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Abstract: In this paper, the synthesis problem of interpolation algorithms for an unobservable
stationary sequence in a partly observable (hidden) Markov process is considered. When the
distributions of the compound Markov sequence are completely known, the problem solution
can be found by applying the transformation equations for the posterior probability density of
the unobservable sequence. This equations were firstly obtained for filtration and interpolation
problems by Stratonovich (1966). Khazen (1978) managed to present the interpolation equation
in the form of the product of filtration posterior probability densities in forward and backward
time. The similar equation is also valid for dynamic observation models, but in this case
the main equation is to be supplemented by another recursive equation connected with the
dynamic properties of observations. Unfortunately, it is impossible to make use of this equations
when the probability family for the unobservable sequence is unknown. However, for some
conditional probability family of observations, the equation admits the representation which
does not depend on statistical characteristics unknown a priori. The solution is based on the
principles of the empirical Bayes approach and the theory of kernel non-parametric functional
estimation. The solutions of the equation may be unstable in some points. Therefore the
optimal regularization procedure was developed to obtain the stable nonparametric estimator
of interpolation. Modeling showed a high quality of the proposed interpolation estimators as
compared with the optimal backward interpolation.

Keywords: Interpolation, Markov sequence, unobservable component, nonparametric
uncertainty, kernel estimates, regularization.

1. INTRODUCTION

This work is devoted to the problem of synthesis of interpo-
lation algorithms for an unobservable stationary sequence
(Sn)n>1 in conditional Markov scheme described by the
compound Markov process (Sn, Xn)n>1. Classical solution
for such problems consists in calculating the posterior
density distribution of unobservable signals (Sn)n>1. The
transformation equation for the posterior probability den-
sities of unobservable sequences in filtration and inter-
polation problems were firstly obtained by Stratonovich
(1966). Khazen (1978) was able to present the interpo-
lation equation in the form of the normalizing product
of filtration posterior probability densities in forward and
backward time. This was done only for static observation
models. The similar equation is also valid for dynamic
observation models (see below Sections 2 and 3), but in
this case the main equation is to be supplemented by
another recursive equation connected with the dynamic
properties of observations. Unfortunately, it is impossible
to make use of this equations when the probability family
for the unobservable sequence is unknown. However, for
some conditional probability family of observations (deter-
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mined the observation model), it is possible to transform
these equations so as to eliminate dependence on statistic
characteristics unknown a priori. The solution is found
on the principles of the empirical Bayes approach and the
theory of kernel non-parametric functional estimation (see
Dobrovidov et al. (2012)). New results are mainly associ-
ated with an altered form of non-parametric estimation of
the logarithmic derivative, its properties and the process of
regularization of the estimation procedure to obtain stable
estimators.

2. INTERPOLATION EQUATION FOR DYNAMIC
OBSERVATION MODELS

Interpolation (smoothing) of partly observable (hidden)
Markov random sequence (Sn, Xn)n>1, Sn ∈ S ⊂ Rm,
Xn ∈ X ⊂ Rl, is the problem of constructing estimators
of the unobservable vector Sk or a known one-to-one
function Q(Sk) by observations xn1 = (x1, ..., xn)

T
of the

random sequence (Xn)n>1 for all 1 6 k 6 n. It is well
known the optimal mean-square smoothing estimator of
Q(Sk), 1 6 k 6 n, is the conditional expectation

E(Q(Sk)|xn1 ) =
∫
S

Q(sk)π(sk|xn1 )dsk, (1)
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where πk(sk|xn1 ) is the posterior probability density of
Sk given all observable realizations xn1 , which is called
the interpolating posterior density. There are some ways
to calculate this conditional density. One way, examined
below and referred to as the two-filter smoothing, is a
recursive calculation of the filtering posterior probability
density wk(sk|xk1) in forward time and the filtering pos-
terior density w̃k(sk|xnk ) in backward time. This formula
can be represented as follows Khazen (1978), Briers et al.
(2003):

