the
inequality of Eq.(25) with the new nonlinearities of Eq.
(22) to

−Re{ω̂∗
2 υ̂2} − τ3Re{(ω̂1 − ω̂2)∗(υ̂1 − υ̂2)} < 0 (25)

with
υ̂1 = Ĝ11(jω)ω̂1 + Ĝ12(jω)ω̂2

υ̂2 = Ĝ21(jω)ω̂1 + Ĝ22(jω)ω̂2

(26)

that holds ∀ω̂1 ∈ C, ∀ω̂2 ∈ C, ∀ω ∈ R.

To present the inequality of Eq. (25) as the matrix form
we have to change the variables as follows:

(1) from the first part of the inequality of Eq. (25) we
have
Re{ω̂∗

2 υ̂2} =

= Re{ω̂∗
2(Ĝ21(jω)ω̂1 +G1(jω)ω̂2 − Ĝ21(jω)ω̂2)}

=
1

2
{ω̂∗

2Ĝ21(jω)(ω̂1 − ω̂2)}

+
1

2
{(ω̂1 − ω̂2)∗Ĝ∗

21(jω)ω̂2} +Re{ω̂∗
2G1(jω)ω̂2}

(27)
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(2) from the second part of the inequality of Eq. (25) we
have
τ3Re{(ω̂1 − ω̂2)∗(υ̂1 − υ̂2)} =

= τ3Re{(ω̂1 − ω̂2)∗(ω̂1(Ĝ11(jω) − Ĝ21(jω)))}

+ τ3Re{(ω̂1 − ω̂2)∗(ω̂2(Ĝ12(jω) − Ĝ22(jω)))}

= τ3Re{(ω̂1 − ω̂2)∗G2(jω)(ω̂1 − ω̂2)}

+
1

2
(ω̂1 − ω̂2)∗τ3G4(jω)ω̂2

+
1

2
ω̂∗

2τ3G
∗
4(jω)(ω̂1 − ω̂2)

(28)

Now we are able to rewrite the inequality of Eq. (25) in
the matrix form

[
ω̂1

ω̂1 − ω̂2

]∗

Π(jω)

[
ω̂1

ω̂1 − ω̂2

]

> 0 (29)

with

Π(jω) =

[
Re{G1(jω)} 0.5G5(jω)

0.5G∗
5(jω) τ3Re{G2(jω)}

]

(30)

with
G1(jω) = Ĝ22(jω) + Ĝ21(jω)

G5(jω) = Ĝ21(jω) + τ3G
∗
4(jω)

(31)

and it should be valid for some τ3 > 0, ∀ω̃1, ω̃2 ∈ C and
∀ω ∈ R.

The inequality of Eq. (29) is positive if the matrix Π(jω)
of Eq. (30) is positive definite. The constraint of Eq. (29)
includes the both stability conditions of Eq. (15) and Eq.
(17).

3.1 Example

To show the benefit of the alternative proof we choose the
same numerical values for the linear part for the controller
(5) as in (Rubanova 2013):

Λ
{u}
ψ = −19, Λ{u}

z = −7, Λ
{z}
ψ = −73, Λ{z}

z = −26 (32)

and the corresponding parameters of the nonlinear part of
the controller are:

tψ = 4.7168, tz = 1.4492;

ωu = −1, ωz = −2.9027;
(33)

The controller is thus given by

u = −19ψ − 7z −W (ψ, z)

d

dt
z = −73ψ − 26z − 2.9027W (ψ, z)

(34)

where

W (ψ, z) = 1 − (1 + 4.7168ψ + 1.4492z)3 (35)

Now we are able to check the conditions of Eq. (15), (21):

(1) The transfer functions are

G1(jω) =
0.5102s+ 0.8708

s2 + 2.671s+ 0.8143

G21(jω) =
2.358s+ 8.423

s3 + 5.883s2 + 9.393s+ 2.615

G2(jω) =
0.5s+ 0.1858

s2 + 3.563s+ 1.127

G4(jω) =
−0.01021s− 7.644 · 10−4

s2 + 3.563s+ 1.127

(36)
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Fig. 2. Simulation results of the closed-loop system with
the controller of Eq. (5) and the system of Eq. (2).

We already know that the inequality of Eq. (29) is
positive if the matrix Π(jω) of Eq. (30) is positive
definite. In our case we have a 2 × 2 matrix and it
will be sufficiently to show that its determinant and
diagonal elements are positive.

The determinant of the matrix of Eq. (30) is
positive for

τ3 > 2.64 (37)

The higher tolerance for state elimination or pole-zero
cancellation of transfer functions of Eq. (36) forces
additional cancellations. For this example we used
high tolerance to be able to show the calculations
with the lower order polynomials. For higher order
polynomials the derivation of the determinant of
the matrix Π(jω) will be complicated, but we will
get approximately the same numerical value for τ3.
Hence, the rough approximation was chosen in order
to simplify the method presentation in this work.

