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Abstract: As rechargeable lithium-ion batteries are widely used in many applications nowadays,
how to accurately evaluate the battery’s state of charge(SOC) becomes a more and more
important issue. A new method for estimating the SOC of lithium-ion batteries based on an
inclusive equivalent circuit model is proposed in this paper. To the best of our knowledge,
the parameters in the model are usually considered as constants to simplify the problem of
the SOC estimation, which may lead to some estimation error. In order to get more accurate
estimation results, the capacitances and resistances in the battery model are considered as
nonlinear functions of the SOC and the temperature of the battery. The resistances also depend
on the battery’s charging or discharging mode. Nonlinear relationship between the open circuit
voltage(OCV) and the SOC is considered and a nonlinear observer is designed to estimate
the inner characteristics of the battery. Lyapunov stability analysis is utilized to prove its
performance and simulation results are provided to illustrate the performance of the proposed
approach.

Keywords: lithium-ion battery, state of charge, equivalent circuit model, nonlinear observer,
Lyapunov stability.

1. INTRODUCTION

Rechargeable Lithium-ion batteries are widely used in
many applications in recent years, such as telecommu-
nication and hybrid electric vehicles. The role they play
in these technologies are more and more significant. The
convenience, reliability, mobility and utility of lithium-ion
battery can be enhanced, if the battery inner performance
can be predicted accurately (Dubarry and Liaw (2007)).

The SOC of the battery, which is defined as the rate of
the available capacity to its maximum capacity when the
battery is completely charged(Hu and Yurkovich (2010)),
is an important parameter of the battery management
system for the battery optimized operation and extension
of the battery’s lifetime. But the SOC of batteries couldn’t
be obtained easily, as it can not be directly measured by
sensors. How to estimate the SOC of the battery precisely
has puzzled many researchers and has been investigated
by many institutes. .

In order to evaluate the SOC of battery under differ-
ent circumstances properly, an accurate battery model
is indispensable. Lithium-ion battery models which are
commonly used nowadays mainly include: electrochemical
mechanism model(such as Boovargavan and Ramadesigan
(2010)), equivalent circuit model(such as Pattipati et al.
(2011)), neural network model(such as Chau et al. (2004))
and so on.
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The internal and external characteristic reactions of the
battery can be accurately described by the electrochem-
ical model. It’s often utilized for the battery mechanism
analysis, the electrode/electrolyte materials selection and
other aspects(Su et al. (2011)). However, as the parameters
in the model are related to battery structure, dimensions
and materials, it requires so many complicated calcula-
tions that it is seldom used in actual battery manage-
ment systems. The equivalent circuit model is simple for
analysis, with small restriction in battery materials and
size. It needs small amount of computation and can be
widely applied to many fields. But such models are just
approximate simulation of the battery characteristics and
can not describe the internal potential and temperature
distribution of the battery. The neural network model,
which has the basic characteristics of nonlinear and learn-
ing ability, can be utilized to simulate the characteristics of
the battery, since the battery is a highly nonlinear system.
It can get any relationship between the input and output
of the battery, without the need to know the complicated
internal mechanisms of the battery. Whereas, the internal
characteristics of the battery couldn’t be obtained, if they
are needed to be validated.

Compared with other two kinds of models, the equivalent
circuit model is the fittest model to estimate the SOC
of lithium-ion batteries, due to its simplicity and good
performance. So many schemes based on this kind of
model have been presented by researchers to evaluate the
battery’s SOC estimation.

One of the most commonly used methods for SOC esti-
mation is the ampere-hour counting(O. et al. (1998)), in
which the time integral of the battery current is considered
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as a indication of SOC. Although it is simple and easily
implemented, this method accumulates errors in measure-
ments and may lead to large SOC errors in real-world
applications. That the initial value of SOC can not be ob-
tained accurately and it needs to be calibrated frequently.
The open circuit voltage method(Lee et al. (2008)) is based
on the identified relationship between the battery open-
circuit voltage and SOC. The SOC of the battery can be
obtained by measuring the OCV. But this method takes
a lot of time, as the OCV can only be measured after
a long rest of the battery. Kalman Filter is a recursive
algorithm utilized for the estimation of the internal states
of the battery system (Domenico et al. (2008)). A nonlin-
ear extension of the Kalman Filter, known as Extended
Kalman Filter(EKF), which takes account the nonlinear
relation of OCV and SOC, has been investigated by many
researchers(see He et al. (2011)). EKF is a widely used
tool to extract the internal states of the battery model.
However, the estimation error of the SOC may be very
large, when there is no significant difference between the
voltage measurement error and the discharge voltage drop.
The performance of the EKF method can not be proved
and its estimation performance can not be guaranteed.

