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Abstract: The main purpose of this contribution is the control of both torsional and axial
vibrations occurring along a rotary oil well drilling system. The considered model consists of a
system of wave equations with non-linear coupled boundary conditions. We propose a flatness-
based control approach to tackle the trajectory tracking problem guaranteeing the suppression
of harmful dynamics. The closed loop control design ensures the stability of the error dynamics.
Moreover, numerical simulations illustrate the efficiency of the established control laws.
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1. INTRODUCTION

The modelling, analysis and control of rotary drilling
vibrations are topics whose economical interest has been
renewed by recent oilfields discoveries leading to a growing
literature, see for instance [6], [7], [12], [13], [14], [15] and
[16].

Roughly speaking, a rotary drilling structure consists es-
sentially of a rig, a drill string, and a bit. The essential
components of the drill string are the bottom hole assem-
bly, composed mainly of heavy steel tubes to provide a
large downward force on the bit, and a set of drill pipes
made of thinner tubes. The drill string is in particular
subject to two main types of vibrations, each of them can
at the least cause a premature wear of the various compo-
nents. Torsional vibrations are responsible of the so-called
stick-slip phenomenon which is essentially the cause of pre-
mature breakage of the drill pipes. Traction/compression
vibrations, or shortly axial vibrations, mainly associated
with the bit-bouncing phenomenon may cause premature
wear of the bit.

These two types of vibrations are known to be coupled
and present several non-linear phenomena. This combi-
nation makes the derivation of a model mathematically
challenging and is the reason why the full system has
been rarely considered so far. For the sake of reducing
the complexity of the problem some works suggest that
the axial vibrations are neglected with respect to tor-
sional vibrations in order to avoid considering coupling
dynamics (cf. [1]). Another approach is to neglect the
infinite-dimensional aspects of those vibrations by using a
lumped parameter model consisting of ordinary differential
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equations (cf. [12] and [13]). Finally, the non-linearity of
the boundary conditions which comes essentially from the
friction profile at the bit is approximated by a piecewise
linear function (cf. [7]). Unfortunately, the adoption of
such simplifications impoverishes the recovered dynamics.

Throughout this contribution we consider a model estab-
lished in [2], which takes into account all the aforemen-
tioned aspects. More precisely, the propagation of each
type of vibration is assumed to be governed by a wave
equation with non-linear boundary conditions. Moreover,
it is emphasized that the coupling terms in the boundary
conditions are induced by the interface bit/rock friction.

The trajectory tracking problem considered in this contri-
bution arises from the fact that the elimination of drilling
vibrations requires the angular and axial velocities of the
drilling system to follow a constant reference path. To
tackle this problem, the flatness property of the system will
be exploited. The design of a pair of effective flatness-based
feedback controllers allowing the exponential convergence
of the system trajectories guarantees the suppression of
undesired dynamics. The originality of the present paper
does not lie only in the proposed control strategy itself,
but also in applying it to a relatively complete model.

This paper is organized as follows: In Section II, the
drilling system modeling is presented; in Section III, the
flatness property of the system is proved; Section IV
presents the design of flatness-based controllers guaran-
teeing the drilling vibrations suppression; numerical sim-
ulations to highlight the effectiveness of the proposed ap-
proach are presented in Section V; concluding remarks are
provided in the last Section.
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2. COUPLED AXIAL-TORSIONAL MODEL OF THE
DRILLING SYSTEM

A sketch of a simplified drillstring system is shown in
Figure 1.
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Figure 1. Basic scheme of a vertical drilling system.

It is well known that the wave equation is widely used
to reproduce the oscillatory behavior of physical systems.
Torsional and axial excitations of a drillstring described
by the rotary angle φ(σ, t) and the longitudinal position
U(σ, t) can be described by the following normalized model
consisting of a pair of coupled wave equations (cf. [2], [3],
[9]):

∂2φ

∂σ2
(σ, t) = c21

∂2φ

∂t2
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, σ ∈ (0, 1), (1)

Ḡ
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∂σ
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l
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Ē
∂U

∂σ
(1, t) = β

∂U

∂t
(1, t)−H(t), Ē =
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)
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The spatial variable σ is chosen such that σ = 1 denotes
the top of the drill string and σ = 0 the bottom extremity.
The speeds of propagation c̃ and c can be computed from
material parameters, namely shear modulus G, Young’s
modulus E and the density ρ, by means of c̃ =

