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Abstract: Probabilistic and set-based methods are two approaches for model (in)validation,
parameter and state estimation. Both classes of methods use different types of data, i.e.
deterministic or probabilistic data, which allow different statements and applications. Ideally,
however, all available data should be used in estimation and model invalidation methods. This
paper presents an estimation and model (in)validation framework combining set-based and
probabilistically uncertain data for polynomial continuous-time systems. In particular, uncertain
data on the moments and the support are used without the need to make assumptions on
the type of probability densities. The paper derives outer approximations of the moments
of the probability densities associated with the states and parameters of the system. These
approximations can be interpreted as guaranteed confidence intervals for the moment estimates.
Furthermore, guaranteed bounds on the probability masses on subsets are derived and allow
an estimation of the unknown probability densities. To calculate the estimates, the dynamics
of the probability densities of the state trajectories are found by occupation measures of the
nonlinear dynamics. This allows the construction of an infinite-dimensional linear program which
incorporates the set- and moment-based data. This linear program is relaxed by a hierarchy of
LMI problems providing, as shown elsewhere, an almost uniformly convergent sequence of outer
approximations of the estimated sets. The approach is demonstrated for numerical examples.

Keywords: Probabilistic methods; set-based methods; parameter estimation; model
invalidation; LMIs; convex relaxations; occupation measures.

1. INTRODUCTION

State and parameter estimation as well as model
(in)validation are frequently used in many applications
with different requirements. The determination of the
set of all parameters consistent with measurements or
proving nonexistence of consistent parameters allows for
guaranteed model invalidation e.g. in fault detection and
isolation (Savchenko et al., 2011). For processes such as
crystallization (Marchisio, 2007) or cell populations (Zhu
et al., 2000), however, not only the estimation of consistent
parameters, but also the estimation of probability densities
is important. Uncertain estimates of the moments of a
probability densities can often be determined based on
samples e.g. from a number of similar experiments (see
references in (Delage and Ye, 2010)).

The different applications require different kind of data,
i.e. probabilistic or deterministic. Set-based estimation
approaches employing a bounded-error uncertainty de-
scription provide guaranteed yes/no answers on model
invalidity and outer or inner approximations of consistent
parameter sets. Typically, probability densities and data
are not used in set-based estimation approaches and only
the supports of the uncertain variables are considered.
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Probabilistic estimation methods take data on the mo-
ments of probability densities into account and allow the
estimation of probability densities and therefore proba-
bilistic statements on model validity.

Ideally, an estimation method should take into account
all available information and associated uncertainties, i.e.
both deterministic and probabilistic uncertainties. How-
ever, such methods are rare.

This work presents initial steps toward a combination of
set- and moment-based data into a consistent framework
for estimation and model (in)validation of nonlinear (poly-
nomial), continuous-time systems. The initial setup of the
presented framework is set-based and has been used in
(Streif et al., 2013) for the estimation of consistent param-
eter sets and model invalidation. In this work, the frame-
work is extended such that probabilistic, moment and set-
based uncertainties and data can be considered. To reach
these goals, the time evolution of the moments is modeled
via the Liouville equation. This equation reformulates non-
linear ordinary differential equation (ODE), with the help
of occupation measures, into a linear partial differential
equation to describe the time evolution of the density of
the solution of the ODE. From this reformulation, con-
verging hierarchies of LMI problems are derived (Henrion
and Korda, 2012; Streif et al., 2013; Lasserre et al., 2008),
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allowing for, as shown here, the outer approximation of the
moments and of the support of the probability densities
of the parameters, initial conditions or state trajectories
pointwise-in-time. In particular it is not necessary to make
explicit assumptions on the underlying probability density
or to perform numerical integration or approximation by
discrete-time models. Furthermore, bounds on the proba-
bility mass on a subset can be given, which can be used to
approximate the shape of the probability densities of the
parameters or for probabilistic model validation.