In this paper, a new scheme for estimating the SOC of
lithium-ion batteries based on an inclusive equivalent cir-
cuit model (Chen and Rincon-Mora (2006)) is proposed.
This model could estimate the remained runtime and
V-I performance of lithium-ion batteries accurately and
can be easily extended to other batteries, such as nickel-
metal hydride batteries. The resistances and capacitances
in the equivalent circuit model are often considered as
constants to simplify the problem in many references(e.g.
Gholizadeh and Salmasi (2013)). The temperature effect
on the model is usually neglected. However, this will cause
a lot of modeling and estimation error. In this paper, the
equivalent capacitances in the model are considered as the
functions of the SOC and the temperature of the battery.
The resistances are considered as the functions of the SOC,
the temperature and the battery’s charging or discharging
mode. As the battery model is a highly nonlinear system, a
nonlinear observer has been designed to estimate the SOC
of the battery. Then a Lyapunov based analysis is utilized
to prove the observer’s stability and convergence. Simu-
lations are done to validate its estimation performance
and an experimental facility will be designed to verify the
proposed nonlinear SOC estimation scheme later.

This paper is organized in the following manner. In Section
2, an equivalent circuit model of lithium-ion batteries is
provided. Section 3 details the process of nonlinear ob-
server design for the SOC estimation and Lyapunov stabil-
ity analysis is used to prove its stability and convergence.
Related simulation results are provided in Section 4 and
conclusions are provided in Section 5.

2. BATTERY MODEL DEVELOPMENT

In order to estimate the SOC of the battery accurately,
an intuitive and comprehensive equivalent circuit model
proposed by Chen and Rincon-Mora (2006) is selected
in this paper. The nonlinear mapping from the battery’s
SOC to the open circuit voltage VOC(t) in this model is
presented by a voltage-controlled voltage source. 0V − 1V

Fig. 1. Equivalent circuit model of the battery

of VSOC corresponds to 0%−100% of the SOC. As VOC(t)
does not vary greatly with temperature(see Johnson and
Pesaran (2000)), it can be considered only associated with
VSOC(t) as follows

VOC = f(VSOC) (1)

where f(·) is a nonlinear function between VOC(t) and
VSOC(t).

Fig. 1(from Gholizadeh and Salmasi (2013)) illustrates the
equivalent circuit model of the battery, with two inter-
related subcircuits, which influence each other through a
voltage-controlled voltage source and a current-controlled
current source. The left circuit in Fig. 1 is used to sim-
ulate the SOC and remained runtime of the battery. Cb
denotes the full-charge capacitor and Rsd denotes the self-
discharge resistor. Cb and Rsd are used to denote the self-
discharge character of the battery.

The circuit on the right in Fig. 1 represents the transient
response and V-I curves of the battery(see Kim and
Qiao (2011)). The resistor R0 is used to characterize the
charge and discharge energy losses of the battery. The RC
networks (Rf , Cf ) and (Rs, Cs) are used to characterize
the short-term and long-term transient responses of the
battery. IB(t) represents the charge/discharge current of
the battery and VB(t) represents the terminal voltage of
the battery.

If the battery is not used too many times, the effect of
cycle number on the battery can be neglected. Ignoring
the cycle number of the battery and other subordinate
influence factors, all the parameters of the components
in the model can be considered as the functions of the
SOC and the temperature of the battery. In addition, the
resistances also depend on the current direction(that is
to say, the resistances are different when the battery is
in charging or discharging mode). Practically, in order to
simplify the battery model, Cb can be considered as its
nominal capacity of the battery and Rsd can be simplified
as a large constant resistor, if the temperature of the
battery varies within a small range(see Chen and Rincon-
Mora (2006)).

As Cf and Cs do not really exist in the battery, the effect of
the change rate of capacitance on V-I performance can be
neglected (refer to Sitterly et al. (2011)). The dynamics of
the voltages across the capacitors Vf (t) , Vs(t) and VSOC(t)
can be expressed as follows

V̇f = −
1

Rf (VSOC , T, η)Cf (VSOC , T )
Vf +

1

Cf (VSOC , T )
IB

V̇s = −
1

Rs(VSOC , T, η)Cs(VSOC , T )
Vs +

1

Cs(VSOC , T )
IB

V̇SOC = −
1

RsdCb
VSOC −

1

Cb
IB

(2)
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where T(t) is the battery temperature, η denotes the
current direction, namely it denotes that the battery is
in a charging or discharging mode with its value as follows

η =

{
1, charging mode
0, discharging mode.

