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Abstract: New sufficient linear-matrix-inequality conditions are provided to ensure the stability
of a class of fractional-order systems by means of asymptotic observer-based feedbacks. It is
shown that the search of the observer and the controller gains can be obtained by decoupling
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conditions are formulated as a set of strict linear matrix inequalities and compared to other
sufficient conditions with equality constraints. Numerical computations are provided to show
the straightforwardness and the efficiency of the proposed control designs.
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1. INTRODUCTION

Fractional-order calculus has a long history and its serves
as a modern powerful tool in analyzing various physical
phenomena. The interest in understanding systems gov-
erned by fractional-order differential equations has grown
up during the last decades and many associated results
have been appeared, see e.g., Manabe [1960], Matignon
[1996], Farges et al. [2010], Trigeassou et al. [2011]. It
was found that diffusion processes, biological systems,
and other dynamics of real-world applications can be
modeled in terms of fractional-order differential equations
Sabatier et al. [2007]. Additionally, the use of fractional-
order derivatives and integrals in feedback design has been
successful to a large extent in improving the robustness of
the closed-loop systems.

Nevertheless, fractional differential equations have not yet
received the same attention as ordinary differential equa-
tions in the investigation of their stability, simulation, and
analysis. Owing to the lack of effective analytic meth-
ods for the time-domain analysis and simulation of linear
feedback fractional-order systems, a numerical simulation
scheme is developed in Hwang et al. [2002]. Exact cal-
culation of fractional-order derivatives of some particular
polynomial signals is discussed in Samadi et al. [2004].

Stability of dynamical systems, represented by fractional
order derivatives, has been investigated using the Routh-
Hurwitz criteria, the pole placement method, and Lya-
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punov strategies. For linear fractional-order systems, it
was found that the stability is equivalent to the repartition
of the system poles in a restricted area of the complex
plane. Based on this key formulation of stability and the
use of convex-optimization algorithms, stated as linear-
matrix-inequality conditions, numerous sufficient condi-
tions have been proposed to ensure robust stability of some
classes of fractional-order type systems, see e.g., Farges
et al. [2010], Ahn and Chen [2008]. A considerable inter-
est has been also devoted to stability and stabilizability
of special classes of fractional-order systems, see e.g., Li
et al. [2010], Wen et al. [2008]. A new Lyapunov stability
analysis of fractional differential equations is discussed in
Trigeassou et al. [2011]. The problem of pseudo-state feed-
back stabilization of fractional-order systems using LMI
setting was addressed in Farges et al. [2010]. Other inter-
esting topics in identification, observation, and control of
fractional order systems can be traced in the references
Wang and Gao [2012], Aoun et al. [2007], Sabatier et al.
[2007], Li [2013] and the references therein.

The observer-based control problem is originally stated
as a non-convex optimization issue due to the coupling
conditions that must satisfy both the observer and the
controller gains. For linear fractional-order systems, it has
been shown that the stability is assured by placement
of the system poles in a defined region of the complex
plane. Therefore, the use of an observer-based controller
to maintain the system stability, generally leads to a non-
convex optimization problem, that must be solved numer-
ically. In the recent paper Lan et al. [2012], the authors
have presented a numerical scheme for stabilization of
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uncertain commensurate (1 < α < 2) fractional-order sys-
tems by means of dynamic output feedback. In Lan et al.
[2012] the authors have assumed that the uncertainties
are only present in the state and the input matrix. Other
recent works on stabilization of triangular fractional-order
systems can be traced in Zhang et al. [2013] and the
references therein. In this paper, we devote our atten-
tion to the control of uncertain fractional-order systems
subject to partially-state measurements where the integer-
differentiation order is between zero and two. Additionally,
we assume that the system uncertainties are randomly
distributed in the state matrix, the input matrix, and
the output matrices as well. By decoupling the neces-
sary conditions into a set of matrix inequalities, we show
that the search of the observer and the controller gains
can be transformed into a convex optimization problem.
A set of sufficient linear-matrix-inequality conditions are
developed to ensure the existence of an observer-based
controller assuring the asymptotic stability of the system
under consideration. A detailed proof is presented and the
efficiency of the proposed design is testified by numerical
simulations.