To the best of our knowledge, the presented framework
has not been considered in this context before. However,
numerous other methods addressing similar problems exist
in the literature and several of them will be reviewed
briefly below. Due to space limitations, an exhaustive
literature review is beyond the scope of this paper.

Several methods for set-based estimation and model inval-
idation exist, such as set-membership methods (Milanese
and Vicino, 1991), relaxation based approaches (Streif
et al., 2013; Cerone et al., 2012) (and references therein),
robust and H., control (e.g. (Zhou et al., 1995; Smith and
Doyle, 1992) and references therein). Funnels for consistent
state trajectories (but not moments) were proposed in
(Tobenkin et al., 2011). Barrier certificates approaches
using sum-of-squares restrictions (Prajna, 2006) are sim-
ilar to the LMI approach proposed in this work. To the
best of our knowledge, however, the existence of barrier
certificates is not guaranteed. The work by Dabbene et al.
(2012a,b) does not explicitly consider dynamical systems,
but it provide methods and randomized and deterministic
algorithms to use statistical assumptions within set-based
estimation. By this, the set-based estimates can be im-
proved at the expense of an allowed probabilistic risk.

Uncertainties in the data, including data on the moments,
have been considered in robust optimization, see (Delage
and Ye, 2010; Natarajan et al., 2009). Bounds on moments
using convex optimization and LMIs have also been pre-
sented by (Vandenberghe and Boyd, 1999; Bertsimas and
Caramanis, 2006; Bertsimas and Sethuraman, 2000).

An approach to probabilistic model (in)validation using
probability metrics has been presented by (Halder and
Bhattacharya, 2012, 2011). As in the work presented here,
Liouville’s equation is used to propagate the uncertain-
ties. However, convex relaxations allowing for the outer
approximations of moments were not considered.

Many probabilistic estimation methods require (implicitly
or explicitly) assumptions on the type of probability densi-
ties of the estimates. Parameter and state estimation from
a system identification perspective (Ljung, 1999) aims at
validations through a statistical correlation analysis of
the residuals. Randomized algorithms employ randomness
in the simulation of particles and use a Bayes approach
for estimation. Well-known techniques are Markov-Chain-
Monte-Carlo approaches and particle filters for optimal
and suboptimal Bayesian algorithms for nonlinear/non-
Gaussian tracking problems (Arulampalam et al., 2002).

Polynomial Chaos has been used for parameter estimation
and model discrimination (Ghanem et al., 2008; Streif
et al., 2014), but usually requires knowledge of the proba-
bility densities of the uncertainties.
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Singh and Hespanha (2011) consider the stochastic dy-
namics of the state variables and the state density is mod-
eled via its moments and they provide an approximation
for moment closure.

The remainder of this contribution is structured as follows.
Sec. 2 defines the dynamical model and the constraints and
uncertainties imposed by the probabilistic and set-based
measurements, and it states the considered problems.
Sec. 3 formally introduces the framework of occupation
measures and derives outer approximations of pointwise-
in-time moments. Those outer approximations define the
imprecision or confidence in the moment estimates. Fur-
thermore, lower and upper bounds on the probability mass
on a subset are derived. Small examples are used in Sec. 3
for illustrations. A discussion and outlook is given in Sec. 4.

Notation. n, denotes the dimension of a vector x. Sub-
scripts of vectors denote row and column elements. Sets
and function spaces are denoted by capital, calligraphic
letters. M(A) denotes the set of finite Borel measures
supported on the set A, which can be interpreted as
elements of the dual space C(A)’, i.e. as bounded linear
functionals acting on the set of continuous functions C(A).
P(A) denotes the set of probability measures on A, i.e.
those measures p of M(A) which are nonnegative and
normalized to u(A) = 1. The m'™ moment (m € N)
of u(z) € P(X) supported on the set X is denoted by
vM(z) = [,a2™u(dz). All moments up to degree d
are denoted by (=9, F(i’\) = [pu(dr) < 1 denotes

the probability mass on a set X C X. Pointwise-in-time
probability measures are denoted by p(dz), and their mo-

ments by u,(cm). Occupation measures on the time-interval
[tk tk+1] are denoted by pg x+1(dt, dz), and their moments

by Vl(ﬂizlrl )