The terminal voltage VB(t) can be expressed as

VB = VOC −R0(VSOC , T, η)IB − Vf − Vs (3)

As İB(t) can be ignored compared with other time-
constants in a sampling period(see Gholizadeh and Salmasi
(2013)), based on (1), (2) and (3), the derivative of the
terminal voltage is determined to be

V̇B =
∂VOC

∂VSOC
V̇SOC − V̇f − V̇s

=
Vf

Rf (VSOC , T, η)Cf (VSOC , T )
−

Vf

Rs(VSOC , T, η)Cs(VSOC , T )

−
VB

Rs(VSOC , T, η)Cs(VSOC , T )
− (

R0(VSOC , T, η)

Cs(VSOC , T )Rs(VSOC , T, η)

+
1

Cf (VSOC , T )
+

1

Cs(VSOC , T )
+
ḟ(VSOC)

Cb
)IB

+
f(VSOC)

Rs(VSOC , T, η)Cs(VSOC , T )
−
ḟ(VSOC)

RsdCb
VSOC .

(4)

The effect of the change of temperature on battery perfor-
mance is usually neglected in many references to simplify
the battery model. However, the temperature of the bat-
tery always increases because of the battery reactions and
thermal generation factors. Therefore, the temperature
control is an indispensable issue in lithium-ion battery
management systems in reality.

The thermal generation Q(t) can be decomposed to three
elements: reaction heat value Qr(t), polarization heat
value Qp(t) and Joule heat value QJ(t). The value of Qr(t)
can be negligible in comparison with Qp(t), QJ(t) (see
Sato (2001)). The complicated thermal distributions inside
the battery is not considered in this paper. Using thermal
energy balance (Gao et al. (2002)), the derivative of T (t)
can be obtained as follows

Ṫ =
Q̇

mcp
− hcS(T − Ta)

mcp
(5)

where m represents the battery mass, cp is the specific
heat, S is the battery external surface area, hc denotes heat
transfer coefficient, Ta denotes the ambient temperature
and it is considered as a constant.

The dynamics of Q(t), QJ(t), Qp(t) can be expressed as
follows

Q̇ = Q̇J + Q̇p

Q̇J = I2B(R0(·) +Rs(·) +Rf (·)) +
V 2
SOC

Rsd
Q̇p = I2BRp

(6)

where Rp denotes the polarization resistance.

Remark 1. As high temperature is harmful to batteries, a
heat sink is usually used to ensure the battery temperature
not too high. The cooling performance will be reflected
through influencing the value of hc in this model.

Based on (2), (4) and (5), the battery model can be
rewritten as follows

ẋ = A(x , η)x + g(x , u, η)
y = Cx

(7)

where x (t) ∈ R5, y(t) ∈ R, u(t) ∈ R, A(x , η) ∈ R5×5,
g(x , u, η) ∈ R5 and C ∈ R1×5 are defined as follow

x(t) , [x1(t), x2(t), x3(t), x4(t), x5(t)]T

= [VSOC , Vf , Vs, VB , T ]T

y(t) , VB , u(t) , IB

A(x , , η) =
−a 0 0 0 0

0 −h1(x1, x5, η) 0 0 0

0 0 −h2(x1, x5, η) 0 0

0 h3(x1, x5, η) 0 −h2(x1, x5, η) 0

0 0 0 0 −c



g(x , u, η) =


−bu

g1(x1, x5)u

g2(x1, x5)u

g3(x1, x5, η)u+ g4(x1, x5, η)

h4(x1, x5, η, u)


C = [0 0 0 1 0]

a = 1
RsdCb

, b = 1
Cb
, c = hcS

mcp

h1(x1, x5, η) = 1
Rf (x1,x5,η)Cf (x1,x5)

h2(x1, x5, η) = 1
Rs(x1,x5,η)Cs(x1,x5)

h3(x1, x5, η) = 1
Rf (x1,x5,η)Cf (x1,x5)

− 1
Rs(x1,x5,η))Cs(x1,x5)

h4(x1, x5, , η, u) = Q̇(x1,x5,η,u)
mcp

+ hcSTa

mcp

g1(x1, x5) = 1
Cf (x1,x5)

g2(x1, x5) = 1
Cs(x1,x5)

g3(x1, x5, η) = − R0(x1,x5,η)
Cs(x1,x5)Rs(x1,x5,η)

− 1
Cf (x1,x5)

− 1
Cs(x1,x5)

− ḟ(x1)
Cb

g4(x1, x5, η) = f(x1)
Rs(x1,x5,η)Cs(x1,x5)

− ḟ(x1)
RsdCb

x1 .