2. PRELIMINARIES

Throughout this paper we note by IR, IR>0, and C the set
of real number, the set of positive real numbers, and the
set of complex numbers, respectively. The notation A > 0,
with A being an Hermitian matrix (respectively, A < 0),
means that the matrix A is positive definite (respectively,
negative definite). A′ is the matrix transpose of A. X⋆

stands for the complex conjugate transpose of the matrix
X. The notation X̄ stands for the matrix conjugate of the
complex matrix X. The star element in a given matrix
stands for any element that is induced by transposition.
The spec(A) denotes the set of eigenvalues of the matrix
A. We note by I and 0 the identity matrix of appropriate
dimension and the null matrix of appropriate dimension,
respectively. The Schur Complement Lemma is extensively
used in the proof of the main statement, therefore, we
would rather recall this important result. Let X be a
symmetric real matrix given by:

X =

[
A B
B′ C

]
. (1)

Let S be the Schur Complement of A inX, that is: S = C−
B′A−1B. Then,

• X is positive definite if and only if A and S = C −
B′A−1B are both positive definite.

• X > 0 ⇔ C > 0, A−BC−1B′ > 0.
• If A is positive definite then X is positive semidefinite
if and only if S is positive semidefinite; i.e., if A > 0
then, X ≥ 0 ⇔ S = C −B′A−1B ≥ 0.

• If C is positive definite, thenX is positive semidefinite
if and only if A−BC−1B′ is positive semidefinite; i.e.,
if C > 0 then, X ≥ 0 ⇔ A−BC−1B′ ≥ 0.

• In case of complex matrices, the matrix:

[
A B
B⋆ C

]
> 0

if and only if C −B⋆A−1B > 0.

Lemma 1. (Boyd et al. [1994]) Given real matrices H and
E of appropriate dimensions, the inequality:

HF (t)E + E′F ′(t)H ′ < 0 (2)

holds for all F (t) satisfying F ′(t)F (t) ≤ I if and only if
there exists an ε > 0 such that

εHH ′ + ε−1E′E < 0. (3)

In this paper, Riemann-Liouville fractional differentiation
definition is used. Referring to Samko et al. [1987], the
fractional integral of a function f(t) is defined by:

Iνf(t) =
1

Γ(ν)

∫ t

0

(t− τ)ν−1f(τ)dτ, (4)

where ν ∈ IR>0 denotes the fractional-integration order,
and

Γ(ν) =

∫ +∞

0

e−xxν−1 dx. (5)

The order “ν” fractional derivative of a function f(t),
ν ∈ IR>0, is consequently defined by:

Dνf(t) =
dm

dtm
(
Im−νf(t)

)
=

1

Γ(m− ν)

(
d

dt

)m ∫ t

0

(t− τ)m−ν−1f(τ) dτ.
(6)

where m is the smallest integer that exceeds or equal to“ν.
”

Depending on the value of the fractional-differentiation
order “ν” , several stability theorems have been stated. In
this study, we provide results for fractional-order systems
where ν takes only non-integer values in ]0 2[.

Theorem 1. Let A ∈ IRn×n be a real matrix. Then, the
fractional-order system:

Dαx(t) = Ax(t), 0 < α < 2, (7)

is asymptotically stable, that is, | arg(spec(A))| > απ
2 if

and only if there exists a symmetric and positive definite
matrix P verifying[

(AP + PA′) sin(θ) (AP − PA′) cos(θ)
⋆ (AP + PA′) sin(θ)

]
< 0 (8)

where θ = (1− α
2 )π.

Proof. See Farges et al. [2010]. �
The following result concerns the stabilizability of frac-
tional order linear systems by means of pseudo-state feed-
back where its proof is given in Farges et al. [2010].
As it has been reported in the literature, the stability
of fractional-order linear systems is one particular case
of domain stability where the eigenvalues of the system
should be located in a specific region of the complex plane.