√
G/ρ

and c =
√
E/ρ. Apart from these, the model comprises

geometrical parameters of the drill string, that are as-
sumed to be spatially and timely constant: the length of
the rod l, the drill string’s cross-section Γ and its second
moment of area Σ, the mass M and the moment of inertia
J of the drill bit. The parameters p̃ and p together with

the function F depending on the torsional velocity at the
bottom end ∂φ

∂t (0, t) account for the friction resulting from
the interaction between the drill bit and the rock, it is
the cause of growth of instabilities eventually leading to
drilling oscillations. Some proposals for friction modeling
can be found in [4], [8] and [17].

In [11] the friction F is modeled as follows:

F

(
∂φ

∂t
(0, t)

)
= WobRbµb

(
∂φ

∂t
(0, t)

)
sign

(
∂φ
∂t (0, t)

)
,

µb

(
∂φ

∂t
(0, t)

)
= µcb + (µsb − µcb)e−γb|

∂φ
∂t (0,t)|,

where Rb > 0 is the bit radius, Wob > 0 is the weight
on the bit, µsb, µcb ∈ (0, 1) are the static and Coulomb
friction coefficients and 0 < γb < 1 is a constant defining
the velocity decrease rate.

The following function, introduced in [9], allows to ap-
proximate the friction dynamics avoiding the complexity
of most of the proposed model structures:

F

(
∂φ

∂t
(0, t)

)
=

2k ∂φ∂t (0, t)[
∂φ
∂t (0, t)

]2
+ k2

, k > 0. (7)

Figure 2. Graph of friction function F given in (7).

The system can be controlled by the boundary torque
Ω coming from the motor drive at the surface and the
boundary force H provided by the lifting hook at the
drilling platform.

3. FLATNESS ANALYSIS OF THE DRILLING
SYSTEM

In this section it will be shown that the previously intro-
duced model can be considered flat. Even though flatness
is a system property that has been originally defined for
finite-dimensional models [5], its basic idea can be ex-
tended to the infinite-dimensional case. This idea consists
in the possibility to parametrize all system variables by
means of a so-called flat output, i.e., once a trajectory
for the flat output has been prescribed, the trajectories of
all system variables can be computed from it. The main
difference between the finite and the infinite-dimensional
case lies in the character of the relation between the flat
output and the system variables: while in the first case
this relation involves only finite-order derivatives of the
flat output, the second case might comprise derivatives of
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arbitrary order or delays and predictions depending on the
type of the underlying partial differential equation.

The flatness property of the system under consideration
will be proved through the general solution to the wave
equation: the D’Alembert formula.

3.1 Proof of the system flatness

Next, it will be shown that the flat output of the drilling
system consist of the rotational and longitudinal variables
φ(0, ·), U(0, ·).
The parametrization of the axial variable φ(σ, t) is pro-
vided by the well known D’Alembert formula:

2φ(σ, t) = φ(0, t+ c1σ) + φ(0, t− c1σ) (8)

+
1

c1

∫ t+c1σ

t−c1σ

∂φ

∂σ
(0, τ)dτ.

Notice that the solution depends on predicted and delayed
values of the involved boundary trajectories.

Substituting (8) into the boundary condition (2) yields the
parametrization of the torque Ω(t):

2Ω(t) = ω1

[
∂φ

∂t
(0, t+ c1) +

1

c1

∂φ

∂σ
(0, t+ c1)

]
(9)

+ω2

[
∂φ

∂t
(0, t− c1)− 1

c1

∂φ

∂σ
(0, t− c1)

]
with

ω1 = α− c1Ḡ, ω2 = α+ c1Ḡ.

The relation between ∂φ
∂σ and the flat output φ(0, ·) can be

established from the boundary condition (3):

∂φ

∂σ
(0, t) = − p̃

Ḡ
F

(
∂φ

∂t
(0, t)

)
− J

Ḡ

∂2φ

∂t2
(0, t). (10)

Similarly, the axial variable U(σ, t) is expressed as:

2U(σ, t) =U(0, t+ c2σ) + U(0, t− c2σ) (11)

+
1

c2

∫ t+c2σ

t−c2σ

∂U

∂σ
(0, τ)dτ.

