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Abstract: In this study, adaptive neuro-fuzzy inference system (ANFIS) was applied to estimate
the parameters of a coagulation chemical dosing unit for water treatment plants. The dosing
unit has three input variables (sudfloc 3835, ferric chloride and hydrated lime flow rates)
and two output variables (surface charge and pH values). The ANFIS model is compared
with multilayer backpropagation network (MBPN) with four different training algorithms for
performance evaluation purpose. The results of evaluation tests using the average percentage
error (APE), root mean squared error (RMSE), correlation coefficient (R) and average relative
variance (ARV) criteria show that ANFIS is the most efficient and reliable estimator when the
models were presented with noiseless and noisy input datasets.

1. INTRODUCTION

Coagulation in water treatment plants is a chemical and
physical process that take place when coagulating chemi-
cals are added to raw waters in a rapid mixing tank. The
main objective is to aggregate micro-organisms, suspended
and dissolved particles to form substances large enough
to be separated by filtration or other related processes.
Proper coagulation occurs when the quantity of coagula-
tion chemicals added to the influent water streams is opti-
mized. Thus, control of coagulation process is an essential
aspect of water treatment operations that determine the
overall success or failure of the portable water production
[American Water Works Association & American Society
of Civil Engineers , 2005].

Empirical modelling methods in the drinking water coag-
ulation process have been discussed in the literature in
the last few decades. Generally, researchers used linear re-
gression, artificial neural networks, data mining and fuzzy
inference systems to predict optimum coagulant dosages
required for water treatment process. In one of the related
studies, Baxter et al. [2002] developed a three-layer back-
propagation network to predict the amount of alum dosage
required to produce the desired quality of effluent water. In
Wu & Lo [2008], the authors applied empirical modelling
to polyaluminum chlorine dosage system by developing
and comparing the performances of multilayer neural net-
works and adaptive neuro-fuzzy inference systems. Song et
al. [2009] proposed a three-layer backpropagation model
based on Levernberg-Marquard algorithm to predict the
optimum coagulant dosage for water treatment plants.
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These previous studies were focussed on modelling coagu-
lant dosage-water quality parameters relationships. The
models were developed to work with feed-forward con-
trol of coagulation process in the water treatment plants.
However, they do not support development of feedback
or multivariable control strategies that are necessary for
correction of deviations from the system set points. In
this study, fuzzy inference system is proposed to model
the coagulation chemical dosing unit for water treatment
plants. In particular, adaptive neuro-fuzzy inference sys-
tem (ANFIS) was employed to model the unit. ANFIS has
been reported to integrate the merits of artificial neural
networks and fuzzy inference system into a single model.
It has the ability to learn complex functional relationship
between input and output dataset and accommodate hid-
den imprecision in the dataset and make accurate mapping
accordingly. Thus, the preference for ANFIS over other
empirical modelling techniques could be attributed to its
fast computation and prediction performance abilities to
describe the nonlinear characteristics of a system [Lohani
et al, 2006, Zounemat-Kermani & Teshnehlab et al., 2008,
Pai et al., 2009, Xiaojie et al., 2011].

Rietvlei water treatment plant in the City of Tshwane,
South Africa was selected for the study. Historical data
for a period of two years was collected from the plant. The
performance evaluation of the ANFIS modelling technique
was performed and compared with four variants of multi-
layer backpropagation network (MBPN) using statistical
methods. This paper therefore demonstrates the suitabil-
ity of fuzzy inference system for modelling a non-linear
system such as coagulation chemical dosing unit of water
treatment plants.

The paper is organised as follows. A brief description of
the water treatment plant, coagulation chemical dosing
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Fig. 1. Coagulation chemical dosing unit of Rietvlei water
treatment plant

unit and fuzzy inference system are discussed in Section 2.
Simulation results, discussions and performance evaluation
of the model estimators are presented in Section 3. Finally,
the concluding remarks are given in Section 4.

