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Abstract: This paper addresses the problem of maximizing the power produced by an organic
rankine cycle (ORC) waste heat recovery (WHR) system along a given vehicle mission. A
simplified model of the system allows the formulation of an optimal control problem that can
be solved via dynamic programming (DP). To increase the smoothness and the accuracy of the
solution obtained using the state-of-the-art implementation of DP known as level-set DP, an
improved version is developed, making use of adaptive grids for discretization. The adaptive-
grid algorithm is first validated on a simple problem with an analytical solution, then applied
to the more complex ORC case study. It is shown that the required accuracy can be achieved
with a lower computational effort than the original algorithm. The analysis of the resulting
optimal trajectory for the ORC control problem provides useful insight for both control design
and system design.

Keywords: Dynamic programming, backward reachability, waste heat recovery, Rankine cycle,
vehicle energy management.

1. INTRODUCTION

Over the past few decades, several problems of transient
control of energy production on board vehicles in the
presence of constraints have been addressed and solved
via optimal control methods and in particular via dynamic
programming (Bellman [1957]). A typical example is the
energy management (EM) problem in hybrid electric vehi-
cles (HEVs), which consists in minimizing a cost function
(most often, fuel consumption) during vehicle operation
while respecting driver’s demand and actuator limitations,
following a prescribed battery state-of-charge trajectory
(Guzzella and Sciarretta [2007]; Serrao et al. [2011]). Al-
though it is not directly implementable in real-time (as it
needs perfect prediction of future driving cycle), dynamic
programming proves very useful in this context, as an
analysis tool to understand (optimal) HEV EM behaviour,
as a benchmark to assess other EM strategies or as a
method to determine the potential of a given architecture.

? The authors wish to thank ANR, the French National Research
Agency, for partially funding this work within the framework of the
project TRENERGY (“Train Energy Efficiency via Rankine-cycle
Exhaust Gas Heat Recovery”, # ANR-12-VPTT-09), and ALSTOM
Transport, for providing application data.

With new technologies continuously being introduced to
further reduce vehicle fuel consumption, new control prob-
lems arise that must be efficiently solved to make the most
of the innovation potential. This is for instance the case
of engine waste heat recovery (WHR) systems based on
the Rankine thermodynamic cycle. Applications of this
technology exists, at different levels of maturity, for cars,
trucks, trains and ships (see Sprouse and Depcik [2013] for
a recent overview). For some applications, such as WHR
via organic rankine cycle (ORC) from Diesel engines of
long haul trucks, very interesting fuel consumption reduc-
tions have been reported (up to 6%, according to Stanton
[2013]). As shown in Endo et al. [2007], and more recently
in Peralez et al. [2012], Peralez et al. [2013] and Xie and
Yang [2013], control of Rankine-based WHR systems for
vehicular applications is far from being trivial, especially
when not addressed at initial stages of system design. On
the other hand, an early assessment of the best dynamic
performance achievable on a given architecture, and of the
way to obtain it, can significantly facilitate control design,
while providing valuable insight into the system.

This paper addresses the problem of maximizing the power
produced by an ORC WHR system along a given vehicle
mission. A simplified model of the system allows the for-
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mulation of an optimal control problem that can be solved
via dynamic programming. However, despite the small
size of the model, numerical issues linked to discretization
slow down the search for an appropriate parameterization
of the dynamic programming algorithm. To increase the
smoothness and the accuracy of the solution obtained
using the state-of-the-art implementation of DP known as
Level-Set DP (Elbert et al. [2013]), an improved version
is developed and validated on a simpler problem with an
analytical solution, before application to the ORC case
study.

We start by recalling the principle of dynamic program-
ming, its basic formulation and the level-set algorithm
(Section 2). In Section 3, we present our improved vari-
ant of the level-set algorithm obtained via an adaptive
discretization grid. The new algorithm is first validated on
a simple energy management example, where the power
consumption of an electrical vehicle is to be minimized
(Section 4). At the expense of an acceptable increase
of computational load, the adaptive-grid DP algorithm
indeed provides a smoother and more accurate solution.