Theorem 2. (Farges et al. [2010]) The fractional-order
system:

Dαx(t) = Ax(t) +B u(t) (9)

where 0 < α < 1, A ∈ IRn×n, and B ∈ IRn×m, is
stabilizable by pseudo-state feedback u = Y (rX+ r̄X̄)−1x
iff ∃X = X⋆ ∈ Cn×n > 0 and Y ∈ IRm×n such that

(rX + r̄X̄)′A′ +A(rX + r̄X̄) +BY + Y ′B′ < 0, (10)

where r = ei(1−α)π
2 , i2 = −1.

Theorem 2 will serve as a starting result for further devel-
opment. The details are given in the following sections.

3. OBSERVER-BASED STABILIZATION

The objective of this section is to develop new LMI con-
ditions for stabilization of fractional-order linear systems
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subject to state and output uncertainties. The first goal
of the proposed development is to decouple the necessary
conditions guaranteeing the convergence of the observer-
based feedback into two sets of convex sufficient conditions
that are numerically tractable. The first set of sufficient
conditions assure the existence of a stabilizing feedback
without involving the observer gain, and the second set of
conditions guarantee the convergence of the observer with-
out incorporating the controller gain. It will be shown later
that this decomposition is also possible to derive sufficient
stability conditions for uncertain fractional systems.

3.1 Strict sufficient conditions of stability

Consider the fractional-order linear system described by
the following dynamics:

Dαx = (A+∆A)x+B u,

y = (C +∆C)x,
(11)

where α is the non-integer differentiation order (0 < α <
1), x = x(t) ∈ IRn is the state vector, u = u(t) ∈ IRm is the
control input, and y = y(t) ∈ IRp is the system measured
output. The real-valued matrices A ∈ IRn×n, B ∈ IRn×m,
and C ∈ IRp×n are assumed to be known and constant.
The uncertain parts ∆A ∈ IRn×n and ∆C ∈ IRp×n

are assumed to be constant, bounded, and uncertain. We
assume that there exist real-valued matricesMA,MC , NA,
NC , FA and FC such that:

∆A = MAFANA, F
′

AFA ≤ I,

∆C = MCFCNC , F
′

CFC ≤ I.
(12)

Remark 1. In the general case of linear fractional-order
systems of the following form:

Dαx = (A+∆A)x+ (B +∆B)u,

y = (C +∆C)x+ (D +∆D)u,
(13)

whereA,B, C,D, ∆A, ∆B, ∆C, and ∆D are real matrices
of appropriate dimensions, it is always possible to convert
the dynamics (13) to form (11) by considering the input
as an augmented state to the vector x and setting the new
input as v = Dαu.2

In this subsection, we present sufficient conditions under
which an observer-based controller of the following form:

Dαx̂ = A x̂+B u+ L(Cx̂− y),

u = K x̂,
(14)

could make the closed-loop system:

Dαx = (A+∆A)x+B u,

u = K x̂,
(15)

globally stable, where L and K are some design matrices
to be determined later. Before presenting the final result,
let us introduce the following results.

Proposition 1. Let r = eiθ where i2 = −1. If there exists
an Hermitian matrix X = X⋆ > 0 such that

1

cos(θ)

(
(rX + r̄X̄) + (rX + r̄X̄)′

)
+

i

sin(θ)

(
(rX + r̄X̄)− (rX + r̄X̄)′

)
> 0

(16)

then there exists an Hermitian matrix Z = Z⋆ > 0 such
that

(rX + r̄X̄)−1 = rZ + r̄Z̄. (17)

Proof. Setting the matrix Z as

Z =
1

4 cos(θ)

(
(rX + r̄X̄)−1 + (rX ′ + r̄X̄ ′)−1

)
− i

4 sin(θ)

(
(rX + r̄X̄)−1 − (rX ′ + r̄X̄ ′)−1

) (18)

then, one can verify that (17) holds. The positive-
definiteness property of the matrix Z is verified by pre-
multiplying inequality (16) by (rX + r̄X̄)−1 and post-
multiplying the same inequality by (rX ′ + r̄X̄ ′)−1.