2. METHODS/MATERIALS

2.1 Water treatment process description at the Rietvlei
water treatment plant

Rietvlei water treatment plant in the City of Tshwane,
South Africa has a production capacity of about 40 million
litres per day. The plant draws raw waters from Rietvlei
dam located about 200 m away from it.

Fig. 1 illustrates the coagulation chemical dosing unit at
the Rietvlei water treatment plant. It contains a concrete
mixing tank with inlet and outlet channels. Sudfloc 3835, a
blend of epichlorohydrin/dimethylamine (polyamine) and
aluminium chlorohydrate [NSF, 2013] and ferric chloride
solution are fed into the mixing tank as the coagulation
chemicals. Calcium hydroxide (hydrated lime) in slurry
form is also added to the mixing tank using a diaphragm
pump to stabilise the water and adjust its pH value
between 8.1 and 8.3.

The chemically treated waters flow out slowly and evenly
through a series of baffled or flocculation channels, Dis-
solved Air Floatation/Filtration (DAFF) unit, Granular
Activated Carbon (GAC) filtration unit and chlorination
chamber before they are pumped to the storage reservoirs
and distributed to final consumers [City of Tshwane, S.a].

2.2 Data Collection and Analysis

Historical data was collected from the plant for a period
of two-year (2011-2012). A total of 690 data samples were
successfully obtained from the daily operating records of
the plant. The collected data were the flow rate of sudfloc
3835 solution (qa), flow rate of ferric chloride solution
(qb), flow rate of hydrated lime (qc) and the pH value of
the effluent stream from the coagulation chemical dosing
unit of the plant. The other variable of interest is the
surface charge or streaming current of the treated water
leaving the chemical dosing. It is an important variable for
the implementation of multivariable or feedback control
strategy for coagulation process in a water treatment
plant [Evangelou, 1998, Adgar et al., 2005, Bello et al.,
2013]. This was not measured presently at plant but was

Fig. 2. Normalised input datasets for the models

Fig. 3. Normalised output datasets for the model

computed using (1). Figs. 2 and 3 show the normalised
data set used for modelling the coagulation chemical
dosing unit.

σ =

[(
2

π

)
nεκT

] 1
2

sinh 1.15 (pH0 − pH) (1)

where σ surface charge, κ Boltzman constant, T temper-
ature, ε relative dielectic permitivity, pHo pH at point of
zero charge and n ionic strength.

2.3 Adaptive Neuro-Fuzzy Inference System

Adaptive neuro-fuzzy inference system combines the fuzzy
inference system into the framework of multilayer feed for-
ward neural network. The general structure of the ANFIS
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is shown Fig. 4. The parameters associated with the input
and the output membership functions are adjusted using
gradient descent or hybrid algorithms. Consider a fuzzy
inference system (FIS) with three inputs x1, x2, x3 and one
output f . For the first order Takagi-Sugeno fuzzy model,
the fuzzy if-then rules are expressed as:

Rule 1: If x1 is A1 and x2 is B1 and x3 is C1, then
f1 = p1x1 + q1x2 + r1x3 + s1

Rule 2: If x1 is A2 and x2 is B2 and x3 is C2, then
f2 = p2x1 + q2x2 + r2x3 + s2

where A1, A2, and B1, B2 and C1, C2 are the membership
functions for inputs x1, x2 and x3 respectively; p1, q1, r1,
s1 and p2, q2, r2, s2 are the parameters of the output
membership functions.

Layer 1: Each node in this layer generates membership
grade of an input variable. The node output OP l

i is defined
by:

OP l
i = µAi

(x1) for i = 1, 2 or

OP l
i = µBi−2 (x2) for i = 3, 4 or

OP l
i = µCi−4

(x3) for i = 5, 6 (2)

where x1 (x2 or x3) is the node input, Ai (Bi−2 or Ci−4) is
the fuzzy set associated with this node, characterised by
the shape of the membership functions in the node.
The membership function can be any of these functions:
Gaussian; generalised bell shaped; trapezoidal shaped and
triangular shaped functions. For a membership function
that is a generalised bell function, the output of the node
is obtained as:

OP l
i = µAi

(x) =
1

1 + (x− ci/ai)2bi
(3)

where {ai, bi, ci} is the parameter set of the membership
function with values in [0,1] interval.