In Section 5, we present the optimal control application
consisting in maximizing the power produced by an or-
ganic Rankine cycle waste heat recovery system on board a
diesel-electric train. First, we describe the system. Then we
provide an experimentally validated simplified model, and
use it to formulate the optimal control problem. We show
that, for this application, the adaptive-grid DP algorithm
achieves the same accuracy of the reference level-set DP
algorithm with fewer model calls, while using a lower level
of discretization.

The analysis of the resulting optimal control trajectory
provides useful insight for both control design and system
design.

2. DYNAMIC PROGRAMMING AND LEVEL-SET
METHOD

The generic optimal control problem we want to solve for
a dynamic system with n state variables and m control
inputs can be written:

min
u(t)

J (u (t)) (1)

s.t.

ẋ(t) = f (x(t), u(t), t) (2)

x(0) = x0 (3)

x(t) =X (t) ⊆ Rn (4)

u(t) = U(t) ⊆ Rm (5)

where

J (u (t)) = g (x(tf )) +

∫ tf

0

h (x(t), u(t), t) dt, (6)

is the cost functional.

Since dynamic programming is a numerical algorithm,
discretization of time, state space, and control space is
required. Let the discrete-time model be

xk+1 = fk(xk, uk), k = 0, 1, ..., N − 1 (7)

where xk ∈ Xk is the state vector and uk ∈ Uk the control
signal vector.

Fig. 1. Numerical issues near boundary surface

2.1 Basic DP

Based on principle of optimality introduced by Bellman
[1957], DP proceeds backwards in time to evaluate the
optimal cost-to-go function Jk(xi) at every node xi of the
discretized time-state space:

I. Final time computation

JN (xi) =

{
gN (xi), for xi ∈ XN

∞ else.
(8)

II. Intermediate computations for k = N − 1 to 0

Jk(xi) = min
uk∈Uk

{gk(xi, uk) + Jk+1(fk(xi, uk))}. (9)

The optimal control is the argument that minimizes the
right-hand side of equation (9) for each xi at time in-
dex k, which yields the optimal control policy π =
{µ0(x), µ1(x), ..., µN−1(x)}. This map is used to find the
optimal control signal during a forward simulation of
model (7) starting from a given initial state x0. Since the
resulting state trajectory do not generally coincide with
the nodes xi, interpolation is used.

An major issue to consider is the definition of the cost-
to-go function for infeasible states. Grid points that are
not backward-reachable should have infinite cost as in (8).
However, this causes numerical problems as illustrated
in Fig. 1. When running step k of backward iteration,
the cost-to-go Jk+1(x) is known for all grid points xi.
In order to evaluate the cost-to-go Jk(xp), all possible
control candidates u ∈ Uk are applied. In Fig. 1, the point
fk(xp, u1) is in the backward-reachable space. But since
the value of Jk+1(xi+1) is infinite, interpolation will lead
to consider that the cost-to-go of xi+2

k is infinite too.

A method to deal with this problem consists in using a
large but finite value for infeasible states. The value of
this penalty represents a critical parameter that is difficult
to calibrate. Nevertheless, the penalty method results in a
steep gradient of the cost-to-go function near the boundary
and cannot completely solve the aforementioned problem.

2.2 Level-set algorithm

Another approach is based on the concept of backward-
reachable space, as introduced in Back et al. [2004];
Sundström et al. [2010]. More particularly, the level-set
DP algorithm, introduced by Elbert et al. [2013], evaluates
the backward-reachable space in parallel with cost-to-go
function evaluation. A level-set function I is introduced
that associates a real value to the state x:

I : X ⊆ Rn → R, (10)
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where I(x) ≤ 0 if x is in reachable space and I(x) > 0
else. The level-set function is evaluated for grid points xi

at each time index k yielding a grid evaluation Ikx . At
the next backward iteration step k + 1, interpolation is
used to determine whether a point x is backward reachable
or not. Such a function can represent nonconvex regions,
moreover, the number of state and control inputs is not
limited. Assume that the final state constraint is given as
a target set T , which is defined by a level-set function h(x)

h : XN → R, where XN ⊆ Rn (11)

