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Abstract: This paper discusses the stability of feedback systems in which both plant and controller are
switched. Switched systems considered here have all their subsystems satisfying the ‘mixed’-negative
imaginary property. A definition for dissipativity (for switched systems) is proposed, and dissipative
switched systems are shown to be stable (under certain conditions). Switched systems with ‘mixed’-
negative imaginary property are shown to be dissipative and conditions for stability are derived. As
an illustration of the results, a switched controller is designed for a nanopositioning stage, which has a
‘mixed’-negative imaginary frequency response function. Simulations show that the closed loop is stable
and the designed controller damps the resonances satisfactorily.

1. INTRODUCTION

Highly resonant systems with collocated and compatible sen-
sors and actuators have negative imaginary transfer functions
(Preumont [2011]). Systems which are approximately collo-
cated or collocated systems with time delays may not be neg-
ative imaginary at all frequencies but behave as a negative
imaginary system over a significant bandwidth. Such systems
are said to possess ‘mixed’-negative imaginary property, i.e,
they are negative imaginary in certain frequency intervals and
have finite gain in the rest. As an example, consider a highly
resonant LTI SISO system with transfer function,

M̂(s) =
2154

s2 + 29s+ 3.367× 103
. (1)

The Nyquist plot (Figure 1) of (1) shows that it is negative
imaginary (i.e., the imaginary part of the frequncy response is
negative at all frequencies). But with a time delay of 6.0675×
10−3 added to the system, it loses the negative imaginary
property beyond a frequency value of 88.3 rad/sec (see Figure
1). Thus the resonant system with delay satisfies the ‘mixed’-
negative imaginary property.

Feedback systems with ‘mixed’-negative imaginary property
have been considered in Patra and Lanzon [2011], where the
stability of closed loop was proved in the frequency domain.
This restricts the concept of ‘mixed’ property to linear time-
invariant systems. In this paper, the time domain version of the
‘mixed’-negative imaginary property is obtained which makes
it possible to extend the theory to nonlinear systems.

Many physical systems require switched controllers for their
satisfactory performance (see Bazaei et al. [2011], Sankara-
narayanan et al. [2008]). A switched system is a collection of
a finite number of dynamical systems called subsystems. The
dynamics of a switched system evolves by switching from one
subsystem to another. The stability of switched systems has
been studied extensively by many authors (Liberzon and Morse
[1999], Branicky [1994]). In Zefran et al. [2001], stability of
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Fig. 1. Nyquist plots of M̂(s) without delay (solid line) and with delay (dotted
line)

passive switched systems and their feedback interconnections
was analysed. But switched systems with negative imaginary
property or ‘mixed’-negative imaginary property have not been
considered before.

This paper focuses on switched systems with subsystems being
‘mixed’-negative imaginary. Stability of a ‘mixed’ switched
system in positive feedback with another ‘mixed’ switched
system is investigated. Since systems with ‘mixed’ property are
known to be dissipative, the notion of dissipativity is used to
prove stability. A switched controller is designed for a highly
resonant MIMO system and the closed loop stability is verified
through simulations.

Section 2 states the required notations. Section 3 and Section
4 explain the concept of ‘mixed’-negative imaginary property
in the frequency domain and time domain respectively. Section
5 discusses dissipative switched systems. The final stability re-
sults on feedback interconnection of ‘mixed’ switched systems
are derived in section 6. Section 7 illustrates an example with
supporting simulations.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6412



2. NOTATIONS

2.1 Notations in frequency domain

Consider the real frequency domain Lebesgue space, L2(jR)

with an inner product
〈

f̂ , ĝ
〉

= 1
2π

∫

∞

−∞

ĝ∗(jω)f̂(jω)dω,

where f̂ , ĝ ∈ L2(jR) and the superscript ∗ denotes the com-
plex conjugate. The norm of f̂ ∈ L2(jR) is given by ‖ f̂ ‖=
{

1
2π

∫

∞

−∞

f̂∗(jω)f̂(jω)dω

}1/2

. Let R denote the set of proper

real rational transfer function matrices.