πk(sk|xn1 ) =
f(xk1)f(x

n
k )

f(xn1 )
· wk(sk|xk1)w̃k(sk|xnk )

f(sk, xk)
, (2)

where the first factor is a normalizing constant depending
only on observations. Here and further the function f with-
out index denotes any probability density that may differ
from another one even in the same expression because
its argument completely determines the object. For static
and dynamic observation models, the algorithms for such
computation are different. For the static models, described
by the conditional density f(xk|sk), the joint probability
density f(sk, xk) in the denominator of (2) can be rep-
resented in the form of the product p(sk)f(xk|sk), where
p(sk) is the prior density. For dynamic observation models,
described by the conditional density f(xk|xk−1, sk), such
a product form can not be constructed because, in this
case, the density f(xk|sk) is unknown. Nevertheless, the
joint probability density f(sk, xk) can be represented via
f(xk|xk−1, sk) by means of the recursive equation

f(sk, xk) =

∫
Sk−1

p(sk|sk−1)

∫
Xk−1

f(xk|xk−1, sk)

×f(sk−1, xk−1)dxk−1dsk−1 (3)

with the initial condition f(s1, x1). It is given by the prior
density of the composed Markov process (Sn, Xn)n>1.
This equation is simply derived using the total probability
formula. Consequently, pair (2), (3) is the system of
equations for interpolating posterior probability density
in the case of dynamic observation models.

The recursive computation in (2), (3) can be carried out
if all the distributions of the composed Markov process
(Sn, Xn)n>1 are known. To solve the interpolation problem
with unknown distributions of the unobservable stationary
Markov sequence (Sn)n>1, we use the empirical Bayes
approach and the theory of non-parametric functional esti-
mation by weakly dependent observations (see Dobrovidov
et al. (2012)). According to the empirical Bayes approach,
we have to construct the estimators that are explicitly in-
dependent of the probabilistic characteristics of the unob-
servable random variables. This can be done, for instance,
by using the conditional densities of observations from the
exponential density family (see Chentsov (1972)):

f(xn|sn) = C̃(sn)h(xn) exp
{
TT(xn)Q(sn)

}
, (4)

where T = (T1, · · · , Tm)T;Q = (Q[1], · · · , Q[m])T;h(·),
Q[j](·), Tj(·), j = 1,m, are the given Borelean functions,

and C̃(sn) is the normalizing factor.

3. OPTIMAL INTERPOLATION ESTIMATOR
EQUATION UNDER UNKNOWN PROBABILITY
DISTRIBUTION OF UNOBSERVABLE SIGNAL

Problems of extracting a signal from the mixture with a
noise have often to be solved when this signal is never
observed, and therefore one can not get any statistics to
restore its distribution. We propose to use the empirical
Bayes approach to the interpolation problem and to find
such a form of the estimation equation that does not
depend explicitly on the unknown probability character-
istics of the unobserved signal. Now there are no regu-
lar methods for constructing such equations for arbitrary
observation models. So, we consider more narrow class
of observation models, described by conditional densities
from the exponential family (4). In this case, we construct
an equation not for the signal posterior probability density
(2), but directly for the optimal mean square estimator
(1). The detailed derivation of this equation, based on
the Markovian property of the sequence (Sk, Xk)k>1, have
been fulfilled in Dobrovidov (2008). We present only some
main steps of the derivation. First of all, it should be noted
that the equation in the case of unknown signal distribu-
tion we construct only for the static observation models,
described by conditional density f(xk|sk). It was done by
using only the equation (2). The equation synthesis for
dynamic observation models with the additional recursive
equation (3) is assumed to be implemented in the next
time. Taking into account the Markovian property of the
compound sequence (Sk, Xk)k>1, the equation (2) can be
transformed to the expression

πk(sk|xn1 ) =
λk(x

n
1 without xk)

fk(xk|xn1 without xk)
f(xk|sk)