The parametrization of the control input H(t) is obtained
by substituting (11) into the boundary condition (5):

2H(t) = h1

[
∂U

∂t
(0, t+ c2) +

1

c2

∂U

∂σ
(0, t+ c2)

]
(12)

+h2

[
∂U

∂t
(0, t− c2)− 1

c2

∂U

∂σ
(0, t− c2)

]
where

h1 = β − c2Ē, h2 = β + c2Ē.

The relation between ∂U
∂σ and the flat output U(0, ·) is

established from the boundary condition (6) as follows:

∂U

∂σ
(0, t) = − p

Ē
F

(
∂φ

∂t
(0, t)

)
− M

Ē

∂2U

∂t2
(0, t). (13)

We conclude that the entire drilling system is flat, i.e.,
its solutions can be parametrized by the flat output y =
(φ(0, ·), U(0, ·)).

4. CONTROL DESIGN: TRACKING PROBLEM

4.1 Open loop control

For the sake of notation simplicity, let us denote as yφ(t)
the rotational angle at the top end φ(0, t), and as yU (t) the
axial displacement at the upper extremity of the drillstring
U(0, t).

The flatness-based parametrization obtained in the pre-
vious section can be directly used for the design of a
feedforward controller (cf. [10]). To this end, it suffices to
prescribe appropriate reference trajectories ẏφr, ẏUr for the
bottom angular and axial velocities ẏφ, ẏU and compute
the required control inputs from it. In view of (9)-(10) and
(12)-(13), we get:

2Ω(t) = ω1ẏφr(t+ c1) + ω2ẏφr(t− c1) (14)

− ω1

c1Ḡ
[p̃F (ẏφr(t+ c1)) + Jÿφr(t+ c1)]

+
ω2

c1Ḡ
[p̃F (ẏφr(t− c1)) + Jÿφr(t− c1)] ,

2H(t) = h1ẏUr(t+ c2) + h2ẏUr(t− c2) (15)

− h1
c2Ē

[pF (ẏφr(t+ c2)) +MÿUr(t+ c2)]

+
h2
c2Ē

[pF (ẏφr(t− c2)) +MÿUr(t− c2)] .

4.2 Closed loop scheme

The open loop control laws (14) and (15) are designed
under the supposition that the model under consideration
is perfect, which, due to the uncertainties and time varying
parameters not considered, is not the case. In order to
overcome this problem, closed loop controllers ensuring
the system stabilization around the reference trajectories
must be designed. The main idea in designing the feedback
controllers is to compute the control inputs such that
the errors between the desired and the actual trajectories
eφ := ẏφ − ẏφr and eU := ẏU − ẏUr satisfy the stable
dynamics: ėφ = −λeφ, ėU = −λ̄eU .

The result on the stabilization of the drilling system
regarding its torsional and axial dynamics is stated as
follows:

Theorem 1. The controllers

Ω(t) =
[
α+ c1Ḡ

] ∂φ
∂t

(1, t)− c1Ḡ [ẏφ(t− c1) + γ(t)]

+Jv(t) + p̃F (ẏφ(t− c1) + γ(t)) ,

v(t) =
Ḡχ

λ
ÿφr(t+ c1)− ḠχI +

Jχ

c1
ÿφ(t− c1)

− p̃χ
c1

[F (ẏφ(t− c1) + γ(t))− F (ẏφ(t− c1))] ,

I = 2
∂φ

∂t
(1, t)− ẏφ(t− c1)− ẏφr(t+ c1),

γ(t) =

∫ t

t−2c1
v(τ)dτ, χ =

λc1
c1Ḡ+ λJ

,

and

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7326



H(t) =
[
β + c2Ē

] ∂U
∂t

(1, t)− c2Ē [ẏU (t− c2) + γ̄(t)]

+Mv̄(t) + pF (ẏφ(t− c1) + γ(t)) ,

v̄(t) =
Ēχ̄

λ̄
ÿUr(t+ c2)− Ēχ̄Ī +

Mχ̄

c2
ÿU (t− c2)

−pχ̄
c2

[F (ẏφ(t− c1) + γ(t))− F (ẏφ(t− c1))] ,

Ī = 2
∂U

∂t
(1, t)− ẏU (t− c2)− ẏUr(t+ c2),

γ̄(t) =

∫ t

t−2c2
v̄(τ)dτ, χ̄ =

λ̄c2
c2Ē + λ̄M

lead to an exponential convergence of the torsional and
axial trajectories ẏφ(t) = ∂φ

∂t (0, t) and ẏU (t) = ∂U
∂t (0, t) to

the reference velocities ẏφr(t) and ẏUr(t).