2. PROBLEM SETUP
2.1 Dynamical System

Consider continuous-time, nonlinear systems of the form

@(t) = f(z(¥), «(0) =0 (1)
The states and initial conditions are denoted by = € R"»
and xyp € R, respectively. Time is denoted by t and is
restricted to the interval [0, 1], which can be achieved by
a suitable time-scaling of the dynamics.

We assume the vector fields f to be polynomial maps.
Time-invariant variables, i.e. parameters, can be ac-
counted for in (1) by states with trivial dynamics ¢; = 0
for some i € {1,...,n,}. Note that we do not explicitly
consider output maps.

We assume set-based and moment-based uncertainty de-
scriptions of the variables, i.e. parameters, initial condi-
tions and measurements. With these data and using the
nonlinear continuous-time model (1), outer approxima-
tions of the consistent moments and the support of the
variables are estimated pointwise-in-time.

2.2 Uncertainty Descriptions

The set-based uncertainties define the support of the vari-
ables, whereas the moment-based probabilistic uncertain-
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ties constrain the probability measures. We assume that
set-based uncertainties on the variables z(t) at time ¢, are
given by m, polynomial inequalities:

X = {a(ty): gi(z(ty) >0,i=1,...,my} CR™. (2)
Eq. (2) can be used to represent constraints on the initial
conditions z (including the parameters) and measure-
ments of states (or polynomial combinations thereof) at
time points tx, k= 1,...,my.

In a similar manner to (2), we define a set X such that
x(t) € X C R™,Vt € [0,1] and such that &}, C X.

Constraints on the moments (up to order d) of the proba-
bility measure p at time t; are given by m, polynomial
inequalities:

./\/lk::{y,(fd) : hi(yl(cgd)) >0,i=1,.. .,m,,} CR™. (3)
As above for the set-based uncertainties, Eq. (3) can be
used to represent constraints on the moments of the initial

conditions zg (including the parameters), the states or the
measurements pointwise-in-time.

2.3 Problem Statement

For general purposes, we define the following consistency
set using the nonlinear dynamics (1), the set-based (2) and
the probabilistic uncertainties (3):

Definition 1 (Consistency set): The set of consistent

values of x(tx) and V,ggd)

Cr = { (@(tr), v=) 3 (2(t), ult, (t))) Vi € [0,1]
such that  x(t;) € X;,1=0,...,my,
yl(gd) e M;,l=0,...,my, and

x(t):l'()-’-/otf(x(T))dT € X vte|0,1],

at time-point ty is given by:

and

bR, "

In particular, the set of consistent initial conditions is

given by the orthogonal projection of C; onto zg, i.e.

Loy C5. Furthermore, the consistent pointwise-in-time

moments of x(tx) are given by the projection L (<a) Cj.
k

Based on Def. 1, we state the problems considered in this
paper. See also Fig. 1 for illustrations.

The first problem aims to estimate the consistent sets
of moments of the parameters and states based on the
measurement data and uncertainties (2)—(3) under con-
sideration of the dynamics (1).

Problem 1 (Pointwise-in-time estimation of mo-
ments): Find consistent moments of the initial conditions
(including parameters) C§, and consistent moments of the
states Cf, t, € [0,1].

Due to the possible uncertainties in the data, the results
are sets of consistent moments, where the size of the set
reflects the confidence of the moment estimates. Note that
the pointwise-in-time estimation of the consistent sets of
the initial conditions and parameters has been treated in
(Streif et al., 2013); however, without probabilistic data or
moment constraints.