2.2 Notations in time domain

Consider the real time domain Lebesgue space, L2[0,∞) with

the inner product 〈f, g〉 =

∫

∞

0

g′(t)f(t)dt, where f, g ∈

L2[0,∞) and the superscript ′ denotes the transpose. The norm

of f ∈ L2[0,∞) is given by ‖ f ‖=

{
∫

∞

0

f ′(t)f(t)dt

}1/2

.

For a linear operator A : L2[0,∞) → L2[0,∞), its adjoint
A∼ : L2[0,∞) → L2[0,∞) is defined by 〈Ap, q〉 =
〈p,A∼q〉 , ∀ p, q ∈ L2[0,∞). The truncation operator PT

is defined as

(PT f)(t) =

{

f(t), 0 ≤ t ≤ T
0, t > T, for T ∈ [0,∞).

Let the truncated function be denoted by fT := PT f . Also
define a scalar function 〈f, g〉T = 〈fT , gT 〉. Let L2e be the
extension of the Lebesgue space L2[0,∞) defined by L2e =
{f : fT ∈ L2[0,∞), ∀ T ∈ [0,∞)}. In the current context
a system is defined as an operator from L2e to L2e.

3. ‘MIXED’ PROPERTY IN FREQUENCY DOMAIN

Consider a causal LTI system with transfer function matrix
M̂ ∈ R. If j(M̂(jω) − M̂∗(jω)) ≥ 0, ∀ ω then the system
is said to possess negative imaginary property.
Divide the frequency domain −∞ < ω < ∞ into intervals
{I

(i)
s }N1

i=−N1
and {I

(i)
p }N2

i=−N2
such that Is =

⋃N1

i=−N1
I
(i)
s ,

Ip =
⋃N2

i=−N2
I
(i)
p and R = Is

⋃

Ip. Let Ip be the intervals

where M̂ is negative imaginary and Is be the intervals where
M̂ is not negative imaginary. Let k > 0 be such that maxω∈Is ‖

M̂ ‖< k. Then M̂ is said to have a k small gain in the intervals
Is. By abuse of language, this is referred to as small gain in the
intervals Is. Since M̂ is negative imaginary in Ip and small gain
in Is, M̂ has the ‘mixed’-negative imaginary property. Note
that the zero frequency is always included in set Is, i.e, in the
small gain frequency intervals and hence k has to be greater
than or equal to σ̄(M̂(0)) which is the dc gain of the system.
This is because the value of transfer function evaluated at the
zero frequency is real.

4. ‘MIXED’ PROPERTY IN TIME DOMAIN

The concept of ‘mixed’ property is well understood in the fre-
quency domain. But then the analysis would be limited to only
linear systems. In order to extend the notion of ‘mixed’ prop-
erty to general nonlinear systems, time domain definitions are

required. For linear systems, time domain definitions are equiv-
alent to frequency domain definitions (refer to Patra and Lanzon
[2011] for frequency domain definitions) through Fourier trans-
form. The conversion of ‘mixed’-negative imaginary property
from frequency domain to time domain is done (definition 3) in
this paper (refer to Appendix A). Though the conversion is for
linear systems, the time domain definitions can be generalised
to nonlinear systems.

Definition 1. A causal system M : L2e → L2e is said to be
negative imaginary if ∃ δ ≥ 0, ǫ ≥ 0 such that

〈

Ṁu, u
〉

T
≥ δ ‖ u ‖2T + ǫ ‖ Ṁu ‖2T ,

∀ u ∈ L2e and ∀ T ∈ [0,∞).

Note that Ṁu , ∂y
∂t , where y = M(u).

Definition 2 (Griggs et al. [2009]). A causal system M : L2e →
L2e is said to have finite gain if ∃ a k (0 < k < ∞)such that

‖ Mu ‖T ≤ k ‖ u ‖T , ∀ u ∈ L2e, ∀ T ∈ [0,∞).

