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Abstract: In recent years, more and more research work has demonstrated the advantages of
using fractional order modeling and control techniques. However, many of these research focus
on the single-input-single-output systems. In this paper, fractional order two-input-two-output
processes are studied in terms of decoupling control. Three types of classic decoupling techniques
for integer order processes are re-visited and are generalized to fractional order cases, which has
not been addressed in the literature. This effort involves new problems other than those for
integer order processes, such as the the properness, interaction analysis, and the frequency
dependent relative gain array, etc. Simulation examples are given to illustrate these generalized
decoupling methodologies and some notes on practical implementation are provided.

1. INTRODUCTION

Ideal, simplified, and inverted decoupling are some of the
widely used classic methods for industrial process controls
[1, 2, 3], as well as their variations [4, 5, 6]. The properness,
realizability, causality, and stability of these decoupling
techniques have been well studied. However, their applica-
tion are investigated only on integer order process models.
When facing a fractional order (FO) process model, will
these methods lose vitality? The pursuit of the answer to
this question is explored in this paper.

FO modeling and control have been proved capable to
provide “better than the best” performance than integer
order ones under fair comparisons [7, 8]. It is more and
more convincing that FO models depict the physical world
more closely to the nature, and FO controls are more
powerful than integer order controls. As this research
subject emerges and blooms, lots of classic methodologies
for integer order systems have been extended to the
fractional order cases, such as the PIλDµ controller in
[9], the FO sliding mode extremum seeking controller
in [11] and the FO root locus in [12]. The needs for
such efforts keep increasing. Upon viewing these works,
it can be seen that although some methods seem simple
for integer order cases, it is usually not straightforward
to be extended to FO cases, especially for multi-input-
multi-output (MIMO) FO systems. Some examples may
be MIMO FO identification and minimum realizations,
[10, 20, 23]. To explore the potential of de-centralized
controllers and inject new perspectives to the development
of FO controls, this paper investigates the extension of
the decoupling techniques from integer order to fractional
order, through which, some new issues are discussed, such
as the properness of the fractional order decouplers, and
the frequency-dependent relative gain array (RGA) for
MIMO FO processes.
⋆ Correspondence author: Prof. YangQuan Chen.
Phone: 1(209)228-4672; Fax: 1(209)228-4047; Web:
http://mechatronics.ucmerced.edu

The rest of this paper is organized as follows. First, the
mathematical description of the FO two-input-two-output
(TITO) processes are introduced in section 2, and three
types of conventional decoupling techniques are applied
to the model represented by the transfer function matrix.
Then, simulation examples with distinctive characteristics
are enumerated to illustrate the concepts described in
section 3. Finally, some technical remarks are provided for
implementation references.

2. DECOUPLING FRACTIONAL ORDER
PROCESSES

2.1 Fractional order TITO processes

Fractional order models can be commonly found in the
research field of biology, chemistry and physics. For exam-
ple, the membrane charging model in [13], the fractional
impedance in botanic elements [14], the ion channel gating
model in [15] and the heat transfer process in [16]. Even
in electrical engineering and motion control, FO models
are found useful, to name a few, the analog FO control
element, “fractor”, in [17], the fractional order velocity
model in [7], and the FO circuits in [18] and [19].

Besides the listed single-input-single-output (SISO) FO
systems, MIMO fractional order systems also exist [21][22],
with the TITO process being a particular case. In this
paper, the system under investigation is a TITO process
abstracted from a temperature control loop in the semicon-
ductor manufacturing industry, as shown in figure 1. It is
a linear time-invariant (LTI) system that can be depicted
by the following fractional order differential equations,

0D
α
t x(t) =Ax(t) +Bu(t) (1)

y(t) =Cx(t) (2)

where 0D
α
t x(t) denotes the fractional differentiation with

respect to time, and the fractional orders are α =
[α11, α12;α21, α22] ∈ (0, 2). The system matrix A, input
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Fig. 1. The block diagram of a TITO process.

matrix B and output matrix C are of the following forms
respectively,

A =



− 1

T11
0 0 0

0 − 1

T12
0 0

0 0 − 1

T21
0

0 0 0 − 1

T22


, B =



K11

T11
0

0
K12

T12
K21

T21
0

0
K22

T22


C =

[
1 1 0 0
0 0 1 1

]
.