Proof. According to (8)-(10), the trajectories of the tor-
sional subsystem can be parametrized as follows:

2φ(σ, t) = yφ(t+ c1σ) + yφ(t− c1σ) (16)

− 1

c1Ḡ

∫ t+c1σ

t−c1σ
[p̃F (ẏU (τ)) + Jÿφ(τ)] dτ.

Taking the time derivative of (16) and evaluating in σ = 1
yields

2
∂φ

∂t
(1, t) = ẏφ(t+ c1) + ẏφ(t− c1) (17)

− J

c1Ḡ
[ÿφ(t+ c1)− ÿφ(t− c1)]

− p̃

c1Ḡ
[F (ẏφ(t+ c1))− F (ẏφ(t− c1))] ,

in view of (9) and (17), we can write

2ω2
∂φ

∂t
(1, t)− 2Ω(t) = (ω2 − ω1) ẏφ(t+ c1) (18)

− J

c1Ḡ
(ω2 − ω1) ÿφ(t+ c1)

− p̃

c1Ḡ
(ω2 − ω1)F (ẏφ(t+ c1)) .

The introduction of a new variable v(t) defined as v(t) :=
ÿφ(t+ c1) implies

ẏφ(t+ c1) = ẏφ(t− c1) +

∫ t

t−2c1
v(τ)dτ. (19)

In view of (18) and (19), the controller Ω(t) can be written
as:

Ω(t) =
[
α+ c1Ḡ

] ∂φ
∂t

(1, t)− c1Ḡ [ẏφ(t− c1) + γ(t)]

+Jv(t) + p̃F (ẏφ(t− c1) + γ(t)) ,

where γ(t) =
∫ t
t−2c1 v(τ)dτ . Now, substituting (19) into

(17) yields:

2
∂φ

∂t
(1, t) = ẏφ(t+ c1) + ẏφ(t− c1)

− J

c1Ḡ
[v(t)− ÿφ(t− c1)]

− p̃

c1Ḡ
[F (ẏφ(t− c1) + γ(t))− F (ẏφ(t− c1))] ,

then, the prediction term can be written as follows:

ẏφ(t+ c1) = 2
∂φ

∂t
(1, t)− ẏφ(t− c1) (20)

+
J

c1Ḡ
[v(t)− ÿφ(t− c1)]

+
p̃

c1Ḡ
F (ẏφ(t− c1) + γ(t))

− p̃

c1Ḡ
F (ẏφ(t− c1)) .

Regarding the velocity tracking problem under considera-
tion, the error is defined as eφ := ẏφ(t+ c1)− ẏφr(t+ c1).
The controller must guarantee stable closed loop error
dynamics (ėφ = −λeφ), to this end we set

v(t) = ÿφr(t+ c1)− λ [ẏφ(t+ c1)− ẏφr(t+ c1)] ,

which, in view of (20), is written as:

v(t) =
c1Ḡ

c1Ḡ+ λJ
ÿφr(t+ c1)− c1Ḡλ

c1Ḡ+ λJ
I

+
λJ

c1Ḡ+ λJ
ÿφ(t− c1)

− λp̃

c1Ḡ+ λJ
F (ẏφ(t− c1) + γ(t))

+
λp̃

c1Ḡ+ λJ
F (ẏφ(t− c1)) ,

with

I = 2
∂φ

∂t
(1, t)− ẏφ(t− c1)− ẏφr(t+ c1).

Similarly, for the axial subsystem, we define the variable
v̄(t) as v̄(t) = ÿU (t+ c2), which implies

ẏU (t+ c2) = ẏU (t− c2) +

∫ t

t−2c2
v̄(τ)dτ, (21)

and

H(t) =
[
β + c2Ē

] ∂U
∂t

(1, t)− c2Ē [ẏU (t− c2) + γ̄(t)]

+Mv̄(t) + pF (ẏφ(t− c1) + γ(t)) ,

where γ̄(t) =
∫ t
t−2c2 v̄(τ)dτ . As we have shown before, the

flatness property allows the following parametrization:

2U(σ, t) = yU (t+ c2σ) + yU (t− c2σ) (22)