Definition 3. Let Γ : L2[0,∞) → L2[0,∞) and B :
L2[0,∞) → L2[0,∞) be causal, bounded, linear operators
such that Γ∼Γ + B∼B = I.
A causal system M : L2e → L2e is said to have ‘mixed’-
negative imaginary property if ∃ δ ≥ 0, ǫ ≥ 0 and k such
that

−ǫ
〈

Γ̇Mu, Γ̇Mu
〉

T
−

1

k
〈BMu,BMu〉T −

〈

ΓMu, Γ̇u
〉

T
+k 〈Bu,Bu〉T − δ 〈Γu,Γu〉T ≥ 0,

∀ u ∈ L2e and ∀ T ∈ [0,∞), where 0 < k < ∞.

If Γ = 0, M has finite gain and if B = 0, M is negative
imaginary.

Definition 4 (Hill and Moylan [1980]). A causal system M :
L2e → L2e is said to be dissipative with respect to the triple
(Q,S,R) if

〈y,Qy〉T + 2 〈y, Su〉T + 〈u,Ru〉T ≥ 0,

∀ u ∈ L2e, ∀ T ∈ [0,∞). Here y = Mu, Q and R are self
adjoint, that is, Q′ = Q and R′ = R.

Proposition 1. Consider a causal system M : L2e → L2e. Let
Γ : L2[0,∞) → L2[0,∞) and B : L2[0,∞) → L2[0,∞) be
causal, bounded, linear, operators such that Γ∼Γ + B∼B = I.
If M has ‘mixed’-negative imaginary property, then the system
is dissipative with respect to the triple (Q,S,R) where

Q = −(ǫΓ̇∼Γ̇ +
1

k
B∼B)I,

S = −
1

2
Γ∼Γ̇I, and

R = (kB∼B− δΓ∼Γ)I.

(2)

Here ǫ ≥ 0, δ ≥ 0 and 0 < k < ∞. Note that k ≥ σ̄(M̂(0)).

Proof. Follows from Definition 3.

5. SWITCHED SYSTEMS

A switched system H consists of a finite number of subsystems,
{Mi : L2e → L2e} with state space representations:

ẋ= fi(x, u), x ∈ R
n, u ∈ R

m,

y = hi(x, u), y ∈ R
m,
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where i ∈ I = {1, 2, . . . , N} is a finite index set and each
fi : R

n × R
m → R

n and hi : R
n × R

m → R
m. Also,

fi(0, 0) = 0 and hi(0, 0) = 0, ∀ i ∈ I . The system switches
from one subsystem to another in accordance to a switching
logic. It is assumed that there are finitely many switches in any
finite time interval.

Definition 5. A switched system H is said to be dissipative if
the following two conditions are satisfied:

(1) Each subsystem Mi : L2e → L2e is dissipative with
respect to the triple (Qi, Si, Ri), i.e,

〈y,Qiy〉[s,r] + 2 〈y, Siu〉[s,r] + 〈u,Riu〉[s,r]
≥ Vi(x(r)) − Vi(x(s)), ∀ u ∈ L2e,

(3)

where {x(t); s ≤ t ≤ r} are the states when the subsys-
tem Mi is active, and Vi is a positive semidefinite function
called the storage function (refer to Theorem 4 in Hill and
Moylan [1980]) associated with Mi. Here, ∀ x, y ∈ L2e,

〈x, y〉[s,r] =

∫ r

s

y′(t)x(t)dt.

(2) The storage functions of each subsystem have the prop-
erty:

Vi(x(ti,k)) ≤ Vi(x(ti,k−1)) +

L
∑

p=1

(
〈

y,Qnpy
〉

[tp1 ,tp2 ]

+2
〈

y, Snpu
〉

[tp1 ,tp2 ]
+
〈

u,Rnpu
〉

[tp1 ,tp2 ]
),

∀ u ∈ L2e,
(4)

Here ti,k−1 and ti,k are the (k − 1)
th and kth time at

which ith subsystem becomes active respectively. L is the
number of switchings from ti,k−1 to ti,k (including the

switching at ti,k−1) such that
L
⋃

p=1

[tp1 , tp2 ] = [ti,k−1, ti,k].

In the interval [tp1 , tp2 ], one of the subsystems (say, nth
p

subsystem) of H will be active, i.e, np can be any number
belonging to the index set I = {1, 2, . . . , N}.