Similar to the way of manipulating integer order differ-
ential equations, by taking Laplace transforms, the state
space representation of the above FO differential equations
can be derived, with zero initial condition assumed,

sαX (s) =AX(s) +BU(s) (3)

Y (s) =CX(s). (4)

Furthermore, the state space representation can be con-
verted to a transfer function matrix in the same manner
for integer order models [20],

Y (s) = P (s)U (s) , (5)

and

P (s) =C(sαI −A)
−1

B

=

[
P11(s) P12(s)
P21(s) P22(s).

]
(6)

where each element Pij is a transfer function with one
fractional order pole,

Pij (s) =
Kij

Tijsαij + 1
, i, j = 1, 2. (7)

The off diagonal elements P12 and P21 are the cause of the
interaction between two primary loops. For integer order
processes, varieties of existing methods for decoupling the
interaction are mentioned in Sec. 1. No matter which
method is used, the goal is to eliminate or minimize
the interaction, which is the same for fractional order
processes. In the following subsections, the decoupling of
FO processes will be presented, with the cases of zero dead
time discussed first, and the cases of a non-zero dead time
dealt with separately.

2.2 The ideal decoupling

With the ideal decoupling, the decoupled process is ex-
pected to have a diagonal transfer function matrix in the
form below:

G (s) = P (s)D (s) =

[
P11(s) 0

0 P22(s)

]
, (8)

where D(s) is the transfer function matrix of the decou-
pler,

D (s) =

[
D11(s) D12(s)
D21(s) D22(s)

]
. (9)

An illustration of the system connection with an ideal
decoupler is shown in figure 2.
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Fig. 2. The block diagram of the ideal decoupling.

Based on the decoupling requirement in equation (8), four
equations can be established:

P11 (s)D11 (s) + P12 (s)D21 (s) = P11 (s)

P11 (s)D12 (s) + P12 (s)D22 (s) = 0

P21 (s)D11 (s) + P22 (s)D21 (s) = P22 (s)

P21 (s)D12 (s) + P22 (s)D22 (s) = 0.

The decoupler elements are then given by the solution:

D11 (s) =
P11 (s)P22 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)

D12 (s) =
−P12 (s)P22 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)

D21 (s) =
−P11 (s)P21 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)

D22 (s) =
P11 (s)P22 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)
.

(10)

Plugging equation (7) into the solutions will give the
fractional order ideal decoupler.

At this stage, the properness of such decoupling elements
needs to be examined. When the four channels have identi-
cal fractional orders, the decoupler is obviously proper (i.e.
strictly proper or biproper) with the same highest order
2α on both the numerator and the denominator. When
the fractional orders are different, it can be seen that the
resulting decoupler is still proper. Take the first element
as an example:

D11 (s) =
Φ

Φ−Ψ
, (11)

where

Φ=K11K22 (T12s
α12 + 1) (T21s

α21 + 1)

Ψ=K12K21 (T11s
α11 + 1) (T22s

α22 + 1.)
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Thus, the highest order of the denominator is max(α12 +
α21, α11 + α22) while that of the numerator is α12 + α21,
and the relationship among the fractional orders does not
affect the properness.

2.3 The simplified decoupling
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Fig. 3. The block diagram of the simplified decoupling.

Compared with the ideal decoupling, the simplified decou-
pling has less stringent requirements on the diagonal ele-
ments of the process. In other words, it does not emphasize
much on what the primary loops become after decoupling.
Instead, it assigns less task to the decoupler by setting the
diagonal elements to be 1, as shown in figure 3,

D (s) =

[
1 D12(s)

D21(s) 1

]
. (12)

Thus, the following two equations are used to satisfy
the decoupling condition, i.e. to make the process behave
diagonal,

P11 (s)D12 (s) + P12 (s)D22 (s) = 0,

P21 (s)D12 (s) + P22 (s)D22 (s) = 0,

with the solution being:

D12 (s) = −P12 (s)

P11 (s)

D21 (s) = −P21 (s)

P22 (s)

(13)

This leads to a simpler decoupler transfer function but a
relatively more complex decoupled process,

G (s) =

 P11 −
P12P21

P22
0

0 P22 −
P12P21

P11

 . (14)

To evaluate the properness in this circumstance, different
cases need to be considered. When the fractional orders are
identical, i.e. α11 = α12 = α21 = α22, the decoupler will be
in a fractional order filter form [21]. If the fractional orders
are different, it might result in an improper decoupler
that can not be realized. Specifically, for example, when
α11 > α12, the second decoupler element is improper,

D12 (s) = −K12 (T11s
α11 + 1)

K11 (T12sα12 + 1)
.