Theorem 3. Consider the fractional-order system (11)
with ∆A = 0 and ∆C = 0. Let θ = (1 − α)π2 and

r = eiθ where i2 = −1. If there exist two complex, Her-
mitian and positive definite matrices X1 = X⋆

1 ∈ Cn×n,
X2 = X⋆

2 ∈ Cn×n, a real, symmetric, and positive definite
matrix W ∈ IRn×n, a positive scalar ε, and two matrices
Y1 ∈ IRm×n, Y2 ∈ IRn×p such that the following linear
matrix inequalities hold true

1

cos(θ)
(P2 + P ′

2) +
i

sin(θ)
(P2 − P ′

2) > 0, (19)[
P1 + P ′

1 −W I
⋆ (2ε− 1)I

]
> 0, (20)[

P ′
1A

′ +AP1 +BY1 + Y ′
1B

′ BY1

⋆ −I

]
< 0 (21)[

A′P2 + P ′
2A+ Y2C + C ′Y ′

2 ε I
⋆ −W

]
< 0 (22)

where P1 = (rX1 + r̄X̄1) and P2 = (rX2 + r̄X̄2) then,
the observer-based feedback u = Y1P

−1
1 x̂ stabilizes system

(11) when all the uncertainties are null with x̂ being the
state trajectory of the fractional-order observer:

Dαx̂ = A x̂+B u+ (rX ′
2 + r̄X̄ ′

2)
−1Y2(Cx̂− y),

u = Y1(rX1 + r̄X̄1)
−1 x̂.

(23)

Proof. Let e = x̂ − x. Then, the observer-error dynam-
ics along with the system dynamics verify the following
composite system:

Dα

[
x
e

]
=

[
A+BY1P

−1
1 BY1P

−1
1

0 A+ P ′−1
2 Y2C

] [
x
e

]
. (24)

According to the result of Theorem 2, system (24) is
stable if there exists a positive-definite Hermitian matrix
X = X ⋆ of dimensions 2n× 2n such that[

A+BY1P
−1
1 BY1P

−1
1

0 A+ P ′−1
2 Y2C

]
(rX + r̄X̄ )

+ (rX + r̄X̄ )′
[
A+BY1P

−1
1 BY1P

−1
1

0 A+ P ′−1
2 Y2C

]′
< 0.

(25)

Let us take a partition of X as

X =

[
X1 0
0 Z2

]
, X1 = X⋆

1 > 0, Z2 = Z⋆
2 > 0. (26)

Under the conditions (19) and (26) there exists X2 = X⋆
2

such that rZ2 + r̄Z̄2 = (rX2 + r̄X̄2)
−1

. Therefore, under
conditions (19) and (26), inequality (25) if the following
hold true[

A+BY1P
−1
1 BY1P

−1
1

0 A+ P
′−1
2 Y2C

] [
P1 0
0 P−1

2

]
+

[
P1 0
0 P−1

2

]′ [
A+BY1P

−1
1 BY1P

−1
1

0 A+ P
′−1
2 Y2C

]′
< 0,

(27)
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which is equivalent after simplification to the following
matrix inequality: [

R11 R12

⋆ R22

]
< 0, (28)

where
R11 = AP1 + P ′

1A
′ +BY1 + Y ′

1B
′,

R12 = BY1P
−1
1 P−1

2 ,

R22 = AP−1
2 + P

′−1
2 A′ + P

′−1
2 (Y2C + C ′Y ′

2)P
−1
2 .