Note: In Zefran et al. [2001], the condition on stor-
age function, for passive switched system, was defined

as Vi(x(ti,k)) ≤ Vi(x(ti,k−1)) +

∫ ti,k

ti,k−1

uT ydt. Sim-

ilarly, for negative imaginary switched system, the condi-
tion can be defined as Vi(x(ti,k)) ≤ Vi(x(ti,k−1)) +
∫ ti,k

ti,k−1

uT ẏdt. Equation 4 gives a more comprehensive

definition for a dissipative or ‘mixed’ switched system
which incorporates both the properties of small gain and
negative imaginary.

Proposition 2. Consider a dissipative switched system H ac-
cording to Definition 5. Let the storage functions Vi(x) be
positive definite. Then the origin x = 0 of the zero input system
(u(t) = 0) is Lyapunov stable if Qi ≤ 0, ∀ i ∈ I .

Proof. Substituting u = 0 in property (3) gives,

〈y,Qiy〉[s,r] ≥ Vi(x(r)) − Vi(x(s)).

If Qi ≤ 0, then Vi(x(r)) ≤ Vi(x(s)), where r ≥ s.

∴
dVi

dt
≤ 0. Hence, the storage functions, Vi, act as Lyapunov

functions. When u = 0, property (4) gives

Fig. 2. Positive feedback interconnection of H1 and H2

Vi(x(ti,k)) ≤ Vi(x(ti,k−1)) +
L
∑

p=1

〈

y,Qnpy
〉

[tp1 ,tp2 ]

⇔ Vi(x(ti,k)) ≤ Vi(x(ti,k−1)). (∵ Qnp ≤ 0, ∀ np ∈ I)

Therefore the system is stable according to proposition 1 in
Zefran et al. [2001].

6. FEEDBACK SYSTEM

Theorem 3. The positive feedback interconnection of two dis-
sipative switched systems H1 and H2 (Figure 2) is also dissi-
pative.

Proof. Let {M1
i } and {M2

i } be the subsystems of H1 and H2

respectively. By property (3),

〈ya, Q
a
i ya〉[s,r] + 2 〈ya, S

a
i ea〉[s,r] + 〈ea, R

a
i ea〉[s,r] ≥

V a
i (xa(r)) − V a

i (xa(s)), ∀ i ∈ Ia, ∀ ea ∈ L2e,

where {xa(t); s ≤ t ≤ r} are the states when the subsystem
Ma

i is active and a = 1, 2. I1 = {1, 2, . . . , N1} and I2 =
{1, 2, . . . , N2} are the index sets of subsystems of H1 and H2

respectively.

The equations for the interconnected system with positive feed-
back are e1 = u1+y2, e2 = u2+y1. In vector form, e = u+Fy,

where F =

[

0 I
I 0

]

Also e = [e1 e2]
T , u = [u1 u2]

T and

y = [y1 y2]
T . Define, ∀ i ∈ I1 and ∀ j ∈ I2,

Q̃(i,j) =

[

Q1
i 0
0 Q2

j

]

, S̃(i,j) =

[

S1
i 0
0 S2

j

]

, R(i,j) =

[

R1
i 0
0 R2

j

]

Q(i,j) = Q̃(i,j) + F ′R(i,j)F + S̃(i,j)F + F ′S̃∗

(i,j)

S(i,j) = S̃(i,j) + F ′R(i,j)

V(i,j)(x(t)) = V 1
i (x1(t)) + V 2

j (x2(t)),

where x(t) represents the state vector corresponding to the
closed loop system. Assume that the ith subsystem of H1 and
the jth subsystem of H2 are active in a particular time interval.

Adding the dissipativity inequalities of H1 and H2,
〈

y1, Q
1
i y1

〉

[s,r]
+ 2

〈

y1, S
1
i e1

〉

[s,r]
+
〈

e1, R
1
i e1

〉

[s,r]

+
〈

y2, Q
2
jy2

〉

[s,r]
+ 2

〈

y2, S
2
j e2

〉

[s,r]
+
〈

e2, R
2
je2

〉

[s,r]

≥ V 1
i (x1(r)) − V 1

i (x1(s)) + V 2
j (x2(r)) − V 2

j (x2(s)).