Layer 2: Every node labelled as Π, in this layer multiplies
all the incoming signals from the first layer. The output
that represents the firing strength of a rule is expressed as:

OP 2
i = wi = µAi

(x1)µBi
(x2)µCi

(x3) , i = 1, 2, 3. (4)

Layer 3: The ith node of this layer, labelled as N , computes
the normalised firing strengths as:

OP 3
i = wi =

wi

w1 + w2 + w3
(5)

where i = 1,2,3.

Layer 4: Node i in this layer computes the contribution of
the i th rule towards the model output, with the following
node function:

OP 4
i = wifi = wi (pix1 + qix2 + rix3 + si) (6)

where wi is the output of layer 3 and {pi, qi, ri, si} is the
parameter set.

Layer 5: The single node in the layer calculates the output
of the ANFIS as:

Fig. 4. ANFIS Architecture

OP 5
i =

∑
i

wifi =

∑
i wifi∑
i wi

(7)

The overall output of the ANFIS architecture shown in
Fig. 4 can be expressed as a linear combination of the
consequent parameters:

f =
w1

w1 + w2 + w3
f1 +

w2

w1 + w2 + w3
f2 +

w3

w1 + w2 + w3
f3

= w1f1 + w2f2 + w3f3

= (w1x1) p1 + (w1x2) q1 + (w1x3) r1 + (w1) s1

+ (w2x1) p2 + (w2x2) q2 + (w2x3) r2 + (w2) s2

+ (w3x1) p3 + (w3x2) q3 + (w3x3) r3 + (w3) s3 (8)

Assuming the set of total parameters (T ) can be sepa-
rated into two such that T1 denotes a set of antecedent
parameters ai, bi, ci and T2 denotes the set of consequent
parameters {pi, qi, ri, si}. These parameters are adjusted
using the hybrid learning algorithm, a combination of gra-
dient descent and least-squares methods. The algorithm
has forward and backward passes to identify or search
for the optimal parameters of the ANFIS. In the forward
pass, the consequent parameters are estimated by the least
squares method. However, in the backward pass, the error
rates propagate backward and the antecedent parameters
are updated by the gradient descent method [Jang, 1993,
Zounemat-Kermani & Teshnehlab et al., 2008].

2.4 Multilayer Backpropagation Network

Multilayer backpropagation networks (MBPN) are feed-
forward and static neural networks, made up of neurons
(processing elements) and connections. They are arranged
in three or more layers as follows: an input layer, hidden
layer(s) and output layer[Yegnanarayana, 2005]. The lay-
ers in the network can use any combination of these non-
linear functions: log-sigmoid; tan-sigmoid and pure linear.
The training of neural network involves presenting a set
of input-output data to it. The weights and biases of the
network are iteratively adjusted to minimize the average
squared error between the network outputs and actual
outputs. Different training algorithms for multilayer neural
networks have been developed. Nearly all these algorithms
determine how to adjust the weights by using the gradient
of the performance function. Back propagation training
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Fig. 5. Multilayer backpropagation network architecture

algorithm is a common technique to adjust the weight of
multilayer neural network and minimise the performance
function. There are several variants of this algorithm that
have been discussed in the literature from low perfor-
mance to high performance algorithms and heuristic to
numerical optimization techniques. These several varia-
tions include: resilient backpropagation, conjugate gra-
dient descent, Quasi-Newton and Levenberg-Marquardt
algorithms[Hagan et al., 1996, Yegnanarayana, 2005].

Fig. 5 shows the architecture of a typical MBPN applied
for this study.