The formulation in (7) illustrates a single-input single-
output nonlinear system, which is complicated and hard
to be analyzed because of its high nonlinearity.

Remark 2. For the problem of SOC estimation, the resis-
tances, capacitances, charge/discharge current and tem-
perature can be assumed positive and bounded. Then
it can be obtained that a, m, c, Q̇(t), h1(·) and h2(·)
are all bounded and positive. And u(t), h3(·), h4(·), gi(·)
(1 ≤ i ≤ 4) are all bounded.

3. NONLINEAR OBSERVER DESIGN FOR SOC
ESTIMATION

3.1 Nonlinear Observer Design

As illustrated in (7), the battery model is a nonlinear
system. In this model, the state x1(t), which is the SOC of
the battery, can’t be measured directly. In order to predict
it, a nonlinear observer is designed.
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Since A(·) and g(·) in (7) can not be perfectly known,
A0 (·) and g0 (·), which are the nominal models (see Khalil
(2002)) of A(·) and g(·), are used in the observer. The
observer can be denoted as follows

˙̂x = A0 (x̂ , η)x̂ + g0 (x̂ , u, η) + L(y − C x̂ ) (8)

where x̂(t) ∈ R5 is the estimation of x(t), L ,
[l1, l2, l3, l4, l5]T ∈ R5 is the observer gain to be designed.

Based on (7), (8) can be rewritten as follows

˙̂x1 = −ax̂1 − bu+ l1(x4 − x̂4)

˙̂x2 = −h01(x̂1, x̂5, η)x̂2 + g01(x̂1, x̂5)u+ l2(x4 − x̂4)

˙̂x3 = −h02(x̂1, x̂5, η)x̂3 + g02(x̂1, x̂5)u+ l3(x4 − x̂4)

˙̂x4 = h03(x̂1, x̂5, η)x̂2 − h02(x̂1, x̂5, η)x̂4 + g03(x̂1, x̂5, η)u
+ g04(x̂1, x̂5, η) + l4(x4 − x̂4)

˙̂x5 = −cx̂5 + h04(x̂1, x̂5, η, u) + l5(x4 − x̂4)

(9)

where h0i (·) and g0i (·) are the nominal models of hi(·) and
gi(·) (1 ≤ i ≤ 4) respectively, and are all selected locally
Lipschitz and bounded in its arguments over the domain
of interest. Define −h01(·) ≤ −d1, −h02(·) ≤ −d2, h03(·) ≤ d3
(for all di > 0(1 ≤ i ≤ 3)).

Based on (7) and (9), the estimation error x̃ (t) , x (t) −
x̂ (t) can be obtained as follows

˙̃x1 = −ax̃1 − l1x̃4
˙̃x2 = −h1(x1, x5, η)x2 + h01(x̂1, x̂5, η)x̂2 + (g1(x1, x5)
− g01(x̂1, x̂5))u− l2x̃4

˙̃x3 = −h2(x1, x5, η)x3 + h02(x̂1, x̂5, η)x̂3 + (g2(x1, x5)
− g02(x̂1, x̂5))u− l3x̃4

˙̃x4 = h3(x1, x5, η)x2 − h03(x̂1, x̂5, η)x̂2 − h2(x1, x5, η)x4
+ h02(x̂1, x̂5, η)x̂4 + (g3(x1, x5, η)− g03(x̂1, x̂5, η))u
+ (g4(x1, x5, η)− g04(x̂1, x̂5, η))− l4x̃4

˙̃x5 = −cx̃5 + (h4(x1, x5, η, u)− h04(x̂1, x̂5, η, u))− l5x̃4.

