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Abstract: This paper focuses on the consensus problem of continuous-time single-integrator and double-

integrator multi-agent systems (MASs) with dynamically quantized information transmission. The 

connected undirected graphs are utilized to characterize the interaction topology between the agents. 

Dynamic quantizers are firstly introduced for a linear asymptotically stable system with a less conservative 

update interval. Through certainty equivalent quantized feedback controller and state transformation, the 

consensus problems of single-integrator and double-integrator MASs are then converted to the linear 

asymptotic stabilization problem, meanwhile the proposed dynamic quantization strategy is naturally 

applied to MAS to achieve asymptotic quantized average consensus. Finally, numerical examples are 

provided to illustrate the effectiveness of the theoretical results. 
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1. INTRODUCTION 

Distributed coordination control problem of MAS has 

attracted significant research interests in the past decade (Ren 

et al., 2011).  A typical and widely investigated problem in 

distributed control is known as the consensus problem, which 

aims at coordinating the whole group of agents to achieve a 

global behavior of common decision through interacting each 

agent with its neighboring agents under a distributed protocol 

(Cortés 2008, Cao et al., 2008).  

Under the assumption of accurate inter-agent information 

exchange, the accurate consensus to the average of the initial 

states can be arrived asymptotically or in finite time depending 

on the closed-loop dynamics (Wang et al., 2010, Li et al., 

2011). However, due to the bandwidth constraints in 

communication, the information data should be quantized 

before transmission, i.e., the original precise data need to be 

truncated. Quantization can reduce the quantity of data 

transmission, whereas the imperfect information exchange 

may have a considerable impact on the performance of a MAS. 

Many researchers in control community have begun to 

investigate the quantization effects on distributed control of 

MASs, which leads to the concept of ‘quantized consensus’ 

(Kashay et al., 2007, Ceragioli et al., 2011, Liu et al., 2012, 

Guo et al., 2013). 

There are three types of commonly used quantizers, namely, 

uniform quantizer, logarithmic quantizer and dynamic 

quantizer. The distributed control algorithms with uniform 

quantizers drive the single-integrator multi-agent systems to 

reach near consensus - a set around the accurate average 

consensus (Hui 2011). An encoding/decoding strategy with 

logarithmic quantizer to transmit information among agents 

reaches exact average consensus of first-order discrete-time 

MAS (Carli et al., 2010). The first-order continuous-time 

MAS with logarithmic quantizer can reach exact average 

consensus under undirected tree communication topologies, if 

the accuracy of logarithmic quantizer is small enough 

(Dimarogonas et al., 2010). The logarithmic quantizer is an 

infinite-level quantizer. When only a finite number of 

quantization levels is available, only the so-called near 

consensus can be obtained. One may consider applying a 

dynamic scaling approach to make the subset arbitrarily small. 

This motivates the development of dynamic quantization using 

a finite number of quantization levels (Baldan et al., 2009, 

Dong et al., 2013, Liu et al., 2012). This strategy is inspired 

by the quantized stabilization technique of linear and nonlinear 

systems proposed in (Brockett et al., 2000, Liberzon 2003), 

which is called zooming in - zooming out strategy.  

Although dynamic quantization has been implemented in 

nonlinear and networked control systems, so far, there is no 

direct application of Liberzon’s dynamic quantization strategy 

into the consensus problem of MAS. In this paper we adapt the 

dynamic quantization method proposed in the field of control 

under communication constraints to the average consensus 

problem. Compared with the previous work, less conservative 

dynamic adjusting strategy leads to faster convergence to the 

average consensus. The MAS under consideration consists of 

limited number of single integrator or double integrator agents 

that share quantized information under undirected 

communication topologies. 

2. PRELIMINARIES AND PROBLEM FORMULATION 

2.1. Algebraic Graph Theory 

Consider an MAS with N agents, the communication topology 

among the agents are modeled by a weighted undirected graph 

𝒢 = (𝒱, ℰ,𝒜) with a set of 𝑁 nodes 𝒱 = {1,2,⋯ ,𝑁}, a set of 

𝑀  edges ℰ ⊆ 𝒱 × 𝒱  and a weighted adjacency matrix 𝒜 =

(𝑎𝑖𝑗 ≥ 0) ∈ 𝑅𝑁×𝑁 . A node 𝑖 ∈ 𝒱  represents the agent 𝑖 . An 

undirected edge is denoted by an unordered pair of nodes 

(𝑖, 𝑗) ∈ ℰ if and only if there is a communication link between 
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𝑖 and 𝑗, and there is no self-edge (𝑖, 𝑖) in the graph, i.e., (𝑖, 𝑖) ∉
ℰ . The adjacency elements associated with the edges are 