(29)

Remark that inequality (28) can be rewritten as I 0
0 P−1

1 P−1
2

0 I

′ AP1 + P
′

1A
′ +BY1 + Y ′

1B
′ BY1 0

⋆ −I 0
⋆ ⋆ W33


×

 I 0
0 P−1

1 P−1
2

0 I

 < 0

(30)

where

W33 = AP−1
2 + P

′−1
2 A′ + P

′−1
2 (Y2C + C ′Y ′

2)P
−1
2

+ P
′−1
2 P

′−1
1 P−1

1 P−1
2 .

(31)

Since the matrix:  I 0
0 P−1

1 P−1
2

0 I

 (32)

has a full-column rank than, from the last inequality, it
can be deduced that the following matrix inequality is a
sufficient condition to fulfill (30), that isAP1 + P

′

1A
′ +BY1 + Y ′

1B
′ BY1 0

⋆ −I 0
⋆ ⋆ W33

 < 0, (33)

Inequality (33) holds true if and only if:

W33 < 0,[
AP1 + P

′

1A
′ +BY1 + Y ′

1B
′ BY1

⋆ −I

]
< 0.

(34)

Since P2 is a full-rank matrix then, the condition W33 < 0
holds if and only if

P
′

2W33P2 < 0, (35)

or

P
′

2A+A′P2 + Y2C + C ′Y
′

2 + P
′−1
1 P−1

1 < 0. (36)

Under the conditions: X1 = X⋆
1 > 0, the matrix X̄1 > 0.

Note that the matrix P1 = rX1 + r̄X̄1 is a real matrix
which is not necessarily symmetric. This can be proved by
showing that

rX1 + r̄X̄1 = 2
(
cos(θ)XR − sin(θ)XM

)
, (37)

where the complex matrix X1 is taken as a sum of real
matrix XR and pure imaginary matrix iXM , i.e., X1 =
XR+iXM withXR ∈ IRn×n andXM ∈ IRn×n. In addition,
the matrix P1 = rX1+ r̄X̄1 has all its eigenvalues in right-
hand side of the complex plane due to the fact that for
0 < α < 1,

(rX1+r̄X̄1)
′+(rX1+r̄X̄1) = 2 cos(θ)(X1+X̄1) > 0. (38)

Consequently, the matrix P
′−1
1 P−1

1 is a real positive defi-
nite, and therefore, we can find a positive ε > 0 and a real
matrix W such that

P
′−1
1 P−1

1 < ε2W−1, (39)

Based upon (36) and (39), a sufficient condition to fulfill
(36) is given by:

P
′

2A+A′P2 + Y2C + C ′Y
′

2 + ε2W−1 < 0. (40)

The last inequality is equivalent by the Schur Complement
to (22). The matrix inequality (39) is not linear but, it’s
equivalent to the following matrix inequality:

ε2P1P
′

1 −W > 0. (41)

Using the result of Lemma 1, we can write

P1 + P
′

1 ≤ ε2P1P
′

1 + ε−2I. (42)

Therefore, if the following inequality is satisfied

P1 + P
′

1 − ε−2I −W > 0 (43)

then (41) is satisfied as well. Using the Schur complement
Lemma, a necessary and sufficient condition to fulfill (43)
is given by: [

P1 + P
′

1 −W I
I ε2I

]
> 0. (44)

Using the fact that ε2 > 2ε − 1 for ε > 0 then, (20) is a
sufficient condition to verify inequality (44). This ends the
proof of Theorem 3. 2

Remark 2. The results given by Theorem 3 are not conser-
vative because the decoupling of the necessary conditions
(27) into conditions (34) is not related to a severe or
restricted additional condition. Furthermore, the lineariza-
tion of the matrix inequalities (34) by imposing (41) is not
conservative as well because every positive definite matrix
can be easily upper and lower bounded by another positive
definite matrix. This has been done by the introduction
of ε and W as additional LMI variables which make the
design more flexible and straightforward.

3.2 Sufficient conditions with equality constraint

In this part, it is showed that the observer-based conditions
for stabilization of fractional-order systems can be refor-
mulated as linear matrix inequalities subject to equality
constraint. The obtained result can be applied to fractional
order-systems where the degree of differentiation α can
take non-integer values inside the interval ]0 2[. The whole
design is given by the following statement.