Set-based approaches can be used to provide model in-
validity certificates, i.e. yes/no answers whether a model
is invalid or not. In case a model is valid, i.e. there exist
consistent parameter values, then it is often of interest to
quantify probabilistic model validity which is related to the
shape of probability density (Halder and Bhattacharya,
2011, 2012). We therefore consider the following problem:

Problem 2 (Estimation of probability measure):
Determine lower and upper bounds (F and F) on the
probability mass F over the set Xy C Ap.

Prob. 2 allows probabilistic model validation under con-
sideration of set-based and moment-based measurement
data: if F' is small, then the (cumulative) probability

over the subset X, for the constraints (2) and (3) to be
satisfied is small. The comparison of the probability mass
of different subsets &p 1, ..., Xy, m, then allows quantifying
the likeliness that a random parameter sample from this
set satisfies the moment- and set-based constraints. The
subset X could be obtained from a partitioning of the
set Xy as shown in Fig. 1. Furthermore, it allows the
approximation of the probability density, cf. Fig. 1.

Note that Prob. 2 is similar to Prob. 1 in the sense that
bounds on the 0f"-order moment (i.e., the probability
mass) are derived. In Prob. 2, however, the estimation is
performed for a given subset.

In Prob. 1 and 2, the estimates are difficult to determine
due to the nonlinear dynamics. In the next section, we use
occupation measures and convex relaxations to account for
the time-continuous dynamics and allowing for an efficient
computation of outer approximations of the estimates.

Note that in this work, we make the following assumption:

Assumption 1 (Bounded support): The probability
measure w(t,x) is supported on [0,1] x X, i.e.
p(t,z) € P([0,1] x X).

3. OUTER APPROXIMATION OF MOMENTS AND
ESTIMATION OF PROBABILITY MASS

In the first subsection an intuitive and condensed ex-
planation of the method and concepts of the underlying
mathematical framework is presented. All mathematical
details and proofs are found in (Henrion and Korda, 2012;
Streif et al., 2013; Lasserre et al., 2008) and in the refer-
ences therein. In the next subsections, Prob. 1 and 2 are
addressed and illustrated for simple examples.

3.1 Constrained Uncertainty Propagation in Nonlinear
Continuous-time Systems

The approach can be summarized as follows. The original
deterministic nonlinear dynamics, given by (1), is refor-
mulated in the space of nonnegative measures. To do so,
so-called occupation measures (i 1(dt, dz) are introduced.
These probability measures encode the nonlinear dynamics
on the time interval [0, 1] and allow the consideration of un-
certainties by averaging over space and time, thereby elim-
inating the nonlinear expressions. Furthermore, they are
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Fig. 1. Illustration of notation, the problems and the ap-
proach. In the lower part of the figure, the pointwise-
in-time probability densities pp (and their support
Xx) are shown by the light-gray shaded areas at g,
k = 0,1, 2. The dotted line shows a sample trajectory
starting at zo and ending at x(t2), and the dark gray
shaded area shows the set of possible trajectories.
In the upper part, the lower bounds F and upper
boundb F on the probability mass over the subsets

XO 1y - Xoﬁ C Ay are shown by the gray boxes.

linked by pointwise-in-time probability measures po(dx)
(at t=0) and p;(dx) (at t=1) via Liouville’s equation:

/ / (6t (t,2) + Vau(t, x)f(fv)) p10,1(dt, dz)
:/Xv(l,x)ul(dx)—/){v(ovx)uo(dx) )

which allows deriving linear constraints as shown below.
Here, Liouville’s equation is written in its variational form,
for all monomials v(t,z) = t*z”. Note that the monomials
are a dense basis for the set of continuous functions
on compact sets. Liouville’s equation is a linear partial
differential equation which accounts for the time-evolution
of probability measures ruled by the nonlinear continuous-
time dynamics. Note that if the initial conditions are
certain (i.e. points for fixed ¢ and hence a Dirac probability
distribution), Liouville’s equation describes the evolution
of the test function v(¢,x) along the trajectory.