⇔
〈

y, Q̃(i,j)y
〉

[s,r]
+ 2

〈

y, S̃(i,j)e
〉

[s,r]
+
〈

e,R(i,j)e
〉

[s,r]

≥ V(i,j)(x(r)) − V(i,j)(x(s)).
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⇔
〈

y, Q̃(i,j)y
〉

[s,r]
+ 2

〈

y, S̃(i,j)u+ S̃(i,j)Fy
〉

[s,r]

+
〈

u+ Fy,R(i,j)u+R(i,j)Fy
〉

[s,r]

≥ V(i,j)(x(r)) − V(i,j)(x(s)).

⇔
〈

y,Q(i,j)y
〉

[s,r]
+ 2

〈

y, S(i,j)u
〉

[s,r]
+
〈

u,R(i,j)u
〉

[s,r]

≥ V(i,j)(x(r)) − V(i,j)(x(s)).

Hence the interconnected system is dissipative in each region
(i, j) with respect to the triple (Q(i,j), S(i,j), R(i,j)) and V(i,j)

is the corresponding storage function where i denotes subsys-
tem of H1 which is active and j denotes subsystem of H2 which
is active. By property (4),

V a
i (xa(ti,k)) ≤ V a

i (xa(ti,k−1)) +

La
∑

p=1

(
〈

ya, Q
a
np
ya

〉

[tp1 ,tp2 ]

+2
〈

ya, S
a
np
ea

〉

[tp1 ,tp2 ]
+

〈

ea, R
a
np
ea

〉

[tp1 ,tp2 ]
),

∀ i ∈ Ia, ∀ ea ∈ L2e, where {xa(t); s ≤ t ≤ r} are the states
when the subsystem Ma

i is active and a = 1, 2. Let t(i,j),k
denote the kth time at which the mode (i, j) becomes active.
Then, ∀ i ∈ I1 and ∀ j ∈ I2,

V(i,j)(x(t(i,j),k)) = V 1
i (x1(t(i,j),k)) + V 2

j (x2(t(i,j),k))

≤ V 1
i (x1(t(i,j),k−1)) +

L1
∑

p=1

(
〈

y1, Q
1
np
y1

〉

[tp1 ,tp2 ]

+2
〈

y1, S
1
np
e1

〉

[tp1 ,tp2 ]
+
〈

e1, R
1
np
e1

〉

[tp1 ,tp2 ]
)

+V 2
j (x2(t(i,j),k−1)) +

L2
∑

q=1

(
〈

y2, Q
2
nq
y2

〉

[tq1 ,tq2 ]

+2
〈

y2, S
2
nq
e2

〉

[tq1 ,tq2 ]
+
〈

e2, R
2
nq
e2

〉

[tq1 ,tq2 ]
)

= V(i,j)(x(t(i,j),k−1)) +

L
∑

z=1

(
〈

y, Q̃(np,nq)y
〉

[tz1 ,tz2 ]

+2
〈

y, S̃(np,nq)e
〉

[tz1 ,tz2 ]
+
〈

e,R(np,nq)e
〉

[tz1 ,tz2 ]
)

= V(i,j)(x(t(i,j),k−1)) +

L
∑

z=1

(
〈

y,Q(np,nq)y
〉

[tz1 ,tz2 ]

+2
〈

y, S(np,nq)u
〉

[tz1 ,tz2 ]
+
〈

u,R(np,nq)u
〉

[tz1 ,tz2 ]
).

Here, L is the number of switchings from t(i,j),k−1 to t(i,j),k

(including the switching at t(i,j),k−1) such that
L
⋃

z=1

[tz1 , tz2 ] =

[t(i,j),k−1, t(i,j),k]. In the interval [tz1 , tz2 ], one of the modes
(say, (np, nq)

th mode) will be active, i.e, np can be any number
belonging to the index set I1 = {1, 2, . . . , N1} and nq can be
any number belonging to the index set I2 = {1, 2, . . . , N2}.
Note that p ∈ {1, . . . , L1} and q ∈ {1, . . . , L2}. Hence,
according to definition 5, the closed loop system is dissipative.