Theorem 4. Consider the fractional-order system

Dαx = Ax+B u,

y = C x,
(45)

where 0 < α < 2, A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRp×n.
Define the observer-based controller as:

Dαx̂ = A x̂+B u+ L(Cx̂− y),

u = K x̂.
(46)

If there exist two symmetric matrices P1 ∈ IRn×n > 0,
P2 ∈ IRn×n > 0, a matrix Y ∈ IRn×p, a matrix K̄ ∈ IRm×n

and a matrix Z ∈ IRm×m such that the following set of
linear matrix inequality hold simultaneously[

R1 R2

⋆ R1

]
< 0,

P1B = BZ,

(47)

where
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R1 =

(
A′P1 + P1A+ K̄ ′B′ +BK̄

)
sin(θ)

⋆

BK̄ sin(θ)(
A′P2 + P2A+ Y C + C ′Y ′

)
sin(θ)

 ,

(48)

R2 =

(
P1A−A′P1 − K̄ ′B′ +BK̄

)
cos(θ)

−K̄ ′B′ cos(θ)

K̄ ′B′ cos(θ)(
P2A−A′P2 + Y C − C ′Y ′

)
cos(θ)

 .

(49)

Then, system (45) is stable under the action of the observer
controller u = Kx̂ where x̂ is the state vector of the
fractional-order observer (46) with K = Z−1K̄ and L =
P−1
2 Y .

Proof. The system and the observer dynamics are given
by the following composite system:

Dα

[
x
e

]
=

[
A+BK BK

0 A+ LC

] [
x
e

]
= Aclosed

[
x
e

]
.

(50)

The design of the observer-controller gains L and K
is conditioned by the stability of the fractional-order
augmented system (50). Based upon the stability result
of fractional-order system, see the statement of Theorem
2, one can conclude that system (50) is stable if there exists
a matrix X = X ′ > 0, of appropriate dimension, such that
the following holds [

A1 A2

⋆ A1

]
< 0 (51)

where A1 = (AclosedX+XA′
closed) sin(θ), A2 = (AclosedX−

XA′
closed) cos(θ), and θ = (1− α

2 )π. By pre- and post- mul-

tiplying the last inequality by the matrix diag(X−1, X−1)
and put X−1 = P then, inequality (51) is verified if there
exits a matrix P ∈ IR2n×2n such that[

Π1 Π2

⋆ Π1

]
< 0, (52)

where Π1 = (PAclosed+A′
closedP ) sin(θ), Π2 = (PAclosed−

A′
closedP ) cos(θ). Let us now take the partition of P as

P =

[
P1 0
⋆ P2

]
, P1 ∈ IRn×n, P2 ∈ IRn×n. (53)

This gives

A′P =

[
A′P1 +K ′B′P1 0

K ′B′P1 A′P2 + C ′L′P2

]
. (54)

Let Z ∈ IRm×m be any full-rank matrix and let Y ∈
IRn×p be any real-valued matrix. Then, by introducing the
following constraint:

P1B = BZ, (55)

and set the controller and the observers gains as K =
Z−1K̄, L = P−1

2 Y then,

A′P =

[
A′P1 + K̄ ′B′ 0

K̄ ′B′ A′P2 + C ′Y ′

]
. (56)

This implies that the stability of the fractional-order
system (45) is dependent on the solvability of the linear
matrix inequalities (47). This ends the proof. 2

The statement of Theorem 4 summarizes the design of
dynamic-output stabilizing feedbacks for larger class of
fractional order linear systems. However, the constraints
imposed on the matrix P1 (being symmetric, real, and
positive definite in addition to equality constraint (55))
introduces some conservatism. Extensive simulations has
also shown that the LMIs of Theorem 4 are not feasible
for some single-input fractional-order systems.

4. OBSERVER-BASED CONTROL WITH SYSTEM
UNCERTAINTIES

Based on the result of Theorem 3, now we are ready to
treat the case where all the system uncertainties are non
null. The design is summarized in the following statement.