×wpr
k (sk|xk−1

1 )w̃pr
k (sk|xnk+1)p

−1(sk), (5)

where wpr
k (·) and w̃pr

k (·) are posterior predicting (one step
ahead) densities in forward and backward time. Normaliz-
ing constants in this formula

λk = λk(x
n
1 without xk) ,

f(xk−1
1 )f(xnk+1)

f(xk−1
1 , xnk+1)

,

fk(xk|xn1 without xk) , f(xk|xk−1
1 , xnk+1)

depend only on statistical characteristics of observations
(Xn). It should be noted that in equation (5) the con-
ditional density f(xk|sk) belongs to the exponential fam-
ily (4) by assumption. With this in mind, we obtain a
counterpart of equation (1) independent of the statistical
characteristics of the unobservable process (Sn)n>1. For
this, let us introduce

uk(sk) = wpr
k (sk|xk−1

1 )w̃pr
k (sk|xnk+1)p

−1(sk) (6)

and remark once more that uk is independent of xk. Then,
the equation (5) can be written as

πk(sk|xn1 ) =
λk(x

n
1 without xk)

fk(xk|xn1 without xk)
f(xk|sk)uk(sk). (7)

Let us integrate this equation w.r.t. sk and carry over the
normalizing factor, which depends only on the observa-
tions, to the left-hand side:

fk(xk|xn1 without xk)

λk(xn1 without xk)
=

∫
Sk

f(xk|sk)uk(sk)dsk. (8)

Now, assuming the density f(xk|sk) belongs to the expo-
nential family (4), differentiate (8) w.r.t. xk. The possibil-
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ity of differentiating under the sign of integral is justified
by the assumption of existence of the second prior moment
EQT (Sk)Q(Sk), that is the natural restriction on a signal
power. Differentiation w.r.t. xk provides the equation

▽xk
fk(xk|xn1 without xk)

λk(xn1 without xk)
=

∫
Sk

▽xk
f(xk|sk)uk(sk)dsk.

(9)

For the exponential conditional density f(xk|sk),
▽xk

f(xk|sk)
= (▽xk

lnh(xk) +▽xk
TT(xk)Q(sk))f(xk|sk). (10)

Substituting (10) to (9) and denoting by Q(ŝk) the integral∫
Q(sk)πk(sk|xn1 )dsk, we find the equation for the optimal

mean square estimator Q(ŝk):

T T(xk)Q(ŝk) = ▽xk
ln
fk(xk|xn1 without xk)

h(xk)
, (11)

where T is the Jacobi matrix with elements ∂Ti/∂x
[j]
k , i =

1,m, j = 1, r. The equation (11) is a linear vector equation
w.r.t. Q(ŝk), but it can be solved only for a certain density
fk(xk|xn1 without xk). If all the probability distributions
are known, this density can be computed, and the result
coincides with (1) and (2). But when fk(xk|xn1 without xk)
can not be explicitly computed, we estimate it from the
observations using the kernel non-parametric procedures.

4. NON-PARAMETRIC INTERPOLATION
EQUATION

To solve the problem of interpolation on the basis of
one realization xn1 of a process (Xk)16k6n, Xk ∈ Rl,
we can use the asymptotically ε-optimal interpolating
procedure from Dobrovidov et al. (2012), in which the

truncated conditional density f̄(xk|xk−1
k−τ , x

k+τ
k+1) is used

instead of the conditional density f(xk|xn1 without xk),
f(xk|xk−1

1 , xnk+1), where the parameter τ is the order
of the Markov process, which approximates the non-
Markovian weak dependent process (Xn)n>1. The criteria
and methods of estimation of τ, which were developed
in Dobrovidov et al. (2012) with regard to filtration, can
be extended to the interpolation problems. The truncated
conditional density f(xk|xk−1

k−τ , x
k+τ
k+1) can be written as a

ratio

f(xk|xk−1
k−τ , x

k+τ
k+1) =

f(xk+τ
k−τ )

f(xk−1
k−τ , x

k+τ
k+1)