Theorem 4. If H1 and H2 are dissipative, then the positive
feedback interconnected system (Figure 2) is stable if Q(i,j) ≤
0, ∀ i ∈ I1 and ∀ j ∈ I2.

Proof. Follows from proposition 2 and Theorem 3.

Theorem 5. Consider the feedback interconnection of two
switched systems H1 and H2. If the subsystems {Ma

i } of Ha,
∀ i ∈ Ia and for a = 1, 2, possess the ‘mixed’-negative imagi-
nary property, then the interconnected system (Figure 2) with

positive feedback is Lyapunov stable provided the following
conditions are satisfied.

(1) k1i k
2
j ≤ 1, ∀ i ∈ I1 and ∀ j ∈ I2.

(2) Property (4) is satisfied for H1 and H2, i.e,

V a
i (xa(ti,k)) ≤ V a

i (xa(ti,k−1)) +

La
∑

p=1

(
〈

ya, Q
a
np
ya

〉

[tp1 ,tp2 ]

+2
〈

ya, S
a
np
ea

〉

[tp1 ,tp2 ]
+
〈

ea, R
a
np
ea

〉

[tp1 ,tp2 ]
),

∀ i ∈ Ia, ∀ ea ∈ L2e and a = 1, 2.

Proof. Assume the conditions 1 and 2 are true. Each subsystem
Ma

i of Ha is dissipative with respect to the triple (Qa
i , S

a
i , R

a
i )

(from proposition 1) where,

Qa
i =−(ǫai Γ̇

∼Γ̇ +
1

kai
B∼B)I,

Sa
i =−

1

2
Γ∼Γ̇I, and

Ra
i = (kai B

∼B− δai Γ
∼Γ)I, for a = 1, 2.

Let V a
i be the storage function corresponding to Ma

i , ∀ i ∈ Ia
and a = 1, 2 (by Theorem 4 in Hill and Moylan [1980]). Then
H1 and H2 are dissipative according to definition 5.
By definition, Q(i,j) = Q̃(i,j)+F ′R(i,j)F+S̃(i,j)F+F ′S̃∗

(i,j).

Substituting the values of Q̃(i,j), S̃(i,j), R(i,j) and F gives,

Q(i,j) =

[

Q1
i +R2

j S1
j + S2

i
∗

S1
j
∗

+ S2
i Q2

j +R1
i

]

=

[

−q1I 0
0 −q2I

]

,

where q1 = (
1

k1i
− k2j )B

∼B+ ǫ1i Γ̇
∼Γ̇ + δ2jΓ

∼Γ,

q2 = (
1

k2j
− k1i )B

∼B+ ǫ2j Γ̇
∼Γ̇ + δ1i Γ

∼Γ.

We have, Q(i,j) ≤ 0, ∀ i ∈ I1 and ∀ j ∈ I2 (from condition
1). Therefore, according to Theorem 4, the closed loop system
is Lyapunov stable.

Remark: The subsystems of H1 and H2 which are active dur-
ing a given time interval should have a common property(small
gain or negative imaginary) at each frequency. This is required
because Γ and B are the same for H1 and H2.

7. EXAMPLE

This section provides a numerical illustration of the results
mentioned above. Here, a two-input-two-output MIMO system

with the transfer-function G(s) = e−τs

[

Gxx Gxy

Gyx Gyy

]

where,

Gxx(s) =
10(174/20)

(s2+2943s+3.367×109)

Gxy(s) =
10(340/20)

(s2+2943s+3.367×109)(s2+5399s+3.825×109)

Gyx(s) =
10(340/20)

(s2+2943s+3.367×109)(s2+5399s+3.825×109)

Gyy(s) =
10(175/20)