T = {x ∈ XN |h(x) ≤ 0}. (12)

Then a DP algorithm is applied where the cost-to-go
function to minimize is the level-set function I:

I. Initialization
IN (xi) = h(xi). (13)

II. Backward iteration for k = N − 1 to 0

Ik(xi) = min
uk∈Uk

{Ik+1(fk(xi, uk))}. (14)

3. ADAPTIVE-GRID DP ALGORITHM

3.1 Backward algorithm

The level-Set DP algorithm introduced in Elbert et al.
[2013] can be modified to improve the accuracy of solution.

I. Initialize k=N and the level-set and cost-to-go func-
tions as:

IN (xi) = h(xi) (15)

JN (xi) = gN (xi). (16)

Considering that xi ∈ Rn let xi =
[
xi(1) ... xi(n)

]
.

A second discretization of state space X̃N is intro-
duced:

X̃N = {x̃1N , x̃2N , ..., x̃
q
N}, (17)

where each jth component of vector x̃iN is bounded
below by xN (j) and above by x̄N (j) as follows:

xN (j) = min
i∈{1,...,q}

{xiN (j) | 0 < IN (xiN )} (18)

x̄N (j) = max
i∈{1,...,q}

{xiN (j) | 0 < IN (xiN )} (19)

As illustrated in Fig. 2 this second discretization
may improve the accuracy of level-set and cost-to-go
estimations:

ĨN (x̃i) = h(x̃i) (20)

J̃N (x̃i) = gN (x̃i). (21)

II. Reduce k by 1 and update the level-set function by

Ik(xi) = min
uk∈Uk

{Ĩk+1(fk(xi, uk))}. (22)

A second discretization X̃k is computed in the same
way as for the first step. Then the level-set function
is updated by

Ĩk(x̃i) = min
uk∈Uk

{Ĩk+1(fk(x̃i, uk))}. (23)

III. For each grid point x̃i, find the set of control signals
for which the system trajectory ends up inside the
backward-reachable space at the next time step

UF
k (xi) = {uk ∈ Uk | Ĩk+1(fk(x̃i, uk)) ≤ 0}, (24)

and the one control candidate that minimizes the
level-set function

∗
uk (x̃i) = arg min

uk∈Uk

{Ĩk+1(fk(x̃i, uk))}. (25)

IV. Update the optimal cost-to-go by the following rule:
if at least one valid control candidate is found, i.e.,
UF
k (xi) 6= ∅, then calculate the cost-to-go based upon

the optimal candidate

J̃k(x̃i) = min
uk∈UF

k
(xi)
{gk(x̃i, uk) + J̃k+1(fk(x̃i, uk))}.

(26)
If, however, the grid point is not backward-reachable,
then calculate the cost-to-go based on the control

input
∗
uk (x̃i)

J̃k(x̃i) = gk(x̃i,
∗
uk) + J̃k+1(fk(x̃i,

∗
uk)) (27)

Fig. 2. A first estimation Ik of level-set function is com-
puted on the whole state space (left plot). A second
discretization (right plot) allows to improve the accu-
racy of both level-set and cost-to-go functions.

3.2 Forward algorithm

To increase smoothness, the forward algorithm introduced
in Elbert et al. [2013] is used with a new discretization of
the control space:

Ũk = {u1k, ..., urk︸ ︷︷ ︸
Uk

, ..., ur̃k} (28)

I. Initialize k = 0 and x0 at initial condition.
II. Increase k by 1 and find the feasible control candi-

dates

ŨF
k (xk) = {uk ∈ Ũk | Ĩk+1(fk(xk, uk)) ≤ 0}, (29)

III. Find the optimal control input

u0k(xk) = arg min
uk∈Uk

{gk(xk, uk) + J̃k+1(fk(xk, uk))}
(30)

IV. Simulate the system using the optimal control input

xk+1 = fk(xk, u
o
k) (31)

and repeat steps II. - IV. until k = N .