(10)

Based on simple mathematical deductions, the following
expression can be easily obtained

−h1(x1, x5, η)x2 + h01(x̂1, x̂5, η)x̂2 = −h1(x1, x5, η)x2
+h01(x̂1, x̂5, η)x2 − h01(x̂1, x̂5, η)x2 + h01(x̂1, x̂5, η)x̂2
= −h01(x̂1, x̂5, η)x̃2 + (h01(x̂1, x̂5, η)− h1(x1, x5, η))x2.

(11)

Similarly, the following expressions can also be obtained

−h2(x1, x5, η)x3 + h02(x̂1, x̂5, η)x̂3
= −h02(x̂1, x̂5, η)x̃3 + (h02(x̂1, x̂5, η)− h2(x1, x5, η))x3

(12)

h3(x1, x5, η)x2 − h03(x̂1, x̂5, η)x̂2
= h03(x̂1, x̂5, η)x̃2 + (−h03(x̂1, x̂5, η) + h3(x1, x5, η))x2

(13)

−h2(x1, x5, η)x4 + h02(x̂1, x̂5, η)x̂4
= −h02(x̂1, x̂5, η)x̃4 + (h02(x̂1, x̂5, η)− h2(x1, x5, η))x4.

(14)

As ‖hi(·)‖,
∥∥h0i (·)∥∥, ‖gi(·)‖,

∥∥g0i (·)
∥∥ are all bounded, it can

be deduced that
∥∥hi(·)− h0i (·)∥∥ ,

∥∥gi(·)− g0i (·)
∥∥ (1 ≤ i ≤

4) are bounded. So it can be denoted that

∥∥(h01(·)− h1(·))x2
∥∥+

∥∥(g1(·)− g01(·))u
∥∥ ≤M1∥∥(h02(·)− h2(·))x3

∥∥+
∥∥(g2(·)− g02(·))u

∥∥ ≤M2∥∥(h3(·)− h03(·))x2
∥∥+

∥∥(h02(·)− h2(·))x4
∥∥+∥∥(g3(·)− g03(·))u

∥∥+
∥∥g4(·)− g04(·)

∥∥ ≤M3∥∥h4(·)− h04(·)
∥∥ ≤M4

(15)

where Mi(1 ≤ i ≤ 4) are all positive bounded constants.

3.2 Stability Analysis

Theorem 1. The nonlinear observer designed in (8) can
estimate the states of the battery model (7) with uniformly
bounded estimation error, if the observer gains li(1 ≤ i ≤
4) are selected properly.

Proof. To prove Theorem 1, a Lyapunov function V (t) ∈
R is chosen

V =
1

2
x̃21 +

1

2
x̃22 +

1

2
x̃23 +

1

2
x̃24 +

1

2
x̃25. (16)

Based on (10) to (15), the derivative of V (t) can be
obtained as follows

V̇ = x̃1 ˙̃x1 + x̃2 ˙̃x2 + x̃3 ˙̃x3 + x̃4 ˙̃x4 + x̃5 ˙̃x5
≤ x̃1(−ax̃1 − l1x̃4) + x̃2(−d1x̃2 +M1 − l2x̃4)+
x̃3(−d2x̃3 +M2 − l3x̃4) + x̃4(d3x̃2 − d2x̃4 +M3

− l4x̃4) + x̃5(−cx̃5 +M4 − l5x̃4).

(17)

Based on Lemma A.17 in Queiroz et al. (2000), which can
be illustrated in the Appendix A, the following inequations
can be determined
−ax̃21 − l1x̃1x̃4 ≤ −a2 x̃

2
1 +

2l21x̃
2
4

a

−d1x̃22+M1x̃2+(d3−l2)x̃2x̃4 ≤ −d13 x̃
2
2+

3M2
1

d1
+ 3(d3−l2)2

d1
x̃24

−d2x̃23 +M2x̃3 − l3x̃3x̃4 ≤ −d23 x̃
2
3 +

3M2
2

d2
+

3l23
d2
x̃24

−d2x̃24 +M3x̃4 − l4x̃24 ≤ −l4x̃24 +
M2

3

d2

−cx̃25 +M4x̃5 − l5x̃4x̃5 ≤ − c
3 x̃

2
5 + 3l5

c x̃
2
4 +

3M2
4

c .