(s2+5399s+3.825×109) and τ = 6.0676× 10−5,

is considered. The above mentioned transfer-functions are mod-
els of a Nanopositioning stage (Yong et al. [2013]). Nanoposi-
tioning stages are used in Atomic Force Microscopes (AFMs)
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Fig. 3. Open loop (dashed) and closed loop (solid) magnitude plots for G with
controller Kirc

for scanning material samples. Flexure guided Nanopositioning
stages have two independent piezoelectric stacks for providing
displacements along x and y axis. Typically, a material sample
(that needs to be scanned) is placed on the nanopositioning
stage, and the piezoelectric stacks are actuated such that the
stage traces a raster pattern. This is done by applying a trian-
gular waveform input, ux, on the x axis stack and a slowly
increasing ramp or a stair case function input, uy, on the y axis
stack. As the stage has two independent piezo stacks they have
different resonances along each axis. Furthermore, Nanopo-
sitioning stages also provide a large bandwidth of actuation,
leading to significant delays in the displacement sensor outputs,
when dealing with high frequency signals.

Let Gideal be the transfer function without including the delay
in the system, i.e, G(s) = e−τsGideal(s). Note Gideal(s)
is a highly resonant negative imaginary system. Hence, inte-
gral resonant control (IRC) (Bhikkaji and Moheimani [2008])
and positive position feedback (PPF) control (Bhikkaji et al.
[2007]) are two suitable choices for damping the resonances. A
switched controller consisting of two subsystems, i.e., an IRC
and a PPF controller, can also be designed. Controllers designed
for Gideal(s) will not be effective when applied to G(s), since
the time delay would not only destroy the negative imaginary
property, it could also render the closed loop unstable. Due to
the delay, G(s) will have negative imaginary property in certain
frequency intervals only. In other words, the system is ‘mixed’-
negative imaginary.

The objective is to design a switched controller which effec-
tively damps the resonances in G(s) and at the same time makes
the closed loop system stable (achieved by following Theorem
5). The IRC and PPF controllers designed for G(s) are given

by, Kirc(s) =

[

1.7653×104

s+2.453×104 0

0 1.7605×104

s+2.416×104

]

and Kppf (s) =

[

Kxx 0
0 Kyy

]

, respectively where

Kxx =
1.247×108s+6.299×1012

s2+5.482×108s+7.253×1012

Kyy =
1.111×108s+5.549×1012

s2+4.861×108s+6.362×1012

Kirc and Kppf provide good damping when used in positive
feedback with the plant G (see Figures 3 and 4). The obtained
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Fig. 4. Open loop (dashed) and closed loop (solid) magnitude plots for G with
controller Kppf

Fig. 5. Positive feedback interconnection of G and K

controllers are negative imaginary by design. Hence we have
a plant G which is ‘mixed’-negative imaginary and a switched
controller K(in positive feedback with G) with two subsystems
which are negative imaginary (Refer Figure 5).

The plant G is negative imaginary in the frequency intervals
(0, 5.186× 104) ∪ (5.924× 104,∞) and (−5.186× 104, 0) ∪
(−∞,−5.924 × 104) and it has a small gain of 3.2497 in
the frequency intervals [5.186 × 104, 5.924 × 104] ∪ {0} and
[−5.924× 104,−5.186× 104]. Controllers Kirc and Kppf are
negative imaginary at all frequencies (except zero frequency)
and have a small gain of 0.3077 and 0.0366, respectively in the
frequency intervals [5.186× 104, 5.924× 104] and [−5.924×
104,−5.186×104]. Hence k11 = 3.2497, k21 = 0.3077 and k22 =
0.0366, and it can be seen that k11k

2
1 = 1 and k11k

2
2 < 1. (At

zero frequency, k11 = 0.1558, k21 = 0.7288 and k22 = 0.8723.
Hence, the inequalities k11k

2
1 ≤ 1 and k11k

2
2 ≤ 1 are valid at

zero frequency also). This satisfies condition 1 of Theorem 5.

The Lyapunov functions of G, Kirc and Kppf are denoted as
V 1
1 , V 2

1 and V 2
2 respectively. A discrete switching logic is used

to switch between the two controllers Kirc and Kppf . Let η(t)
denote the controller which is active at any time t (if η(t) = 1
then Kirc is active and if η(t) = 2 then Kppf is active). The
switching rule used is

η(t+) =

{

η(t−), if t− tw < Ts or V 2
3−η(t)(x2(t))

> V 2
3−η(t)(x2(tv))

3− η(t−), otherwise.