Note that the computational effort involved in the finer
discretization Ũk is limited. Since steps II. - IV. of the
algorithm are applied to one value of xk, the number of
additional calls to the model is N · (r̃ − r).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5673



4. A SIMPLE ENERGY MANAGEMENT EXAMPLE

To illustrate the benefits of the new algorithm, a first op-
timal control problem with an analytic solution is studied.
It concerns energy management for an electric vehicle.

4.1 System description

Neglecting the aerodynamic friction and considering the
road slope null, the simplified continuous-time dynamics
of the vehicle in the longitudinal direction x can be written
as in Petit and Sciarretta [2011]:

ẋ = v, v̇ = h1u− h0, (32)

where the control variable u is a percent torque demand, h0
and h1 are constant parameters depending on the rolling
resistance coefficient, the motor maximum torque, vehicle
mass, transmission ratio and wheel radius.

The on-board electric power consumption can be written
as

Pm = b1uv + b2u
2 (33)

4.2 Optimal control problem

We wish to find a control strategy that minimizes the
power consumption under the constraints that the vehicle
must reach a destination point at a distance D in a given
time tf starting from a given point, at rest. In order to for-
mulate this problem for DP solving, the continuous-time
model is discretized using an Euler forward approximation
with a time step Ts. The optimal control problem can be
formulated as follows:

min
uk∈[−2, 2]

N−1∑
k=0

(
b1ukvk + b2u

2
k

)
Ts (34)

vk+1 = vk + (h1uk − h0)Ts (35)

xk+1 = xk + vkTs (36)

x0 = 0, v0 = 0 (37)

0 ≤ xk ≤ x̄, 0 ≤ vk ≤ v̄ (38)

D ≤ xN ≤ x̄, 0 ≤ vN ≤ εv, (39)

where N =
tf
Ts

. The final constraints are formulated in

equations (39). In the following, a particular solution is
sought for a final distance D = 200 and a final time
tf = 60. The time discretization is chosen to be Ts = 0.2s
(then N = 300), with x̄ = 205, v̄ = 8, εv = 0.3.

4.3 DP solution

The problem stated above is solved using the basic, the
original level-set and the level-set with two-step discretiza-
tion DP algorithms.

State variable spaces are first discretized respectively with
Nv = 81 and Nx = 106, while the control space is
discretized with Nu = 81. Fig. 3 shows the resulting
system trajectory and the corresponding control inputs
for each of the three algorithms. They are compared
to the analytic solution (a parabola) presented by Petit
and Sciarretta [2011]. The results obtained using the new
algorithm are closer to the analytic solution, even with a

Fig. 3. Vehicle trajectory and control inputs when solving
the problem with Nv = 81, Nx = 106 and Nu = 81

relatively coarse discretization. In term of cost, the relative
mean errors of the three algorithms are found to be of
1.4%, 0.78% and 0.19% respectively.

The evolution of backward-reachable space boundaries,
where level-set function vanishes, helps to analyze those
results. Fig. 4 shows that in the first backward steps, the
optimal trajectory (xo, vo) is close to Ĩk estimations. Here,
for accurate estimation of boundaries it is important not
to consider reachable points close to the optimal solution
as infeasible. After those first backward steps, the optimal
trajectory moves away from the boundaries. However, the
reachable state space remain restricted. Thus, the second
discretization step of the proposed algorithm can improve
the accuracy of cost-to-go function.

Fig. 4. Optimal trajectory (xo, vo) and evolution of
backward-reachable space (evaluated by adaptive-grid
DP).