Based on (17) and the inequalities above, the following
inequation can be obtained

V̇ ≤ −a
2
x̃21 −

d1
3
x̃22 −

d2
3
x̃23 − αx̃24 −

c

3
x̃25 +M (18)

where α = l4− 2l21
a −

3(d3−l2)2
d1

− 3l23
d2
− 3l25

c and M =
3M2

1

d1
+

3M2
2

d2
+

M2
3

d2
+

3M2
4

c . An appropriate p can be selected which

satisfies −px24 +M ≤ 0 for some region of x4, then it can
be determined

V̇ ≤ −a
2
x̃21 −

d1
3
x̃22 −

d2
3
x̃23 − (α− p)x̃24 −

c

3
x̃25. (19)

From the previous analysis, it shows that a
2 , d13 , d23 , c

3 are
all positive. If the observer gain l4 is chosen large enough
and l1, l2, l3 and l5 are chosen properly, (α − p) can also
be guaranteed as positive. Then a constant ε > 0 can be
chosen which satisfies ε ≤ min(a2 ,

d1
3 ,

d2
3 , α − p,

c
3 ). Based

on (19), it can be obtained

V̇ ≤ −ε ‖x̃‖2 . (20)

Based on (19), (20) and the Lyapunov stability, it can be
determined that if the solution of the error system enters
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Fig. 2. Actual SOC and estimated SOC in a discharging
mode
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Fig. 3. SOC estimation error in a discharging mode

the bound {‖x̃ (t)‖ ≤
√

M
p }, it will remain in it. That

is to say, the solution of the error system is uniformly
bounded. if l4 is selected big enough, then p can be chosen
big enough and the bound can be arbitrarily small. So it
can be obtained that the states of the battery model can be
estimated by the nonlinear observer, if the observer gains
are selected properly. �

4. SIMULATION RESULTS

Most of the parameters in the proposed model are based
on Chen and Rincon-Mora (2006). For the observer, a con-
stant model error about 5% of these parameters is chosen.
The situation that the battery is just in discharging mode
is simulated, in which the discharge current IB(t) is set to
simple pulse current, whose amplitude is 0.1A, period is
200 seconds and duty ratio is 10%. The battery’s initial
SOC is set to 90% and the observer’s initial SOC is set to
50%. Fig. 2 and 3 illustrate that the SOC estimation error
becomes almost zero after about 400 seconds. As shown
in Fig. 4 and 5, the terminal voltage and temperature of
the battery can be estimated by the nonlinear observer
accurately.

In actual hybrid power systems, the battery is not always
in discharging mode until the SOC of the battery goes
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Fig. 4. Actual and estimated terminal voltages in a dis-
charging mode
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Fig. 5. Actual and estimated temperatures in battery in a
discharging mode
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Fig. 6. Current profile of the battery

to a lower value or even to zero. When the SOC of the
battery is below a pre-reset value, the battery starts to be
charged and the charge/discharge current is much more
complicated than a simple pulse current. So simulation
below is utilized to simulate a continuous power cycling
test. An asymmetry and complicated current is set as
Fig. 6. The initial SOC of the battery and the observer are
also set to 90% and 50%, respectively. In the situation that
the battery is in an alternately charging and discharging
mode, the actual and estimated SOC of the battery are
depicted in Fig. 7, which shows that the SOC of the battery
can be estimated by the nonlinear observer accurately.

5. CONCLUSIONS

A new method for estimating the SOC of lithium-ion
batteries based on an inclusive equivalent circuit model
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Fig. 7. Actual and estimated SOC in an alternately charg-
ing and discharging mode

is proposed in this paper. The influence of SOC ,tem-
perature, charging or discharging mode on the resistances
and capacitances in the equivalent circuit are considered.
The nonlinear relationship between VOC(t) and the SOC is
considered and a nonlinear observer is designed to estimate
the inner characteristic of the battery model. Then the
Lyapunov stability analysis is utilized to prove its stability
and convergence. Simulations are done to estimate the
SOC when the battery is in a discharging mode and in
an alternately charging and discharging mode, with high
accuracy in estimating the SOC being demonstrated. The
results of the simulations show that the nonlinear observer
is a promising method to estimate the SOC of the battery.

Appendix A

If a scalar function Nd(x, y) is given by (Queiroz et al.
(2000))

Nd = Ω(x)xy − knΩ2(x)x2 (A.1)

where x, y ∈ R, Ω(x) ∈ R is a function dependent only
on x, and kn is a positive constant, then Nd(x, y) can be
upper bounded as follows

Nd 6
y2

kn
(A.2)

The bounding of Nd(x, y) in the above manner is often
referred to as nonlinear damping since a nonlinear control
function can be used to ”damp-out” an unmeasurable
quantity multiplied by a known measurable nonlinear
function.
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