positive, i.e., (𝑖, 𝑗) ∈ ℰ ⟺ 𝑎𝑖𝑗 = 𝑎𝑗𝑖 > 0 , otherwise 𝑎𝑖𝑗 =

𝑎𝑗𝑖 = 0，𝑎𝑖𝑖 = 0 for all 𝑣𝑖 ∈ 𝒱 because (𝑖, 𝑖) ∉ ℰ. Therefore, 

for an undirected graph, 𝒜 is symmetric. The neighbor set of 

node 𝑖  is denoted by 𝑁𝑖 = {𝑗 ∈ 𝒱: (𝑖, 𝑗) ∈ ℰ, 𝑗 ≠ 𝑖} . The 

degree of node 𝑖  is defined by 𝑑𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1  . Let 𝒟 =

diag(𝑑1, 𝑑2, ⋯ , 𝑑𝑁). The Laplacian matrix of 𝒢 is defined by 

ℒ = (𝑙𝑖𝑗) = 𝒟 − 𝒜 ∈ 𝑅𝑁×𝑁  with 𝑙𝑖𝑖 = 𝑑𝑖 = ∑ 𝑎𝑖𝑗
𝑁
𝑗=1   and 

𝑙𝑖𝑗 = −𝑎𝑖𝑗 . For a connected undirected graph 𝒢, ℒ is a positive 

semidefinite matrix with a single zero eigenvalue and its 

corresponding eigenvector 𝟏 = [1,1,⋯ ,1]𝑇 , i.e., ℒ𝟏 = 𝟎 . By 

assigning each edge a direction, the incidence matrix ℬ =

(𝑏𝑖𝑗) ∈ 𝑅𝑁×𝑀  is defined as a {0, ±1} -matrix with rows and 

columns indexed by the vertices and edges of 𝒢, respectively, 

such that 𝑏𝑖𝑗 = 1 or 𝑏𝑖𝑗 = −1 if the node 𝑖 is the head or tail 

of the edge (𝑖, 𝑗)  respectively, otherwise 𝑏𝑖𝑗 = 0 . Then �̃� =

ℬ𝑇𝑥 ∈ 𝑅𝑀 denotes the stack edge vector of relative states of 

neighboring agents, and ℒ = ℬℬ𝑇 . A sequence of edges 
(𝑖, 𝑖1), (𝑖1, 𝑖2),⋯ , (𝑖𝑟−1, 𝑗) is called a path of length 𝑟 between 

nodes 𝑖 and 𝑗 in the graph 𝒢 with 𝑟 + 1 distinct nodes. A graph 

is called connected if there is a path between any pair of 

distinct nodes 𝑖  and 𝑗 . For a connected graph 𝒢 , when all 

agents’ states are equal, �̃� = 0 and ℒ𝑥 = ℬℬ𝑇𝑥 = ℬ�̃� = 0. 

2.2 Consensus dynamics of MAS 

We consider a team of 𝑁 autonomous agents, each of which is 

governed by the following single integrator  

�̇�𝑖 = 𝑢𝑖 , 𝑖 = 1,2,⋯ ,𝑁                             (1) 

or double integrator 

 �̇�𝑖 = 𝑣𝑖 , �̇�𝑖 = 𝑢𝑖 ,   𝑖 = 1,2,⋯ ,𝑁                    (2) 

where 𝑥𝑖 , 𝑣𝑖 , 𝑢𝑖 ∈ 𝑅 denote the position, velocity and control 

input of agent 𝑖 , respectively. Suppose 𝑥 = [𝑥1,  𝑥2, ⋯ , 𝑥𝑁]𝑇 , 

𝑣 = [𝑣1,  𝑣2, ⋯ , 𝑣𝑁]𝑇 , 𝑢 = [𝑢1,  𝑢2, ⋯ , 𝑢𝑁]𝑇 . Then MAS (1) 

and (2) can be expressed in the stack vector form as �̇� = 𝑢 or 

�̇� = 𝑣, �̇� = 𝑢. For any initial condition 𝑥(0) = [𝑥1(0),  𝑥2(0),
⋯ , 𝑥𝑁(0)]𝑇 , 𝑣(0) = [𝑣1(0),  𝑣2(0),⋯ , 𝑣𝑁(0)]𝑇  , the control 

aim is to construct distributed feedback controllers 𝑢𝑖 , 𝑖 =
1,2,⋯ ,𝑁 such that the MASs achieve the average consensus 

asymptotically, i.e., 

𝑙𝑖𝑚
𝑡→∞

𝑥(𝑡) = 𝑥ave(0)    (3) 

for single-integrator dynamics or 

𝑙𝑖𝑚
𝑡→∞

𝑣(𝑡) = 𝑣ave(0)  (4) 

for double-integrator dynamics, where 𝑥ave(𝑡) = 𝟏𝑇𝑥(𝑡) 𝑁⁄  

and 𝑣ave(𝑡) = 𝟏𝑇𝑣(𝑡) 𝑁⁄  are the average value of all agents’ 

states. 