The output of the MBPN is expressed as:

a
′

= f
′
(

IW p+ b
′
)

(9)

a
′′

= f
′′
(

LW
′
a
′
+ b

′′
)

(10)

a
′′

= f
′′
(

LW
′
f
′
(

IW p+ b
′
)

+ b
′′
)

(11)

Where R is the number of input variables, p input vector,
a
′

input vector to output layer, a
′′

output vector, IW
input weight matrix, b

′
bias vector of the hidden layer,

b
′′

bias vector of the output layer, S
′

number of hidden
layer neurons, S

′′
number of output layer neurons, LW

′′

output weight matrix, n
′

input to the hidden layer transfer
function, n

′′
input to the output layer transfer function, f

′

hidden layer transfer function and f
′′

output layer transfer
function.

2.5 Performance Evaluation

The performances of ANFIS and MBPN models are eval-
uated using average percentage error (ARE), root mean
squared error (RMSE), correlation coefficient (R) and av-
erage relative variance (ARV) (model efficiency) criteria.
The expressions for these criteria are [Jang, 1993, Pai et
al., 2009]:

APE =
1

N

N∑
i=1

|yi − yi|
|yi|

∗ 100 (12)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − yi)2 (13)

R =

∑N
i=1 (yi − y)

(
ŷi − ŷ

)√∑N
i=1 (yi − y)

2∑N
i=1

(
ŷi − ŷ

)2 (14)

ARV =

(
RMSE

s

)2

(15)

Where ŷi is the output of model estimator, yi measured
output, yi mean of the measured output, (N) number of
samples, s standard deviation.

3. RESULTS AND DISCUSSIONS

The input-output dataset was used for the development of
the ANFIS model of the dosing unit. The data was divided
into two parts: the first part (60%) was used to train the
model and second part (40%) was the checking dataset to
validate the model.

The ANFIS model was made up of two ANFIS networks.
The first and second networks were developed to estimate
SC and pH output variables respectively. The first net-
work was trained with [qa − qb − qc − SC] dataset and
the second network was trained with [qa − qb − qc − pH]
dataset. Each dataset comprised of 414 data pairs. The
two ANFIS networks had similar structure. Two gener-
alised bell membership functions were used for each input
variable of the network. Each output variable had eight
linear membership functions. Each network had 8 fuzzy if -
then rules and 50 fitting parameters that were made up of
18 antecedent parameters and 32 consequent parameters.
The training epoch was set at 100.

For comparison purpose, four variants of MBPN models
consisting of input layer with 3 neurons (coagulation chem-
ical flow rates) and output layers with 2 neurons (SC and
pH) were developed. The number of hidden layer neurons
that achieved the desired performance level (13 neurons)
was determined after several trials by varying the neurons
between 10 and 30. The tan-sigmoid transfer function
was used at the hidden layer and linear transfer function
at the output layer. The weights and biases of the net-
works were adjusted using the resilient backpropagation
(MBPN1), scaled conjugate gradient (MBPN2), Quasi-
Newton (MBPN3) and Levenberg-Marquardt (MBPN4)
training algorithms. The training epoch of the MBPN was
set as 100.

After the training of the ANFIS and four MBPN models,
the validation simulation run was performed using the
checking dataset consisting of 276 data pairs. The results
of training and validation tests are shown in Figs. 6 and
7 respectively. These figures also indicate the comparison
of the estimated output variables (SC and PH) from
the ANFIS and MBPN models with the measured data.
The performances of the ANFIS model and MBPN were
compared using the evaluation criteria in (12)-(15). It can
be seen from Tables 1 - 3 that ANFIS had the least APE,
RMSE and ARV values when estimating both SC and
pH from the training and checking datasets. In Table 4,
the correlation coefficients of the models were compared.
The ANFIS model has the highest correlation for both
SC and pH estimations. In both cases, it took several
simulation runs before four MBPN models converged to
the final results. However, ANFIS converged faster and
has a more consistent results than MBPN models. It is
therefore inferred that it is more efficient than the MBPN
models. This is confirmed by the consistent simulation
results demonstrated by ANFIS between the training and
checking datasets. The visual inspection of Figs. 6 and 7
show that ANFIS is a more preferable technique to model
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(a) Performance of ANFIS model