Two-step discretization involves a larger computational
effort for a given set of parameters (Nv, Nx, Nu). This
computation cost can be expressed in terms of number
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Fig. 5. Algorithm accuracies vs number of model calls for
the simple energy management example.

of model calls for evaluation. For example, for the level of
discretization used above, basic and original level-set DP
both require about 2.085 ·108 model calls whereas the new
algorithm requires about 2.85 · 108. For a fair comparison,
algorithm accuracies are compared for different levels of
discretization. Results are shown in Fig. 5. The adaptive-
grid DP algorithm attains acceptable accuracies for a much
lower number of calls.

5. OPTIMAL CONTROL OF AN ORC FOR WHR ON
BOARD TRAINS

5.1 System description

The system under consideration is represented in Fig. 6.
It is a prototype ORC system for WHR from a diesel
engine generating set (“Power Pack”) manufactured by
Alstom Transport for installation in diesel-electric railcars.
A pump pressurizes an organic fluid (R365mfc) in liquid
state and circulates it through a closed circuit. Via a by-
pass valve, a fraction Vo,e of engine exhaust gas is fed
to a heat exchanger (evaporator) which transfers heat
to the working fluid. The vaporized fluid then enters a
turbine, which converts some of the kinetic energy into
work, driving a generator connected to the Power Pack
electrical network. Lastly, the fluid is recondensed before
returning to the pump at low pressure. Cooling is provided

by a fan with controllable air flow
∗
mA.

The objective here is to find the controls u = { ∗mA, Vo,e}
that maximize the net power Pnet produced by the WHR
system, function of Pexp, the power recovered by the
turbine, and of Ppump and PA, the powers consumed by
the pump and the cooling system :

Pnet = Pexp − Ppump − PA, (40)

The thermodynamic cycle of the working fluid is repre-
sented in Fig. 7. In the following, subscripts 1 to 4 will
refer to the working fluid at components outlet, namely the
evaporator, the expander, the condenser and the pump.

Recoverable mechanical power from the turbine is usually
expressed (Bao and Zhao [2013]) in terms of a constant

efficiency ηexp, of the working fluid mass-flow
∗
m and of

the enthalpy gradient h2 − h1:

Pexp =
∗
m(h2 − h1) ηexp. (41)

Similarly, the efficiency ηpump can be considered constant
and the power consumed by the pump can be written in
terms of the pressure gradient and the fluid density:

Ppump =
∗
m

p1 − p3
ρ3 ηpump

. (42)

The power consumed by the fan can be considered propor-
tional to the delivered air flow (Manente et al. [2013]):

PA =
∗
mA kA. (43)

To solve this problem, we need a model to predict the
evolution of the variables in the expressions of powers (41)-
(43), that is fluid mass-flow, pressures and enthalpies.

Model dimensions should be small so as not to be con-
fronted with the well-known “curse of dimensionality”
(Powell [2007]). The so-called moving boundaries (MB)
method allows a realistic dynamic representation of heat
exchangers with a limited number of states. Cheng et al.
[2004] proposes a model that considers an average wall
temperature, while Peralez et al. [2013] shows experimen-
tally that, for an ORC, the slowest dynamics are those of
the wall temperatures. Thus, it is possible to neglect the
fluid dynamics, thereby reducing the number of states.

In the next paragraph, we propose a new heat exchanger
model with a single state variable obtained by applying the
first law of thermodynamics. This model is then validated
against experimental data, showing that it is able to
capture the slowest dynamics of the ORC.

Fig. 6. ORC system under investigation

Two-state ORC model. Considering the thermodynamic
cycle in Fig. 7, fluid superheating at evaporator outlet
(point 1) is assumed to be perfectly regulated at a con-
stant value by the pump mass-flow. The fluid at pump
inlet (point 3) is assumed to be in the saturated liquid
state. The slow dynamics of the system, i.e. the thermal
dynamics of exchangers walls, are taken into account while
the fluid is considered to be in equilibrium.