2.3 Dynamic uniform quantizer 

Assume that each agent 𝑖 has only quantized communication 

of state 𝑞(𝑥𝑖) or relative state 𝑞(𝑥𝑖 − 𝑥𝑗), where the quantizer 

𝑞: 𝑅 → 𝑆 is a piecewise constant function, where 𝑆 is a finite 

subset of 𝑅. A uniform quantizer 𝑞𝑢 is defined by 

𝑞𝑢(𝑥𝑖) = ⌊
𝑥𝑖

∆
+

1

2
⌋ ∆  (5) 

Note that the bound of quantization error is |𝑞𝑢(𝑥𝑖) − 𝑥𝑖| ≤
∆ 2⁄ . For a finite-level uniform quantizer with the quantization 

range ℳ , |𝑞𝑢(𝑥𝑖) − 𝑥𝑖| ≤ ∆ 2⁄   for |𝑥𝑖| ≤ ℳ , and |𝑞𝑢(𝑥𝑖)| =
ℳ − ∆ 2⁄  for |𝑥𝑖| > ℳ. Moreover if the state vector 𝑥 is the 

variable to be quantized, 𝑞𝑢(𝑥) = [𝑞𝑢(𝑥1), 𝑞𝑢(𝑥2),⋯ ,

𝑞𝑢(𝑥𝑁)]𝑇 . |𝑞𝑢(𝑥) − 𝑥| ≤ √𝑁 ∆ 2⁄   if |𝑥𝑖| ≤ ℳ, and |𝑞𝑢(𝑥) −

𝑥| ≤ √𝑁(ℳ − ∆ 2⁄ ) if |𝑥𝑖| > ℳ. 

A dynamic quantizer 𝑞𝜇: 𝑅 → 𝑆 is a variation of the uniform 

quantizer through introducing a zooming parameter 𝜇 as 

𝑞𝜇(𝑥𝑖) = 𝜇𝑞𝑢 (
𝑥𝑖

𝜇
) = ⌊

𝑥𝑖

𝜇∆
+

1

2
⌋ 𝜇∆  (6) 

with the quantization range 𝜇ℳ  and error bound 𝜇∆ 2⁄  :  

|𝑞𝜇(𝑥𝑖) − 𝑥𝑖| ≤ 𝜇∆ 2⁄   for |𝑥𝑖| ≤ 𝜇ℳ , and |𝑞𝜇(𝑥𝑖)| =

𝜇(ℳ − ∆ 2⁄ ) for |𝑥𝑖| > 𝜇ℳ. For the state vector 𝑥, 𝑞𝜇(𝑥) =

[𝑞𝜇(𝑥1), 𝑞𝜇(𝑥2),⋯ , 𝑞𝜇(𝑥𝑁)]
𝑇
 .  |𝑞𝜇(𝑥) − 𝑥| ≤ √𝑁𝜇 ∆ 2⁄  

if |𝑥𝑖| ≤ 𝜇ℳ , and |𝑞𝜇(𝑥) − 𝑥| ≤ √𝑁(ℳ − ∆)  if |𝑥𝑖| > 𝜇ℳ . 

The basic idea of dynamic quantization is to dynamically 

update 𝜇 according to the location of the state 𝑥 for obtaining 

the quantized information with a required resolution.  

2.4 Problem formulation 

For the MAS (1) and (2), the asymptotic average consensus (3) 

and (4) can be achieved by the feedback controllers 

𝑢𝑖 = −∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖
(𝑥𝑖 − 𝑥𝑗) or 𝑢 = −ℒ𝑥 (7) 

and 

𝑢𝑖 = −∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖
(𝑥𝑖 − 𝑥𝑗) − ∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖

(𝑣𝑖 − 𝑣𝑗)                 

or 𝑢 = −ℒ𝑥 − ℒ𝑣  (8) 

respectively. Then the closed-loop MASs become 

�̇� = −ℒ𝑥    (9) 

and  

[
�̇�
�̇�
] = [

0 𝐼
−ℒ −ℒ

] [
𝑥
𝑣
] or �̇� = [

0 𝐼
−ℒ −ℒ

] 𝑧    (10) 

where 𝑧 = [𝑥𝑇 ,  𝑣𝑇]𝑇.  