− 1

c2Ē

∫ t+c2σ

t−c2σ
[pF (ẏφ(τ)) +MÿU (τ)] dτ,

substituting (21) into the time derivative of (22) at σ = 1
yields:

ẏU (t+ c2) = 2
∂U

∂t
(1, t)− ẏU (t− c2) (23)

+
M

c2Ē
[v̄(t)− ÿU (t− c2)]

+
p

c2Ē
F (ẏφ(t− c1) + γ(t))

− p

c2Ē
F (ẏφ(t− c1)) .
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The error related to axial dynamics eU is defined as
eU := ẏU (t + c2) − ẏUr(t + c2). In order to ensure stable
closed loop error dynamics, we set

v̄(t) = ÿUr(t+ c2)− λ̄ [ẏU (t+ c2)− ẏUr(t+ c2)] ,

which, in view of (23), is written as:

v̄(t) =
c2Ē

c2Ē + λ̄M
ÿUr(t+ c2)

− c2Ēλ̄

c2Ē + λ̄M
Ī +

λ̄M

c2Ē + λ̄M
ÿU (t− c2)

− λ̄p

c2Ē + λ̄M
F (ẏφ(t− c1) + γ(t))

+
λ̄p

c2Ē + λ̄M
F (ẏφ(t− c1)) ,

with

Ī = 2
∂U

∂t
(1, t)− ẏU (t− c2)− ẏUr(t+ c2).

5. NUMERICAL SIMULATIONS

In this Section, the effectiveness of the proposed control
approach is highlighted through simulations results. The
numerical values of the physical parameters used in the
following are given in Table 1.

Figure 3. Drilling system trajectories without feedback
control actions (stick-slip and bit-bounce phenom-
ena).

System trajectories corresponding to the rotational and
longitudinal velocities of the drilling rod at the bottom
end (ẏφ, ẏU ) without feedback control actions are shown
in Figure 3. The friction at the rock-bit interface is
approximated by the function given in (7). Simulation

Table 1. Physical parameters

G 80 GPa E 200 GPa
ρ 8000 kg/m3 l 3500 m
Σ 19 cm4 Γ 35 cm2

α 2000 Nms β 200.025 kg/s
J 30000 kg m2 M 40000 kg
p̃ 210 p 3500
k 0.18

results are in close agreement with field observations
regarding axial and torsional vibrations.

As explained above, the flatness approach allows the de-
sign of feedback controllers to track prescribed reference
trajectories ensuring stable error dynamics and conse-
quently the drilling vibration elimination.

Figure 4 shows the closed loop response of the drilling
system subject to the proposed flatness-based control
approach. Angular and axial velocities at the bottom end
of the drillstring follow the references ẏφr = 10rad s−1 and
ẏUr = 0.1m s−1. The exponential decay rates considered
are λ = λ̄ = 2.5.

Figure 4. Trajectories of the drilling system under the
controllers stated in Theorem 1.

Figures 5-6 show the system trajectories in the torsional
space phase with the relative variable ẏφ(t). In presence
of torsional oscillations, the bit motion converges to a
limit cycle called stick-slip (Figure 5). The stick-slip phe-
nomenon is characterized by stick phases, during which the
rotation stops completely, and slip phases, during which
the angular velocity of the tool increases up to two times
the nominal angular velocity. This phenomenon occurs
when a section of the rotating drillstring is momentarily
caught by friction against the borehole, then releases. The
bit might eventually get stuck and then, after accumulat-
ing energy in terms of torsion, be suddenly released, the
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string rotation speeds up dramatically and large centrifu-
gal accelerations occur. This behavior is the major source
of failures in oil fields.

Figure 5. Stick-slip limit cycle.

With the implementation of the feedback controllers given
in Theorem 1, the stick-slip motion is suppressed and
the system trajectories converge to the stationary solution
(Figure 6).

Figure 6. Phase plane torsional trajectories of the drilling
system under the controllers stated in Theorem 1.

6. CONCLUDING REMARKS

The flatness property of the system has been shown to
be useful in designing feedback controllers to tackle the
drilling vibration problem. The trajectory tracking frame-
work leads the axial and angular velocities of the system
to follow a constant reference, thereby ensuring the elim-
ination of undesirable oscillations. Numerical simulations
confirm the accuracy of the proposed approach.
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