,

where the numerator is the marginal density of (l ×
(2τ + 1))-dimensional vector, and the denominator is
the marginal density of (l × 2τ)-dimensional vector of
observations. Substitute the multivariate non-parametric
kernel estimators

fN (xn1 ) =
1

NhlrN

N∑
i=1

n∏
k=1

l∏
j=1

K

(
(x

[j]
k −X

[j]
k (i))

hN

)
(12)

instead of truncated densities, and we get a non-parametric
approximation of the equation (11)

T T(xk)Q(τŝk,N ) =
▽xk

fN (xk+τ
k−τ )

fN (xk+τ
k−τ )

− ▽xk
h(xk)

h(xk)
. (13)

So, to construct the interpolation estimator at the point
k, one uses the data before and later of k by a distance not

exceeding τ. The interpolation estimator in the equation
(13) is consistent, but it depends on the logarithmic
gradient of the conditional probability density, which can
be unstable in some points xk taking infinite values when
the denominator is equal to zero. For a more strong
convergence, one should construct a piecewise smooth
approximation (see Dobrovidov et al. (2012)) providing the
mean-square convergence under some additional regularity
conditions.

5. NON-PARAMETRIC INTERPOLATION
ESTIMATOR AND OPTIMAL ESTIMATORS

Since the nonparametric kernel estimation of multivariate
densities of large dimension is very difficult for implemen-
tation, we illustrate the proposed method of estimation
and its performance by the following example with uni-
variate state and observation models (m = l = 1):

Sn+1 = aSn + bξn+1, b2 = σ2(1− a2); (14)

Xn = ASn +Bηn, Sn, Xn ∈ R. (15)

Here, S1, ξn, and ηn are the mutually independent random
variables with the Gaussian distributions N{0, σ2} for S1,
and N{0, 1} for ξn and ηn, n > 1. The coefficients a,
b, A, and B are known, |a| < 1. With suitable initial
conditions, such equations generate a strongly stationary
sequence. For the model (14), (15), the conditional prob-
ability density of observations is Gaussian, and, therefore,
the Kalman filter and the optimal forward and backward
recursive linear interpolation equations, associated with
it, can be obtained by using the results of Liptser and
Shiryaev (1977).

The Kalman filter:

Ŝk+1 = aŜk +
Ab2 + a2Aγk

B2 +A2b2 +A2a2γk
[xk+1 −AaŜk],

γk+1 =
B2(a2γk + b2)

A2(a2γk + b2) +B2
(16)

with the initial conditions

Ŝ1 =
Aσ2

A2σ2 +B2
x1, γ1 =

B2σ2

A2σ2 +B2
,

where Ŝk = E[Sk|xk1 ], γk = E[(Sk − Ŝk)
2|xk1 ].

Forward interpolation:

Dk = A2(a2γk + σ2(1− a2)) +B2,

S̃k = Ŝk +Aaγk(Xk+1 −AaŜk)/Dk,

γ̃k = A2σ2(1− a2) +B2)γk/Dk, k = 2, ..., n, (17)

where Ŝk = E[Sk|xk+1
1 ], γ̃k = E[(Sk − S̃k)

2|xk+1
1 ].

Backward interpolation:

˜̃Sk = S̃k + ˜̃γkaσ
2(1− a2)( ˜̃Sk+1 − Ŝk))/dkγk+1,

˜̃γk = γ̃k +
γ̃2k(σ

2(1− a2))2 ˜̃γk+1

D2
kγk+1

, k = 2, ..., n− 1, (18)

where ˜̃Sk = E[Sk|xn1 ], ˜̃γk = E[(Sk − ˜̃Sk)
2|xn1 ].