Here, Ts is the minimum time for which a subsystem should be
active. tw and tv denote the last and second last time the system
switched between the subsystems. The above switching rule
explicitly enforces condition 2 of Theorem 5 for the controller.
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Fig. 6. Output waveforms - triangular waveform (solid line) and ramp (dotted
line)

For the plant G, condition 2 is automatically satisfied because
it is not switching. Hence, the closed loop system in Figure 5 is
Lyapunov stable according to Theorem 5.

The stability of the system was verified by simulation. The
closed loop system in Figure 5 was implemented in Simulink
with a triangular waveform of frequency 30 Hz and a ramp of
slope 0.01 as the two inputs to the system. Figure 6 shows the
output waveforms obtained from the system. The system is able
to track the given inputs which shows that the system is stable.
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Appendix A. CONVERSION FROM FREQUENCY
DOMAIN TO TIME DOMAIN

Consider two causal, bounded, linear and time invariant opera-
tors Γ : L2[0,∞) → L2[0,∞) and B : L2[0,∞) → L2[0,∞)
such that Γ∼Γ + B∼B = I. Let γ(t) and β(t) be the impulse
responses of Γ and B respectively. Then, γa(t) ∗ γ(t) + βa(t) ∗
β(t) = δ(t), where γa(t) and βa(t) denote the impulse re-
sponses of Γ∼ and B∼ respectively. Taking Fourier transforms,
we get γ̂(−jω)γ̂(jω) + β̂(−jω)β̂(jω) = 1 (Griggs et al.
[2009]).

Consider a causal LTI system with transfer function matrix
M̂ ∈ R which possesses the ‘mixed’-negative imaginary prop-
erty. Then, according to Griggs et al. [2007], M̂ is dissipative
(in frequency domain), i.e,
〈

ŷ, Q̂ŷ
〉

+ 2
〈

ŷ, Ŝû
〉

+
〈

û, R̂û
〉

≥ 0, ∀ û ∈ L2(jR),

(A.1)

where Q̂(ω) = −(ǫω2α(ω) +
1

k
(1 − α(ω)))I,

Ŝ(ω) = −
1

2
jωα(ω)I, and

R̂(ω) = (k(1− α(ω)) − δα(ω))I.

(A.2)

Here the values of k, ǫ and δ are the same as mentioned in
Proposition 1. α(ω) is a real even function of frequency, which
is equal to one at frequencies where M̂ is negative imaginary
and is equal to zero at frequencies where M̂ has small gain.

Substituting (A.2) in (A.1) gives,

−
〈

M̂û, (ǫω2α(ω) + k−1(1− α(ω)))M̂ û
〉

−
〈

M̂û, jωα(ω)û
〉

+ 〈û, (k(1− α(ω))− δα(ω))û〉 ≥ 0.

(A.3)
Setting α(ω) = γ̂(−jω)γ̂(jω) and 1− α(ω) = β̂(−jω)β̂(jω)
in (A.3) gives,

−
〈

M̂û, (ǫω2γ̂(−jω)γ̂(jω) + k−1β̂(−jω)β̂(jω))M̂û
〉

−
〈

M̂û, jωγ̂(−jω)γ̂(jω)û
〉

+
〈

û, (kβ̂(−jω)β̂(jω)− δγ̂(−jω)γ̂(jω))û
〉

≥ 0.

Taking inverse Fourier transform gives,

−
〈

Mu, (ǫΓ̇∼Γ̇ + k−1B∼B)Mu
〉

−
〈

Mu,Γ∼Γ̇u
〉

+ 〈u, (kB∼B− δΓ∼Γ)u〉 ≥ 0.

⇔ −ǫ
〈

Γ̇Mu, Γ̇Mu
〉

−
1

k
〈BMu,BMu〉 −

〈

ΓMu, Γ̇u
〉

+k 〈Bu,Bu〉 − δ 〈Γu,Γu〉 ≥ 0.

The above inequality gives the time domain version of the
‘mixed’-negative imaginary property (Definition 3).
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