This reformulation in terms of occupation measures results
in a system of a finite number of linear constraints in an
infinite-dimensional space, which links all the moments

1/(()010) of the occupation measures p 1(dt, dz) and the mo-

ments 1/( *) of the measures wi(dz) (j =0,1), respectively.

In case of the probability measure o (dz), the moments are
related to the test functions v(¢, x) by

y(()m) ::/ ™ uo(dz) with wo(t,z) =t%2™,  (6)
X

and similar for the other probability measures. Let us
denote the resulting infinite-dimensional linear system of

equations by A(uO 1 ,V(()OO), foo)) = b. The obtained set
of equations can be extended by equations constraining
the support of the probability measures (cf. set-based
uncertainties (2)), and by enforcing constraints on the
moments of the probability measures thereby including
data on the moments (cf. probabilistic uncertainties (3)).
For a measure to be supported on a semi-algebraic set,

the inﬁnite dimensional vectors of moments uéoo)7 Vgoo)

and v 1) have to fulfill necessary and sufficient conditions.
These are formulated by infinite-dimensional convex linear
matrix inequalities (LMI) called moment matrices that we
express by M (Véoo)) = 0 to guarantee positivity of the
measures. Furthermore, the matrices necessary to account
for the support are called localizing matrices and are

denoted by L (gluéoo)) = 0, where the g; are polynomials.
The matrices M are symmetric, square matrices whose
rows and columns are indexed by the monomials v(t, z)
(cf. Eq. (6)). The matrices L are similar to M, but their

elements are additionally multiplied by the polynomial g;.

The resulting infinite-dimensional decision problem can
be solved by a converging hierarchy of semidefinite re-
laxations or sum-of-squares restrictions. This then allows
determining an outer approximation of the moments and
initial conditions (cf. Prob. 1 and 2). If we truncate the
infinite sequence of moments to moments of degree up to
d, we obtain a finite-dimensional linear system of equations

denoted by A(I/(()<1d)7 égd), ufgd)) = b, as well as truncated
(Sd)) > 0 and

finite-dimensional LMI constraints M (v,

<d

L(glué gl)) = 0, where dg, == d—degr(g;). Note that these
constraints are necessary for the corresponding measures
to be supported on a semi-algebraic set. By construc-

tion, minimization (resp. maximization) of an entry of the

(<d) (<d)

vectors 1=~ or v;= ~ on the resulting finite-dimensional
convex Set yields a valid lower (resp. upper) bound on the
corresponding moment. When increasing the truncation
degree d (also called relaxation order), we obtain a mono-
tonically nondecreasing (resp. nonincreasing) sequence of
lower (resp. upper) bounds that converge to the exact
value of the moment consistent with the uncertain set-
based and moment-based measurement data.

To address Prob. 1 and 2 and to recover local, non-
averaged information in time and space, a discretization
is needed, which still allows guaranteed outer approxima-
tions. This is explained in the following subsections.

8.2 Estimation of Moments Pointwise-in-time

As in (Streif et al., 2013) we split the global occupa-
tion measure time-wise into local occupation measures
Wi k+1(dx) corresponding to time intervals [tg,tg+1], k =

0,1,...,m; — 1. For the upper bound on a moment v €
{uégd), ce 7(n<td)} this then gives the following moment

relaxation of order d:
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maximize v

subject to A(V,Sk(ﬁl, I/](ng)7 V,if?) = bk k+1,

k:O,...,mtfl,
M(vS0) =0k =0, omy 1,

M(V]ggd) toak:()?"'amh

L(Qiyl(cgdw) =0,1=0,...mg,

k:O,.. s My,

L<hil/;(€§d,“)) =0,i=0,...m,,

k:O,.. s My,

(7)
where ¢g;, t = 1,...,m,; and h;, © = 1,...,m, are poly-
nomials from (2) and (3), respectively. The matrices M
and L are the truncated moment and localizing matrices,
respectively, depending linearly on moment vectors of the
respective degrees.