A non-parametric interpolation can be constructed by
using only one observation equation (15) and the data
sample of size n. In this univariate case, non-parametric
interpolation equation (11) reduces to
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Ŝτ
k =

B2

A

∂

∂xk
f(xk+τ

k−τ )

f(xk+τ
k−τ )

+
xk
A

=
B2

A
ψ(xk+τ

k−τ ) +
xk
A
, (19)

ψ(xk+τ
k−τ ) =

∂

∂xk
f(xk+τ

k−τ )

f(xk+τ
k−τ )

. (20)

So, we see that equation (19) does not involve the parame-
ters a, b of state-space equation (18). The non-parametric

kernel estimator for the denominator f(xk+τ
k−τ ) in (19) is

defined by formula (12). The numerator in (19) contains

a partial derivative of the multivariate density f(xk+τ
k−τ )

at the point xk. Usually, the estimator of the density
derivative is selected as the derivative of the density es-
timator. In this case, the optimal bandwidths for the
density and its derivative do not match (see Dobrovidov
and Rud’ko (2010)). Therefore, to calculate the data-
driven bandwidths, one have to use different algorithms.
Here, these parameters are estimated by cross-validation
method.

6. REGULARIZED ESTIMATOR

The non-parametric estimator for the ratio (20) is the
following expression:

ψN (xk+τ
k−τ ) =

∂

∂xk
fN (xk+τ

k−τ )

fN (xk+τ
k−τ )

(21)

=

hN
n−τ∑

i=τ+1

(xi − xk) e
−
(xk − xi)

2

2hN
′2 τ∏

j =−τ
j ̸= 0

e
−
(xk+l − xi+l)

2

2hN
2

h
′2
N

n−τ∑
i=τ+1

τ∏
l=−τ

e
−
(xk+l − xi+l)

2

2hN
2

,

where N = n − 2τ and hN and h′N are the bandwidth
parameters for a density and its derivative. Optimal values
of them depend on unknown functions.

Estimator (21) is the special case of plug-in estimator of
a composite function G(tN (x)), where x ∈ Rs, tN : Rs →
Rm, G : Rm → R1. In our case m = 2, tN = (t1N , t2N )T,

t1N = fN (xk+τ
k−τ ), t2N =

∂

∂xk
fN (xk+τ

k−τ ), G(tN ) = t2N/t1N .

If the statistic tN converges to a function t in the mean
square sense as N → ∞, then under some regularity
conditions G(tN ) → G(t) in the same sense also. Write
the main regularity conditions for convergence: 1) the
existence and boundedness of several derivatives of G(tN );
2) the sequence {|G(tN )|} is dominated by the number
sequence {C0d

γ
N}, where C0 is a constant, dN → ∞ as

N → ∞, and 0 ≤ γ < ∞. So, the function |G(tN )| have
to grow slower than the function C0d

γ
N . These conditions

provide the mean square convergence of G(tN ) to G(t) (see
Koshkin (1999)).

If the mean Euclidean distance E ∥ tN − t ∥< ε, ε > 0,
then for a small ε the following equality holds:

G(tN )−G(t) = ∇G(ϑN )(tN − t), ϑN ∈ (tN , t, ) (22)

where ∇ is gradient w.r.t. t. From here according to
Koshkin (1999)

|E(G(tN )−G(t))2 − E(∇G(ϑN )(tN − t))2|
= O(d

−3/2
N ), (23)

i.e., the mean square closeness of the composite functions
G(tN ) and G(t) is replaced by the mean square closeness
of more simple statistics tN and t. There are a number
of cases when conditions 1) and 2) do not hold. For
example, function G(t) = 1/t does not satisfy both the
conditions, and the estimator G(tN ) = 1/tN becomes
unstable because of its possible unboundedness.

As the proposition (22) is valid only for bounded functions
we apply here some procedure of regularization, called a
piecewise smooth approximation (see Koshkin (1999)). For
the first time, a stable piecewise smooth approximation of
plug-in estimators and their mean square errors (MSEs)
have been investigated in Penskaya (1990), stable esti-
mators of the ratios (convergence in law, convergence of
MSE), in Koshkin (1993), deviation moments of arbitrary
orders of piecewise smooth approximations of plug-in esti-
mators, in Koshkin (1999).