The main objective of this paper is to design a dynamic 

uniform quantizer 𝑞𝜇  such that the asymptotic average 

consensus (3) and (4) can be still preserved under the certainty 

equivalent controllers when only quantized relative state is 

available for feedback. 

𝑢𝑖 = −∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖
𝑞𝜇(𝑥𝑖 − 𝑥𝑗) or 𝑢 = −ℬ𝑞𝜇(ℬ𝑇𝑥)    (11) 
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and 

𝑢𝑖 = −∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖
𝑞𝜇(𝑥𝑖 − 𝑥𝑗) − ∑ 𝑎𝑖𝑗𝑗∈𝑁𝑖

𝑞𝜇(𝑣𝑖 − 𝑣𝑗) or 𝑢 =

−ℬ𝑞𝜇(ℬ𝑇𝑥) − ℬ𝑞𝜇(ℬ𝑇𝑣)    (12) 

3. DYNAMIC QUANTIZATION OF A LINEAR SYSTEM 

Consider a linear stabilizable system 

�̇� = 𝐴𝑥 + 𝐵𝑢    𝑥 ∈ 𝑅𝑛 , 𝑢 ∈ 𝑅𝑚  (13) 

there exists a state feedback law 𝑢 = 𝐾𝑥 such that 𝐴 + 𝐵𝐾 is 

negative definite. Then the closed-loop system �̇� = (𝐴 +
𝐵𝐾)𝑥  is stable, and there exists positive definite matrices 𝑃 

and 𝑄 such that 

(𝐴 + 𝐵𝐾)𝑇𝑃 + 𝑃𝑇(𝐴 + 𝐵𝐾) = −𝑄  (14) 

When only quantized measurements 𝑞𝜇(𝑥)  are available, 

consider the certainty equivalent quantized feedback control 

law 

𝑢 = 𝐾𝑞𝜇(𝑥)    (15) 

Then the closed-loop system is given by  

�̇� = 𝐴𝑥 + 𝐵𝐾𝑞𝜇(𝑥) = (𝐴 + 𝐵𝐾)𝑥 + 𝐵𝐾𝜇 (𝑞𝑢 (
𝑥

𝜇
) −

𝑥

𝜇
) =

(𝐴 + 𝐵𝐾)𝑥 + 𝐵𝐾𝑒   (16) 

where 𝑒 = 𝜇(𝑞𝑢(𝑥 𝜇⁄ ) − 𝑥 𝜇⁄ )  is the quantization error and 

|𝑒| ≤ √𝑛𝜇∆. 

For a Lyapunov function 𝑉 = 𝑥𝑇𝑃𝑥, we have  

�̇� = −𝑥𝑇𝑄𝑥 + 2𝑥𝑇𝑃𝐵𝐾𝑒 ≤ −|𝑥|𝜆𝑚𝑖𝑛(𝑄)(|𝑥| − 𝜃𝜇𝛥)  (17) 

where  𝜃 = 2‖𝑃𝐵𝐾‖√𝑛 𝜆𝑚𝑖𝑛(𝑄)⁄ > 0 . Assume that ℳ  is 

larger enough than 𝛥  such that √𝜆𝑚𝑖𝑛(𝑃) ℳ ≥

√𝜆𝑚𝑎𝑥(𝑃)𝜃∆(1 + 𝜀) for arbitrary 𝜀 > 0. Because |𝑥| ≥ (1 +
𝜀)𝜃𝜇𝛥  holds in the region between the ellipsoids ℛ1

∶= {𝑥: 𝑥𝑇𝑃𝑥 ≤ 𝜆𝑚𝑖𝑛(𝑃)ℳ2𝜇2}  and  ℛ2 ∶= {𝑥: 𝑥𝑇𝑃𝑥 ≤
𝜆𝑚𝑎𝑥(𝑃)𝜃2∆2(1 + 𝜀)2𝜇2} , this means 𝜃𝜇𝛥 ≤ |𝑥| (1 + 𝜀)⁄  . 