(b) Performance of MBPN1 model

(c) Performance of MBPN2 model

(d) Performance of MBPN3 model

(e) Performance of MBPN4 model

Fig. 6 Simulation responses of the models with the
training dataset

Table 1. Performance Evaluation: APE, %
Model SCtrng SCckg pH trng pHchkg

(10−4) (10−4) (10−4) (10−4)

ANFIS 0.00001 0.00001 0.00001 0.00001

MBPN1 1.36 2.53 2.66 6.06

MBPN2 1.29 2.26 2.40 4.60

MBPN3 1.18 2.03 2.29 4.07

MBPN4 1.38 2.34 2.27 4.17

Table 2. Performance evaluation: RMSE
Model SCtrng SCckg pH trng pHchkg

(10−7) (10−7) (10−7) (10−7)

ANFIS 0.001 0.001 0.001 0.001

MBPN1 1.48 1.57 4.70 6.69

MBPN2 1.35 1.35 4.24 4.2

MBPN3 1.31 1.31 4.04 4.04

MBPN4 1.67 1.67 4.05 4.05

Table 3. Performance evaluation: ARV
Model SC trng SCchkg pHtrng pH chkg

ANFIS 0.0001 0.0001 0.0001 0.0001

MBPN1 1.13 1.65 1.14 0.40

MBPN2 0.94 1.19 0.93 0.37

MBPN3 0.88 1.03 0.83 0.35

MBPN4 1.43 1.52 0.84 0.43

Table 4. Performance evaluation: R
Model SC trng SCchkg pHtrng pHchkg

ANFIS 0.98 0.98 0.98 0.98

MBPN1 0.36 0.21 0.45 0.36

MBPN2 0.10 0.27 0.42 0.34

MBPN3 0.40 0.37 0.52 0.34

MBPN4 0.56 0.38 0.64 0.39

the chemical coagulation dosing unit of a water treatment
plant than MBPN models.

In this part of the study, the checking dataset with noise
signals were presented to the ANFIS and four MBPN
model estimators. The responses of these model estimators
under this condition was investigated and compared. The
models were trained with the previous training datasets.
After the training, the noisy checking dataset was pre-
sented to the models. The responses of each model were
compared with the responses of the models with the pre-
vious checking dataset (without noise signal).

Figs. 8 shows the responses of each output variable of
these models when two different checking datasets were
presented to them. Visual inspection depicts that the
responses of four MBPN models deviated significantly
when presented with both noisy and noiseless checking
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(a) Performance of ANFIS model

(b) Performance of MBPN1 model

(c) Performance of MBPN2 model

(d) Performance of MBPN3 model

(e) Performance of MBPN4 model

Fig. 7 Simulation responses of the models with the
checking dataset

Table 5. Comparison of ARV for models with noisy and noiseless
input checking dataset

Model SCnoiseless SCnoisy pH noiseless pH noisy

ANFIS 0.0001 0.0001 0.0001 0.0001

MBPN1 1.65 1.17 0.30 1.30

MBPN2 1.18 1.36 0.37 1.07

MBPN3 1.02 1.27 0.41 1.19

MBPN4 1.52 2.05 0.43 1.62

datasets. However, ANFIS had no significant deviation
between the responses of the noisy and noiseless checking
datasets. The ARV of each model was obtained and
compared under the two distinct conditions. Table 5 shows
the model efficiency (ARV) of the model estimators. It is
seen from Table 5 that ANFIS has the least values. The
results shows that ANFIS was able to filter out the added
noise signals and estimated the model efficiently despite
the addition of Gaussian noise to the input data of the
models.

4. CONCLUSION

This study develops and compares models of adaptive
neuro-fuzzy inference system and multilayer backpropa-
gation networks for the coagulation chemical dosing unit
of Rietvlei water treatment plant. Under different in-
put conditions, ANFIS model was identified as an the
most efficient estimator. It is further demonstrated the
capabilities of ANFIS to filter out noise or disturbances
over MBPN. ANFIS model is therefore a useful technique
to build complex and nonlinear relationships, implement
intelligent multivariable control strategies and optimise
coagulation process in water treatment plants. The future
work will include performance evaluation study between
ANFIS modelling and data mining or evolutionary com-
putation techniques.