Using this procedure, we obtain the following stable ap-
proximation of G :

Φ(G(t), δN ) = Φ̃(t, δN ) =
G(t)

1 + δN |G(t)|4
, (24)

where δN > 0 is a regularization parameter. As it is

proved in Koshkin (1999), Φ̃(tN , δN ) satisfies both the
above mentioned conditions and therefore is dominated by

the power function of N.Moreover, Φ̃(tN , δN ) converges to
G(t) in the mean square sense, i.e., as E ∥ tN − t ∥→ 0 and
δN → 0, then

lim
N→∞

E(Φ̃(tN , δN )−G(t))2 = 0. (25)

In special case the procedure of piecewise smooth ap-
proximation coincides with the Tychonoff regularization
method (see Tychonoff and Arsenin (1979); Tychonoff
and Ufimtsev (1988)). Indeed, formally, the estimator
of piecewise smooth approximation can be obtained by
the Tychonoff regularization method by minimizing the
smoothing functional

Q = [Φ̃(tN )−G(tN )]2 + αΦ̃2(tN ),

and it equals

Φ̃(tN , α) = argmin
Φ̃
Q =

G(tN )

1 + α
, (26)

with the bias, variance and MSE of Φ̃(tn, α) being given
by the expressions

b(Φ̃(tN )) = EΦ̃(tN )−G(t) =
b(G(tN ))− αG(t)

1 + α
,

DΦ̃(tN ) =
DG(tN )

(1 + α)2
,

u2(Φ̃(tN )) =
u2(G(tN ))− 2αb(G(tN ))G(t) + α2G2(t)

(1 + α)2
.

(27)

Comparing (24) and (26) yields

α = δN |G(t)|τ . (28)

The statistic ψN (xk+τ
k−τ ) in (21) is unstable when denomi-

nator is close to zero. So, we use the stable estimate
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ψ̃N (xk+τ
k−τ ) =

ψN (xk+τ
k−τ )

1 + δN |ψN (xk+τ
k−τ )|4

, (29)

where the regularization parameter δN has to be found.
This parameter can be found by optimizing the criterion
of mean integrated square error (MISE) for estimating

function ψ(xk+τ
k−τ ) with the weight function ω(·), i.e.

MISE(δN ) =

∫
u2
(
ψ̃N (xk+τ

k−τ )
)
ω(xk+τ

k−τ )dx
k+τ
k−τ ,

u2
(
ψ̃N (xk+τ

k−τ )
)
, E

(
ψ̃N (xk+τ

k−τ )− ψ(xk+τ
k−τ )

)2
. (30)

To exist the criterion, we should select the weight function
as ω(·) = f(·).
Calculation of the expectation of ratio (21) is laborious.
According to (25), for the mean square convergence of

regularized estimate ψ̃N (xk+τ
k−τ ) to ψ(x

k+τ
k−τ ) it is necessary

that δn → 0 as n → ∞. Therefore, under the assumption
of small δN we expand the ratio (29) w.r.t. parameter δN
and approximately obtain

ψ̃N (xk+τ
k−τ ) ≈ ψN (xk+τ

k−τ )− δNψ
5
N (xk+τ

k−τ ). (31)

Substituting (31) into MISE (30) and making use of
Theorem 2 from Koshkin (1999), we receive

∫
u2
(
ψ̃N (xk+τ

k−τ )
)
f(xk+τ

k−τ )dx
k+τ
k−τ

≈
∫
H2

1u
2

(
∂

∂xk
fN (xk+τ

k−τ )

)
f(xk+τ

k−τ )dx
k+τ
k−τ

+2

∫
H1H2cov

(
∂

∂xk
fN (xk+τ

k−τ ), f(x
k+τ
k−τ )