Therefore 

�̇� ≤ −𝜆𝑚𝑖𝑛(𝑄)
𝜀

1+𝜀
|𝑥|2 ≤ −

𝜆𝑚𝑖𝑛(𝑄)

𝜆𝑚𝑎𝑥(𝑃)

𝜀

1+𝜀
𝑉     (18) 

Let 𝛼 denote 𝜆𝑚𝑖𝑛(𝑄)𝜀 (𝜆𝑚𝑎𝑥(𝑃)(1 + 𝜀))⁄ , then 𝑉 will decay 

at least at the exponential rate 𝛼, i.e., 𝑉 ≤ 𝑉(0)𝑒−𝛼𝑡. It can be 

seen that �̇� is negative outside the ellipsoid ℛ2 centered at the 

origin. Then the ellipsoids ℛ1 and ℛ2 are invariant regions for 

system (16). Moreover, all solutions of (16) starting in ℛ1 

enter ℛ2 in finite time, and this time is upper bound by 

𝑇 =
1

𝛼
𝑙𝑛

𝜆𝑚𝑖𝑛(𝑃)ℳ2

𝜆𝑚𝑎𝑥(𝑃)𝜃2∆2(1+𝜀)2
    (19) 

According to Liberzon’s design strategy, when the initial state 

is in the ellipsoid ℛ1 with the initial zooming variable 𝜇0, the 

zooming-in phase starts with the update interval 𝑇  and the 

zooming-in rule is 

𝜇 = 𝛺𝑘𝜇0, 𝛺 =
√𝜆𝑚𝑎𝑥(𝑃)𝜃𝛥(1+𝜀)

√𝜆𝑚𝑖𝑛(𝑃)ℳ
< 1  (20) 

for 𝑡 ∈ [𝑘𝑇, (𝑘 + 1)𝑇] where 𝑘 is the number of update times. 

Then it is guaranteed that 𝑥  converges to zero at least 

exponentially. 

Remark 1. The main difference from Liberzon’s strategy is the 

estimation of convergence rate from ℛ1  to  ℛ2 . We use the 

exponential decay rate which is state-dependent: fastest on ℛ1 

and slowest on ℛ2, to estimate the travel time from ℛ1 to ℛ2, 

while the latter uses the slowest rate on  ℛ2  to estimate the 

time so as to result in a longer time  𝑇 = (𝜆𝑚𝑖𝑛(𝑃)ℳ2 −
𝜆𝑚𝑎𝑥(𝑃)𝜃2∆2(1 + 𝜀)2)/(𝜃2∆2(1 + 𝜀)𝜀𝜆𝑚𝑖𝑛(𝑄)). Therefore 

the estimated convergence time is less conservative than 

Liberzon’s strategy. 

4. ASYMPTOTIC AVERAGE CONSENSUS OF MAS 

WITH DYNAMIC QUANTIZERS 

4.1 Single-integrator agents 

Consider the single-integrator MAS (1), under the dynamics 

(10), the closed-loop MAS becomes 

     �̇� = −ℬ𝑞𝜇(ℬ𝑇𝑥) = −ℬℬ𝑇𝑥 − ℬ(𝑞𝜇(ℬ𝑇𝑥) − ℬ𝑇𝑥) =

             −ℒ𝑥 − ℬ𝑒             (21) 

where the quantization error 𝑒 = 𝑞𝜇(ℬ𝑇𝑥) − ℬ𝑇𝑥  and |𝑒| ≤

√𝑀𝜇∆ . −ℒ  is negative semi-definite with a single zero 

eigenvalue. Therefore, in order to be compatible with dynamic 

uniform quantization strategy presented in Section 3, we will 

apply state transformation to (21) such that the reduced 

Laplacian matrix ℒ is positive definite. 

Define that 𝑥𝑖 = 𝑥𝑖 − 𝑥𝑁 , 𝑖 = 1,2,⋯ ,𝑁 − 1, we have 

𝑥 = [𝑥1, 𝑥2, ⋯ , 𝑥𝑁−1]
𝑇 = [

1 0 0 −1
0 ⋱ 0 ⋮
0 0 1 −1

]

(𝑁−1)×𝑁

𝑥 = 𝒯𝑥

    (22) 

The transformation means that the 𝑁th agent is chosen as the 

reference agent, so the relative information between the agents 

are preserved. Then (21) becomes  

�̇� = −𝒯ℒ𝒯+𝑥 − 𝒯ℬ𝑒 = −ℒ𝑥 − ℬ𝑒 (23) 

where 𝒯+  is the pseudo inverse of 𝒯 , ℒ = 𝒯ℒ𝒯+ ∈

𝑅(𝑁−1)×(𝑁−1) and ℬ = 𝒯ℬ ∈ 𝑅(𝑁−1)×𝑀. 