Example 1.  Consider the following bilinear example
T] = —T1T2 (8a)

with certain, fixed initial conditions x1(0) = 0.5 (repre-
sented by a Dirac probability measure), and probabilis-
tically uncertain parameter xo uniformly distributed on
[0,1]. This example was chosen because an analytic solu-
tion is available which allows an easy comparison with the
computational results. The analytic solution is:

x1(t) = x1(tg) exp(—xat), (9a)
/0 a(0) = m(0) 2D o)
v (21(0) = (10O (g

We estimated the moments pointwise-in-time at t =
0,0.1,...,1.0. The results are presented in Fig. 2 and
compared with the analytic solution (9). As can be seen,
the moment estimates are very tight already for small
relaxation orders.

3.8 Estimation of Probability Mass

This section addresses Prob. 2, which is approached similar
as the pointwise-in-time estimations of the moments. How-
ever, instead of splitting the occupation measure in time,
the measure of interest (e.g. the initial measure pg) is split
in space, which gives different measures supported on the
different subdomains and which are linked by Liouville’s
equation. To estimate the lower and upper bounds on the
probability masses over the subdomains, the 0" moment
of the corresponding measure is minimized and maximized,
respectively. The resulting problem can be relaxed as
shown above (cf. Eq. (7)). The results are illustrated in
the following example.

Ezxample 2.  Consider the example

iy = a8 + z120 (10a)
By = —x5 — xyw0w3 + 1 (10b)
ig = 0. (10¢c)

The initial condition of zo was assumed fixed (z2(0) =
0.5), and the initial condition of x; and of parameter

0.25

— 02

EH

S

” 0.15
0.1 j
0 02 04 06 08 1

time
Fig. 2. Estimation of moments for example 1. The
pointwise-in-time estimates of the second moment
v®) of z5(t) and the comparison with the analytic
solution (black lines) for relaxation order d = 3 are
shown. The green and red lines correspond to the
lower and upper bound, respectively. The pointwise-
in-time estimates were connected by lines to guide the
eye. Estimates for the first moment are not shown but
the estimates are even tighter.

x3 were assumed to be distributed according to Beta
distributions (see Fig. 3b):

x1(0) ~ Beta(20, 15),

x3(0) ~ Beta(5,2).
Using these distributions we determined the first four raw
moments of the first two states at t; = 0.5 from 10,000
Monte Carlo simulations and by considering an uncer-

tainty of 1% for the moments. The moments determined
from the samples were:

VS (21(0.5)) = [ 0.6416 0.4156 0.2716 0.1790 |7,
V(S (25(0.5)) = [ 0.6848 0.4695 0.3222 0.2214 ]".

We then partitioned the set [0,1] x [0, 1] into squares of
length 1/15 and determined the lower and upper bound
on the probability masses on the subsets. The upper
bounds are shown in Fig. 3(a), whereas Fig. 3(b) shows the
probabiliy mass of the original distributions. The results
demonstrate that the shape of the probability measure as
well as the location of its peak can be approximated using
the proposed approach.

4. CONCLUSION

This work proposes a combination of set-based and proba-
bilistic uncertainties for the estimation of the support and
the moments pointwise-in-time. In addition, an approach
is presented to estimate the probability masses over a
subset, which then can be used to approximate the under-
lying probability distribution and to provide statements
on probabilistic model validity.

The work provides several directions for future research.
For safety and estimation purposes, it might be required
to have explicitly time-dependent outer approximations or
funnels of the moment and state trajectories. Another im-
portant line of research is the consideration of time-varying
disturbances. Both extensions are beyond the scope of
this article, but interesting future research direction with
possible applications for optimal control and estimation of
systems governed by stochastic differential equations.
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Fig. 3. Upper bounds on the probability mass on box-
shaped subsets. (a) Upper bounds determined using
the proposed approach for relaxation order d = 3.
(b) Upper bounds determined from the Monte-Carlo
simulations that were used for the generation of the
data.
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