)
f(xk+τ

k−τ )dx
k+τ
k−τ

+

∫
H2

2u
2
(
f(xk+τ

k−τ )
)
f(xk+τ

k−τ )dx
k+τ
k−τ

=

∫
H2

1u
2(f

′

N ) + 2

∫
H1H2cov(·) +

∫
H2

2u
2 (fN ) , (32)

where H1 =
1− 5δψ4

f
, H2 =

−ψ + 5δψ5

f
, f

′

N =
∂

∂xk
fN ,

cov(·) = cov(f
′

N , fN ). Now, minimizing (28) w.r.t. δN , we
find

δopt =

∫
u2(f

′

N )− 2

∫
ψcov(·) +

∫
ψ2u2(fN )

5

∫
ψ4u2(f

′

N )− 10

∫
ψ5cov(·) + 5

∫
ψ6u2(fN )

.

(33)

The integrals in the numerator and denominator of δopt
depend on unknown densities, therefore, they have to be
estimated. The main parts of expansions of u2(·) and cov(·)
under n→ ∞ equal to

u2(f
′

N ) ≈ f

Nh3N

∫
(K(1)(u))2du

+
h4N
4

(f (3))2
(∫

u2K(u)du

)2

,

cov(f
′

N , fN ) ≈ f

Nh2N

∫
K(1)(u)K(u)du

+
h4N
4
f (3)f (2)

(∫
u2K(u)du

)2

,

u2(fN ) ≈ f

NhN

∫
K2(u))du

+
h4N
4

(f (2))2
(∫

u2K(u)du

)2

,

where f (i) =
∂i

∂xik
f, i = 1, 2, 3. Substituting these formulae

into (33), we find δopt, in which it is necessary to estimate
the following integrals:

Jk =

∫
(f (k)(u))qf(u)du, ν = 0, ..., 4, q = 1, 2, ...

It can be done by the smoothed cross-validation method,
developed for such functionals in Dobrovidov and Rud’ko
(2010).

7. COMPARISON OF THE ESTIMATORS

In the simulation, we base ourselves on the sample risk

R̂ =
1

M

M∑
j=1

(
1

N

N∑
i=1

(
Si(j)− Ŝi(j)

)2)1/2

, (34)

where M is the number of repeated experiments.
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Fig. 1. Comparison of the non-parametric smoothing

estimator with the optimal estimators

We consider three estimators:
— Kalman estimator Ŝk (16) with risk RK ,

— optimal backward interpolation ˜̃Sk (18) with the risk
ROI ,
— non-parametric interpolation (19) with the risk RNI .
Because ROI 6 RK and ROI 6 RNI , for conve-
nience of comparison, let us introduce the relative errors
in percentage:

εK =
RK −ROI

ROI
× 100, εNI =

RNI −ROI

ROI
× 100.
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The relative error shows how much an estimator is better
or worse than another one. The simulation results are
presented in Fig.1 by n = 1000, σ2 = 2, a = 0.7, b = 1, A =
B = 1, τ = 1. The relative errors εK and εNI are given
in Table 1. We see that non-parametric estimators can
superior the optimal Kalman filtering estimators by the
performance, but it is always inferior w.r.t. the optimal
backward interpolation.

Table 1.

Relative excess of the empirical risk
over the optimal smoothing risk

M Optimal Kalman εK Non-par εNI

50 0% 7.48% 4.42%

8. CONCLUSION

The paper presents two interpolating algorithms for esti-
mation of an unobservable signal disturbed by noise on
the fixed time interval. In the case of a linear obser-
vation model, the simulation experiments illustrate the
performance of the proposed non-parametric interpolation
estimator in comparison with the optimal Kalman filtering
estimator and with the optimal backward interpolation. It
is shown that the quality of the regularized nonparametric
algorithm naturally worse than backward interpolation
with complete statistical information, but better than the
Kalman filter. Improved quality is achieved by additional
information to the right of the estimation point. In what
follows it is supposed to build a similar algorithm for the
dynamic model of observation (for example, autoregres-
sive) taking into account both interpolation equations (2)
and (3).
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