Let T̄w,e and T̄w,c the average wall temperatures respec-
tively of the evaporator and the condenser. Let T̄f,e and
T̄f,c the average temperatures of the working fluid circu-
lating respectively in the evaporator and the condenser.
The wall energy balance can be written as:
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Mw,e
˙̄Tw,e =Sf,e ᾱf,e (T̄f,e − T̄w,e)

+ Vo,e
∗
mexh cpexh (Texh − T̄w,e)

Mw,c
˙̄Tw,c =Sf,c ᾱf,c (T̄f,c − T̄w,c)

+ ηA
∗
mA cpA (TA − T̄w,c),

(44)

where ηA = 1−exp(−αA SA
∗
mA cA

) reflects the decrease in heat

exchange efficiency for large air mass flows (McKinley and
Alleyne [2008]).

In the following, T̄f,e and T̄f,c will be assumed equal to the
evaporation temperatures respectively of the high-pressure
and of the low-pressure sides of the ORC. T̄f,e (resp. T̄f,c)
is then an unimodal function of p1 (resp. of p3). Likewise,
h1, ρ1 depend only on p1, whereas h3 depends on p3.

Fluid energy balances in the exchangers yield:
0 = h1 − Sf,e ᾱf,e

T̄w,e − T̄f,e
∗
m

− h3

0 = h3 − Sf,c ᾱf,c
T̄w,c − T̄f,c

∗
m

− h2,
(45)

where the mass flow
∗
m is considered homogeneous

throughout the circuit. The mass flow through the turbine
is given by

∗
m = k

√
2 ρ1 p1, (46)

where k is a constant (function of the equivalent section
of the turbine nozzles).

Assuming a constant isentropic efficiency ηis of the turbine

h2 = h1 − ηis (h1 − his,2), (47)

where his,2 corresponds to the enthalpy whose entropy is
equal to that of point 1 and pressure is equal to that of
point 3. his,2 then depends on p1 and p3.

Using the previous expressions for
∗
m and h2, system (45)

can be written in the following implicit form:

0 = Φ(T̄w,e, T̄w,c, p1, p3). (48)

Knowing T̄w,e and T̄w,c, (48) is solved numerically by
iterating over p1 and p3 (as illustrated in Fig. 8). T̄f,e and
T̄f,c are then deduced from p1 and p3 to express the wall
thermal dynamics (44).

Fig. 7. Rankine cycle for “dry” fluid

Fig. 8. p1 and p3 maps as function of T̄w,e and T̄w,c

Experimental validation of the simplified model. In order
to validate the heat-exchanger one-state model, the evap-
orator model response to transient external conditions is
compared to experimental data. Transient conditions on
exhaust gas entering in evaporator are shown in Fig. 9.
Key measurement variables of working fluid at evaporator

outlet, namely the mass flow
∗
m, the pressure p1 and the

temperature T1 are plotted in Fig. 10. Mean relative devi-
ations are found to be about 3.3% for working fluid mass
flow, 2% for pressure and less than 1% for temperature.

Fig. 9. External conditions for experimental validation of
one-state evaporator model.

Fig. 10. One-state evaporator model: experimental valida-
tion

5.2 Optimal control problem

We wish to find a control strategy that maximizes the
power production Pnet, defined by equations (40)- (43),
along a given mission of duration tf . The mission profile
considered herein, a portion of a typical intercity train trip,
results in a set of external conditions for the ORC system,

namely for the temperature Texh(t) and mass-flow
∗
mexh(t)
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Table 1. Comparison of computational efforts
required for the ORC problem.

Level-set DP Adaptive-grid DP

Level of discretization N = 24 N = 14
Mean net power produced 5.485 kW 5.497 kW
Number of model calls 8.309 · 107 1.24 · 107

of engine exhaust gas. A variation of ambient temperature
TA(t) is also considered as shown in Fig. 11.