ACKNOWLEDGEMENTS

The authors will like to thank Dr. Anish Kurien for his
useful suggestions and comments. The cooperation of the
management and staff of Rietvlei water treatment plant
with respect to this research work is appreciated.

REFERENCES

American Water Works Association and American Society
of Civil Engineers. Water Treatment Plant Design. In:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3990



E.E. Baruth, (ed.), 4th ed. New York: McGraw-Hill,
2005.

C. W. Baxter, S. J. Stanley, Q. Zhang and D. W. Smith.
Developing artificial neural network models of water
treatment processes: a guide for utilities. J. Environ.
Eng. Sci., 1:201-211, 2002.

O. Bello, Y. Hamam, and K. Djouani. Dynamic modelling
and system identification of a coagulant dosage system
for water treatment plants. Proceedings of 3rd Inter-
national Conference on Systems and Control, Algiers,
2013.

City of Tshwane. S.a. Rietvlei water treatment plant [On-
line]. Available: http://www.tshwane.gov.za [Accessed
20/01/2013].

V. P. Evangelou. Environmental soil and water chemistry:
Principles and applications, New York, John Wiley,
1998.

A. Adgar, C. S. Cox, and C. A. Jones. Enhancement of
coagulation control using the streaming current detec-
tor. Bioprocess Biosystem Engineering, pages 349-357,
2005.

J. R. Jang. ANFIS: Adaptive-network-based fuzzy infer-
ence system. IEEE Transactions on Systems, Man and
Cybernectics, 23:665-685, 1993.

A.K. Lohani, N.K. Goel and K.K.S. Bhatia. Takagi-
Sugeno fuzzy inference system for modeling stage-
discharge relationship. Journal of Hydrology, 331:146-
160, 2006.

NSF International. NSF Product and
Service Listings [Online]. Available:
http://info.nsf.org/CertifiedChemicals/Listings.asp
[Accessed: 19/08/2013].

T. Y. Pai, T. J. Wan, S. T. Hsu, T. C. Chang, Y. P. Tsai,
C. Y. Lin, H. C. Su, and L. F. Yu. Using fuzzy inference
system to improve neural network for predicting hospital
wastewater treatment plant effluent. Computers and
Chemical Engineering, 33:1272-1278, 2009.

Q. Ren, L. Baron and M. Balazinski. Type-2 Takagi-
Sugeno-Kang Fuzzy Logic Modeling using Subtractive
Clustering, In: Fuzzy Information Processing Society,
Annual meeting of the North American, pages 120-125,
2006.

Z. Song, Y. Zhao, X. Song and C. Liu. Research on pre-
diction model of optimal coagulant dosage in water pu-
rifying plant based on neutral networks. In: Proceeding
of International Colloquium on Computing, Communi-
cation, Control and Management, Sanya,China, 2009.

G. Wu, and S. Lo. Predicting real-time coagulant dosage in
water treatment by artificial neural network. Engineer-
ing Applications of Artificial Intelligence, 21:1189-1195,
2008.

W. Xiaojie, J. Yunzhe and L. Xiaojie. Research on the
prediction of water treatment plant coagulant dosage
based on feed-forward artificial neural network. IEEE
Conference, pages 1615-1617, 2011.

B. Yegnanarayana. Artificial neural networks. New Delhi,
Prentice-Hall of India, 2005.

M. Zounemat-Kermani M. Teshnehlab Using adaptive
neuro-fuzzy inference system for hydrological time series
prediction. Applied Soft Computing, 8:928-936, 2008.

M.T. Hagan H.B. Demuth, and M.H. Beale. Neural
Network Design, Boston, MA: PWS Publishing, 1996.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3991