𝒯+ =

[
 
 
 
 
 
𝑁−1

𝑁

1

𝑁

1

𝑁
1

𝑁
⋱

1

𝑁

⋮ ⋱
𝑁−1

𝑁
1

𝑁
⋯

1

𝑁 ]
 
 
 
 
 

𝑁×(𝑁−1)

,   
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 ℒ = [

𝑙11 − 𝑙𝑁1 ⋯ 𝑙1(𝑁−1) − 𝑙𝑁(𝑁−1)

⋮ ⋯ ⋮
𝑙(𝑁−1)1 − 𝑙𝑁1 ⋯ 𝑙(𝑁−1)(𝑁−1) − 𝑙𝑁(𝑁−1)

]

(𝑁−1)×(𝑁−1)

 

ℬ = [

𝑏11 − 𝑏𝑁1 ⋯ 𝑏1𝑀 − 𝑏𝑁𝑀

⋮ ⋯ ⋮
𝑏(𝑁−1)1 − 𝑏𝑁1 ⋯ 𝑏(𝑁−1)𝑀 − 𝑏𝑁𝑀

]

(𝑁−1)×𝑀

 

Now the consensus problem of MAS (1) is transformed to a 

stability problem of the reduced MAS (23), i.e.,  

 𝑙𝑖𝑚
𝑡→∞

𝑥(𝑡) = 0   (24) 

Lemma 1. ℒ  has the same eigenvalues as ℒ  but the zero 

eigenvalue. 

Proof: Define the nonsingular matrix 

 𝒮 = [
𝒯

1

√𝑁
𝟏𝑇]     (25) 

It can be verified that 

 𝒮−1 = [𝒯+ 1

√𝑁
𝟏]  (26) 

Clearly the eigenvalues of 𝒮ℒ𝒮−1  are same as those of  ℒ . 

Incorporating the fact 𝟏𝑇ℒ = 𝟎𝑇 and ℒ𝟏 = 𝟎, we have  

 𝒮ℒ𝒮−1 = [𝒯ℒ𝒯+ 0
0 0

] = [ℒ 0
0 0

]   (27) 

Since (27) is a block matrix, the eigenvalues of (27) are the 

solutions of 

 𝑑𝑒𝑡(𝜆𝐼 − 𝒮ℒ𝒮−1) = 𝜆𝑑𝑒𝑡(𝜆𝐼 − ℒ) = 0  (28) 

Therefore ℒ  has the same eigenvalues of ℒ  but the zero 

eigenvalue.  

From Lemma 1, we can conclude that −ℒ is negative definite, 

then the reduced MAS (23) is compatible with the linear stable 

system (16) and the dynamic quantization strategy can be 

applied in MAS. For the positive definite symmetric matrices 

𝑃 and 𝑄, define a Lyapunov function 

𝑉 = 𝑥
𝑇
𝑃𝑥    (29) 

Following the similar procedure in section 3, we have  

         �̇� = − 𝑥
𝑇
𝑄𝑥 − 2 𝑥

𝑇
𝑃ℬ𝑒 ≤ −𝜆𝑚𝑖𝑛(𝑄)|𝑥|2 +

               2|𝑥|‖𝑃ℬ‖|𝑒| ≤ −|𝑥|𝜆𝑚𝑖𝑛(𝑄)(|𝑥| − 𝜃𝜇𝛥)        (30) 

where 𝜃 = 2‖𝑃ℬ‖√𝑀 𝜆𝑚𝑖𝑛(𝑄)⁄  . In the region between the 

ellipsoids ℛ1  and  ℛ2 , 𝜃(1 + 𝜀)𝜇∆≤ |𝑥| ≤ 𝜇ℳ  holds, 

therefore 

�̇� ≤ −𝜆𝑚𝑖𝑛(𝑄)
𝜀

1+𝜀
|𝑥|2 ≤ −

𝜆𝑚𝑖𝑛(𝑄)

𝜆𝑚𝑎𝑥(𝑃)

𝜀

1+𝜀
𝑉 = −𝛼𝑉     (31) 

Similar to the statement in section 3, the upper bound of the 

time that the system states travel from ℛ1  to ℛ2  can be 

estimated as 

𝑇 =
1

𝛼
𝑙𝑛

𝜆𝑚𝑖𝑛(𝑃)ℳ2

𝜆𝑚𝑎𝑥(𝑃)𝜃
2
∆2(1+𝜀)2

    (32) 

and the zooming rate 

 𝛺 = √𝜆𝑚𝑎𝑥(𝑃)𝜃𝛥(1 + 𝜀) √𝜆𝑚𝑖𝑛(𝑃)ℳ⁄       (33) 

Remark 2: Since the initial states of MAS are known, for a 

dynamic quantizer with fixed ℳ (which has to satisfy the 

inequality √𝜆𝑚𝑖𝑛(𝑃) ℳ ≥ √𝜆𝑚𝑎𝑥(𝑃)𝜃∆(1 + 𝜀) ), we can 

choose a suitable 𝜇0  such that the MAS starts in the 

ellipsoid  ℛ1 . Therefore the original open-loop zooming-out 

stage is avoided. 