(2) The eigenvalues of the matrix of Eq. (21) are
[−0.1268; − 0.8753; − 7.8730], hence it is Hurwitz.

Running the simulation model with the controller of
Eq. (5) shows that the closed-loop system of Eq. (7) is
stable. The result of the simulation is shown in Fig. 2.

4. THE LYAPUNOV FUNCTION SEARCH METHOD
FOR THE KNOWN SUBSYSTEM

In the MG compressor model of Eq. (1) the deviation of the
averaged flow φ is not available for the measurements. The
controller parameters are chosen separately for different
subsystems of the closed-loop system or Eq. (7). We
refer to (Shiriaev 2010) and (Rubanova 2013) for a more
detailed explanation.

Thereby, to simplify the calculations, we will find the
quadratic function for the known subsystems from the
system of Eq. (7)

[

ψ̇
ż

]

= A1

[
ψ
z

]

+ Bcl2W (ψ, z) (38)

First, we choose the quadratic function as
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V (ψ, z) =
1

2

[
ψ
z

]T

P

[
ψ
z

]

(39)

with a matrix PT = P > 0 such that the time-derivative
of V (ψ, z) is non positive.

The quadratic constraint of Eq. (10) is valid for the static
nonlinearity W (ψ, z) from the closed-loop system with the
subsystem of Eq. (38) and the controller of Eq. (5).

Then the time-derivative of the quadratic function of Eq.
(39) is

d

dt
V (ψ, z) =

=
1

2

[
ψ
z

]T
[
AT

1 P + PA1

]
[
ψ
z

]

+

[
ψ
z

]T

PBcl2W (ψ, z)

≤
1

2

[
ψ
z

]T
[
AT

1 P + PA1

]
[
ψ
z

]

+

[
ψ
z

]T

PBcl2W (ψ, z)

− Ccl2

[
ψ
z

]

W (ψ, z) −
3

4

[
ψ
z

]T

CTcl2Ccl2

[
ψ
z

]

=
1

2

[
ψ
z

]T [

A1P + PA1 −
3

2
CTcl2Ccl2

] [
ψ
z

]

+

[
ψ
z

]T
[
PBcl2 − CTcl2

]
W (ψ, z)

(40)
where matrices Bcl2 , Ccl2 are the same as in Eq. (7).

A sufficient condition of the existence of the negative time
derivative of the quadratic function of Eq. (39) can be
written as







AT
1 P + PA1 −

3

2
CTcl2Ccl2 < 0

PBcl2 = CTcl2

(41)

To find the the matrix P for the expression of Eq. (41) we
solve the convex optimization problem by using CVX—
a software tool for convex optimization by (Boyd and
Vandenberghe 2004). The specification for CVX looks like:

cvx_begin sdp
variable P1(2,2) symmetric
minimize(0)
subject to
P>0;
A1’*P+P*A1-3/2* C2’*C2<0
P*B2==C2’;
cvx_end

For the example in the subsection 3.1 we get

P =

[
31.5657 10.0621
10.0621 3.2168

]

(42)

In Fig. 3 the time derivative of the quadratic function of
Eq. (39) is presented.

The matrix P of Eq. (42) is an approximate solution and it
is depending on the chosen accuracy for the calculations.
For example, the presence of the equality in the expression
of Eq. (41) is making this mathematical problem compli-
cated. In addition the CVX solvers will be not able to
find the solution for the similar condition as in Eq. (41)
but for the closed-loop surge subsystem of Eq. (7). That
is why for the higher order calculations we suggest to use

0 1 2 3 4 5 6
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

d
V
/
d
t

Time t [s]

Fig. 3. The time derivative of the quadratic function of Eq.
(39).

the condition of Eq. (29) to investigate the robustness of
the controller of Eq. (5).

5. CONCLUSIONS

In control theory it is very important to investigate the
robustness of the stabilizing controllers. We presented an
extension of a previous research based on a procedure for
dynamic output feedback design for systems with nonlin-
earities satisfying quadratic constraints (Shiriaev 2009),
(Shiriaev 2010), (Rubanova 2013). The new constraint for
the robustness investigation were presented as an inequal-
ity of Eq. (29).

The coefficient τ3 belongs to the condition for the nonlin-
earities of Eq. (12) as shown in the inequality of Eq. (15). It
is possible to find some positive τ3 for the controllers of Eq.
(5). In other words, the controllers have a certain degree
of robustness and there is a possibility to resist some of
the parametric uncertainty and measurement noise.

The alternative proof of stability of the closed-loop sys-
tem of Eq. (7) uses less number of conditions, then in
(Rubanova 2013). The results are applicable for dynamic
output feedback design for systems with nonlinearities
satisfying quadratic constraints. Also, there is a possibility
to include a new quadratic constraint in the analysis.

The inequality of Eq. (29) is a more general stability
condition than presented in the previous part of the
research in (Rubanova 2013). The matrix Π(jω) of Eq.
(29) is shown.
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