Theorem 5. Consider system (11) where the uncertain
matrices ∆A and ∆C are not null. Define θ = (1 − α)π2
and r = eiθ where i2 = −1. If there exist a set of matrices
X1 = X⋆

1 ∈ Cn×n, X2 = X⋆
2 ∈ Cn×n, W ∈ IRn×n,

Y1 ∈ IRm×n, Y2 ∈ IRn×p and a set of positive scalars
ε1, ε2, ε3, and ε4 such that the following linear matrix
inequalities hold simultaneously

X1 > 0, X2 > 0, W = W ′ > 0,

1

cos(θ)
(P2 + P ′

2) +
i

sin(θ)
(P2 − P ′

2) > 0,
(57)

[
P1 + P ′

1 −W I
⋆ (2ε3 − 1)I

]
> 0, (58)

L11 BY1 P
′

1N
′

A P
′

1N
′

C P
′

1N
′

A
⋆ −I 0 0 0
⋆ ⋆ −ε1I 0 0
⋆ ⋆ ⋆ −ε2I 0
⋆ ⋆ ⋆ ⋆ −ε4I

 < 0, (59)

K11 P
′

2MA Y2MC ε3 I
⋆ (−2 + ε1)I 0 0
⋆ ⋆ (−2 + ε2)I 0
⋆ ⋆ ⋆ −W

 < 0, (60)

where
P1 = (rX1 + r̄X̄1), P2 = (rX2 + r̄X̄2),

L11 = P
′

1A
′ +AP1 +BY1 + Y

′

1B
′ +BY1 + ε4MAM

′

A,

K11 = A′P2 + P ′
2A+ Y2C + C ′Y ′

2

(61)

then, the observer-based feedback u = Y1P
−1
1 x̂ stabilizes

system (11) with x̂ = x̂(t) being the state vector of the
fractional-order observer:

Dαx̂ = A x̂+B u+ (rX ′
2 + r̄X̄ ′

2)
−1Y2(Cx̂− y),

u = Y1(rX1 + r̄X̄1)
−1 x̂.

(62)

Proof. The proof of this result is omitted for space limi-
tation. However, the proof can be easily obtained by com-
posing the resulting state and observer-error dynamical
equations and then apply the result of Theorem 2. The
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rest of the proof is obtained by the use of Lemma 1 and
then the decomposition as shown from inequality (33).

5. NUMERICAL SIMULATION

Consider the fractional-order system:

D0.8 =

([
−1.5 0.5
−2.5 2.3

]
+∆A

)
x+

[
1
−1

]
u,

y =
(
[ 1 1 ] + ∆C

)
x,

(63)

where MA =

[
0 0.1
0.1 0

]
, NA =

[
0 1
1 0

]
, MC = [0.2 0],

NC = [1 0.1]. The LMIs of Theorem 5 were found feasible,
where

X1 =

[
0.34218 0.14063 + 0.0351 i

0.14063− 0.0351 i 0.1914

]
,

X2 =

[
30.184 −0.69362− 0.1734 i

−0.69362 + 0.1734 i 0.068504

]
,

W =

[
0.7622 0.3755
0.3755 0.3922

]
, Y1 = [−0.2864 0.7106],

Y2 =

[
33.284
−23.879

]
, ε1 = 1.1963, ε2 = 0.42387,

ε3 = 2.6141, ε4 = 10.867.

(64)

As a comparison between the LMIs of Theorem 4, that
are subject to the equality constraint, and the LMIs of
Theorem 3, we found that the LMIs of Theorem 4 are
not feasible for the above example where ∆A = 0 and
∆C = 0. Actually, Theorem 4 showed its usefulness in
case of multiple-Input-Multiple-Output systems where the
equality constraint can be satisfied.

6. CONCLUSION

New Linear-Matrix-Inequality conditions are proposed to
solve the problem of observer-based stabilization of a
class of fractional-order linear systems. The stability of
fractional-order systems by means of fractional-order ob-
servers poses more constraints on the choice of the observer
and the controller gain. Therefore, the formulation of the
gains as a combination of complex variables give more
freedom in selecting the appropriate gains assuring the sta-
bility of the system and the observer as well. The reduction
of the initial non-convex optimization problem into a set
of convex optimization problems makes the design simple
and straightforward. Extension of the obtained results to
other classes of fractional-order systems remains an open
problem for further investigation.
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