4.2 Double-integrator agents 

Consider the double-integrator MAS (2), under the controller 

(12), the closed-loop MAS becomes 

�̈� = −ℬ𝑞𝜇(ℬ𝑇𝑥) − ℬ𝑞𝜇(ℬ𝑇𝑣)

= −ℬℬ𝑇𝑥 − ℬℬ𝑇𝑣 − ℬ(𝑞𝜇(ℬ𝑇𝑥) − ℬ𝑇𝑥)

− ℬ(𝑞𝜇(ℬ𝑇𝑣) − ℬ𝑇𝑣)

= −ℒ𝑥 − ℒ𝑣 − ℬ𝑒𝑥 − ℬ𝑒𝑣 
 (34) 

or in matrix form 

[
�̇�
�̇�
] = [

0 𝐼
−ℒ −ℒ

] [
𝑥
𝑣
] − [

0
ℬ

] (𝑒𝑥 + 𝑒𝑣) or �̇� = 𝕃𝑧 − 𝔹𝑒𝑧  (35) 

where the quantization error 𝑒𝑥 = 𝑞𝜇(ℬ𝑇𝑥) − ℬ𝑇𝑥 , 𝑒𝑣 =

𝑞𝜇(ℬ𝑇𝑣) − ℬ𝑇𝑣  and |𝑒𝑥|, |𝑒𝑣| ≤ √𝑀𝜇∆ , 𝑒𝑧 = 𝑒𝑥 + 𝑒𝑣  . As is 

well known, the MAS matrix 𝕃 has two zero eigenvalues and 

all other eigenvalues with negative real parts. Therefore, in 

order to make the dynamic uniform quantization strategy 

presented in Section 3 feasible, we will apply state 

transformation to (35) such that the reduced Laplacian matrix 

𝕃 is Hurwitz. 

Define a new state transformation matrix 𝕋 such that  

 𝑧 = 𝕋𝑧 = [
𝒯 0
0 𝒯

] 𝑧  (36) 

where 𝒯 is defined in Section 4.1. Apply this transformation to 

the MAS (35), a reduced MAS is obtained: 

[�̇�

�̇�
] = [

0 𝐼

−ℒ −ℒ
] [𝑥

𝑣
] − [

0

ℬ
] (𝑒𝑥 + 𝑒𝑣) or �̇� = 𝕃𝑧 − 𝔹𝑒𝑧  (37) 

Lemma 2. 𝕃 has the same eigenvalues as 𝕃 but the two zero 

eigenvalues. 

Proof: Define the nonsingular matrix 
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𝕊 = [
𝒮 0
0 𝒮

]    (38) 

where 𝒮 is define in Section 4.1. The inverse of 𝕊 is 

𝕊−1 = [𝒮
−1 0
0 𝒮−1]  (39) 

Clearly the eigenvalues of 𝕊𝕃𝕊−1  are same as those of 𝕃 .. 

Similar with the proof of Lemma 1, we have 

𝕊𝕃𝕊−1 = [

0 0 𝐼 0
0 0 ⋯ 0

−𝒯ℒ𝒯+ ⋮ −𝒯ℒ𝒯+ ⋮
0 0 ⋯ 0

] = [

0 0 𝐼 0
0 0 ⋯ 0

−ℒ ⋮ −ℒ ⋮
0 0 ⋯ 0

]

 (40) 

The eigenvalues of (39) are the solutions of the characteristic 

polynomial  

 𝑑𝑒𝑡(𝜆𝐼 − 𝕊𝕃𝕊−1) = 𝜆2𝑑𝑒𝑡(𝜆𝐼 − 𝕃) = 0     (41) 

Therefore 𝕃  has the same eigenvalues of 𝕃  but the two zero 

eigenvalue. 

Then the reduced MAS (37) is compatible with the linear 

stable system (16) and the dynamic quantization strategy can 

be applied in MAS. Following the similar procedure in section 

4.1, we can achieve the update interval  

�̿� =
1

�̿�
𝑙𝑛

𝜆𝑚𝑖𝑛(�̿�)ℳ2

𝜆𝑚𝑎𝑥(�̿�)�̿�2∆2(1+𝜀)2
   (42) 

where �̿� = 4‖�̿�𝔹‖√𝑀 𝜆𝑚𝑖𝑛(�̿�)⁄ , and the zooming rate  

�̿� = √𝜆𝑚𝑎𝑥(�̿�)�̿�𝛥(1 + 𝜀) √𝜆𝑚𝑖𝑛(�̿�)ℳ⁄       (43) 

5. SIMULATION RESULTS 

The single-integrator and double-integrator MAS with graph 

𝒢  shown in Fig. 1 are considered. Then the initial zooming 

variable 𝜇0  of the dynamic quantizer (6) with ∆= 0.5  is 

chosen such that the initial conditions after transformation lie 

in ellipsoid ℛ1. The calculation of the zooming rate 𝛺 and the 

update interval 𝑇 is direct from (32), (33), (42), and (43). 