The cost functional to be maximized depends on time,
state variables x = {T̄w,e, T̄w,c} and control inputs u =

{Vo,e,
∗
mA} :

J =

∫ tf

0

Pexp(x) + Ppump(x) + PA(u, t), dt, (49)

where the dynamic of x = {T̄w,e, T̄w,c} is defined by the
two-state ORC model equations (44)-(48). This maximiza-
tion problem must be solved under a security constraint
on pressure p1. A final constraint on wall temperature x1
is also considered to let the system stop at the end of the
mission:

p1(x, t)< 25 bar, ∀t ∈ [0, tf ] (50)

x1(tf )< 130 ◦C (51)

Bounds on control inputs are defined by technical con-
siderations. The fraction of exhaust gas is bounded by
[0, 1] whereas air mass flow provided by fan is comprised
between 0 and 4 kg s−1:

u(t) ∈ [0, 1]× [0, 4], ∀t ∈ [0, tf ] (52)

5.3 DP solution

The optimal control problem is solved using the original
level-set DP and the new adaptive-grid DP algorithms.
Different levels of state space and input variables dis-
cretization are tested with numbers of grid points set to
N = Nx1 = Nx2 = Nu1 = Nu2. The computational efforts
– in terms of number of model evaluations – required to
achieve a similar level of accuracy are compared in Table 1.

The comparison shows that, like in the simple thermal
management example, a coarse discretization suffices to
obtain good results using the adaptive-grid algorithm.

Fig. 11. Input disturbances for ORC problem.

5.4 Results analysis

Fig. 12 shows the system trajectory obtained with the
discretization corresponding to N = 21. Wall tempera-
tures of heat exchangers periodically rise in response to
the increase of the exhaust gas mass flow. This yields a
pressure increase (top plot) activating the safety constraint
(50). A the end of the mission, the final constraint (51)
leads to the complete closing of the evaporator by-pass, i.e
u1 = 0.

The influence of ambient temperature on the overall effi-
ciency of the ORC system is also highlighted. In fact, the
power recovered by the turbine is substantially reduced for
high ambient temperatures, whereas the powers consumed
by the pump and the cooling fan are scarcely affected.

These results can be very useful to design a control
strategy. We can infer that tracking control of condenser

pressure can be obtained using the air mass flow
∗
mA to

regulate condenser cooling; which would in turn ensure
the pressure ratio required to run the turbine efficiently.
On the other hand, the evaporator by-pass can be used to
enforce safety limits in terms of pressure and temperature.

Solving the optimal control problem introduced above
should also be useful at system design stage, especially
considering that transient behavior is accounted for in
system performance evaluation. The problem could be
formulated for variants of the system under considera-
tion, obtained with different sets of model parameters.
For instance, the influence of working fluid choice or of
exchangers sizing – taken into account in the two-state
model described in Section 5.1 – could be studied. Thanks
to the good accuracy achievable by the adaptive-grid DP
algorithm at low levels of discretization, it seems feasible
to study the impact of these (numerous) parameters within
reasonable simulation times.

6. CONCLUSION

This paper proposes two main contributions.

• An original optimal control problem is formulated in
order to find the maximum power produced by an
organic Rankine cycle waste heat recovery system on
board a diesel-electric train, along a given mission
profile. An ad-hoc simplified model is developed, and
experimentally validated, to make solving by dynamic
programming computationally treatable. The optimal
control trajectories obtained provide valuable insight
into system behavior and prove useful for control
design.

• An improved version of the state-of-the-art level-set
DP algorithm is developed based on an adaptive grid,
and validated on a simpler optimal control problem
with an analytical solution, in order to achieve the
required accuracy with a lower level of discretization
and shorter computational time than the original
algorithm.

Since the proposed improvement does not rely on a specific
structure, application of the new algorithm should also
be beneficial to other optimal control problems. Yet, we
have not proven (nor tried to prove) that our “adaptive-
grid” version consistently outperforms the original level-
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Fig. 12. Adaptive-grid DP solution: time evolution of the ORC system characteristics

set algorithm in different contexts than those presented in
the paper.

Nonetheless, the accuracy obtained on the ORC study case
with a relatively short computational time opens up new
opportunities. For instance, it becomes possible to carry
out a thorough parametric study of the ORC system, in
order to optimize its design by taking into account the
transient behavior.
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