 

Fig. 1. Communication graph 𝒢 

5.1 Single-integrator MAS 

According to the communication graph in Fig. 1, the incidence 

matrix, the Laplacian matrix and its eigenvalues 

𝐵 = [

1 1 1 0
−1 0 0 0
0 −1 0 1
0 0 −1 −1

], ℬ = 𝒯ℬ = [
2 1 1 1
1 0 −1 1
1 −1 0 2

] 

ℒ = [

3 −1 −1 −1
−1 1 0 0
−1 0 2 −1
−1 0 −1 2

], 𝜆1 = 0, 𝜆2 = 1, 𝜆3 = 3, 𝜆4 = 4 

and the reduced Laplacian matrix and its eigenvalues: 

ℒ = [
4 −1 0
0 1 1
0 0 3

], 𝜆1 = 4, 𝜆2 = 1, 𝜆3 = 3 

We observe that the eigenvalue 𝜆1 = 0 is eliminated and other 

eigenvalues are preserved after the transformation, and −ℒ is 

Hurwitz.  

  

 

                        (a)                                              (b) 

Fig. 2. Quantized consensus of single-integrator MAS  (a) 

original Liberzon’s approach, (b) the improved approach  

and 𝜆𝑚𝑎𝑥(𝑃) = 4.39 , 𝜆𝑚𝑖𝑛(𝑃) = 0.94,  𝜆𝑚𝑖𝑛(𝑄) = 7.65. 

𝜃 = 2‖𝑃ℬ‖√𝑀 𝜆𝑚𝑖𝑛(𝑄)⁄ = 3.07 

Under first-order dynamics with initial condition  𝑥(0) =
[2 4 − 6 1]T , and the quantization level  ℳ = 15 , which 

together with 𝜀 = 1, satisfies the inequality (19). In order to 

ensure the transformed initial condition lies in the ellipsoid ℛ1, 

that is   , 𝑥
𝑇
(0)𝑃𝑥(0) ≤ 𝜆𝑚𝑖𝑛(𝑃)ℳ2𝜇0

2 , 𝜇0  must be larger 

than 0.87, so is chosen to be 1. The resulted zooming interval 

of the scheme proposed in this paper is 𝑇 =
1

𝛼
𝑙𝑛 (𝜆𝑚𝑖𝑛(𝑃)ℳ2 (𝜆𝑚𝑎𝑥(𝑃)𝜃

2
∆2(1 + 𝜀)2)⁄ ) = 1.87s, much 

smaller than 4.70 seconds, that of Liberzon’s original approach. 

As a result, the convergence is faster. 

5.2 Double-integrator MAS 

The transformed system matrix 

𝕃 = [
0 𝐼

−ℒ −ℒ
] =

[
 
 
 
 
 

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−4 1 0 −4 1 0
0 −1 −1 0 −1 −1
0 0 −3 0 0 −3]

 
 
 
 
 

 

Use LMI to calculate matrix �̿� and �̿�, 

𝜆𝑚𝑎𝑥(�̿�) = 7.13 , 𝜆𝑚𝑖𝑛(�̿�) = 0.48, 
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�̿� = 3.51𝐼6×6, 𝜆𝑚𝑖𝑛(�̿�) = 3.51 

�̿� = 13.25 

 

 

                        (a)                                              (b) 

Fig. 3. Quantized consensus of double-integrator MAS  (a) 

original Liberzon’s approach, (b) the improved approach 

Under second-order dynamics with initial condition  x(0) =
[0 5 6 − 9]T , v(0) = [2 4 − 6 1]T  and  ℳ = 255 , which, 

when we have chosen  𝜀 = 3 , is larger than its smallest 

available value  101.8 . A value of  𝜇0  larger than  0.27  will 

satisfy the requirement of the initial values, for simplicity we 

still let μ0 = 1. Follow a process similar to that of first-order 

MAS, we obtain the zoom-in interval  �̿� = 4.98  seconds, 

much smaller than 14.32 seconds of the present method. 

6. CONCLUSIONS 

In this paper we propose a method to make single-integrator 

and double-integrator MASs compatible with Liberzon’s 

dynamic quantizer design approach using system model 

transformation. Asymptotic average consensus is reached with 

finite quantization level and communication effort. We also 

improve the zooming frequency of the existing approach by 

closer estimating the convergence rate, resulting in faster 

consensus. 
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