Although the resulting process is proper,

G11 (s) =
Ψ− Φ

Γ
,

where Φ and Ψ are the same as in equation (11), and

Γ = K22 (T11s
α11 + 1) (T12s

α12 + 1) (T21s
α21 + 1) ,

it cannot be achieved in practice because a fractional
order differentiator sα11−α12 can be factorized from D12(s)
by the means we use for integer order systems, such
as long division or partial fraction expansion. Similar
to a pure differentiator in integer order control systems,
such a fractional order differentiator will also amplify
noise and result in divergent or singular solutions of
system responses, which is not acceptable in practice.
Some research on the existence of decouplers for integer
order singular systems can be referred to such as [6, 24].
Thus, to guarantee the existence of a proper simplified
decoupler, the TITO process model with one FO pole
needs to satisfy the following condition,

α11 ≤ α12, and α22 ≤ α21. (15)

Otherwise, the conventional decoupling techniques do not
apply. In order to still utilize them, a different model
structure can be selected to approximate the process,
such as FO transfer functions with two poles, either
commensurate or not. This can be a topic for future
exploration.

2.4 The inverted decoupling

Briefly, the inverted decoupling is to achieve the ideally-
decoupled performance in equation (8), using simplified
decoupling elements in equation (12). This is accomplished
by subtly re-routing the decoupling block connections, as
shown in figure 4, which is borrowed directed from integer
order case for the FO case.

 

+ 
+ 

+ 

 
 

 

 

 

 

+ 
+ 

+ 

+ 
+ 

ctrl 

ctrl 

Decoupler Process 

 

Fig. 4. The block diagram of the inverted decoupling.

Since the inverted decoupler uses the same decoupling
elements with the simplified decoupler, the condition for
the existence of a proper inverted decoupler is the same
with equation (15).

2.5 Decoupling FO processes with dead time

The aforementioned discussion considers the process mod-
els with no dead time, which is too ideal to be true in
practice. Nevertheless, it is not a problem when the models
have dead time because the techniques for dealing with
time-delayed integer order models already exist, which also
can be used for FO processes. Specifically, denoting the
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dead time by Lij , the model in equation (7) becomes the
following:

P̃ij (s) =
Kij

Tijsαij + 1
e−sLij . (16)

Consequently, the simplified as well as the inverted decou-
pling elements in equations (13) become the forms below,

D̃12 (s) =−K12 (T11s
α11 + 1)

K11 (T12sα12 + 1)
e−(L12−L11)s, (17)

D̃21 (s) =−K21 (T22s
α22 + 1)

K22 (T21sα21 + 1)
e−(L21−L22)s. (18)

When L12 < L11 and/or L21 < L22, the decoupler is
non-causal, which is to be avoided in the realization of
transfer functions. This problem can be fixed by artificially
by adding a time delay to the decoupler as described in
Wang, et, al’s work [25]. Thus, the refined decoupler D̃(s)
becomes the following form:

D̃ (s)=

[
e−v(L22−L21)s D12 (s) e

−v(L12−L11)s

D21(s)e
−v(L21−L22)s e−v(L11−L12)s

]
, (19)

where the function v(L) is defined as:

v (L) =

{
L , if L > 0,
0 , if L ≤ 0.

(20)

Remark 1. We remark that the definition of v(L) is in-
accurate in the original proposed form. The value should
be L when L > 0. The inaccurate use of this method in
[26, 27] should be corrected.

2.6 The relative gain array for FO processes

RGA is a useful tool to characterize the loop interactions
in MIMO processes, from which the advises for suitable
input-output pairing can be drawn [28]. While the static
RGA only evaluates the steady-state gains, the frequency
dependent RGA evaluates the process gains at the corre-
sponding operational frequencies of interest. For the LTI
model with one FO pole, as in equation (7), the gain
depends not only on the traditional model parameters K,
T and L, but also on the FO order α,

|Gij (jω) |=
∣∣∣∣ Kij

Tij(jω)
αij + 1

e−Lijjω

∣∣∣∣
=

∣∣∣∣ Kij

Tijωαijej
π
2 αij + 1

∣∣∣∣ (21)

=
|Kij |∣∣Tijωαij

[
cos

(
π
2αij

)
+ jsin(π2αij)

]
+ 1

∣∣
=

|Kij |√
(Tijωαij )

2
+ 2Tijωαijcos

(
π
2αij

)
+ 1

.

Hence, the frequency dependant RGA is:

RGA = G(jω) · (G(jω)−1)T , (22)

where G(jω) takes the form in equation (21). This will be
illustrated through simulation example 3 in Sec. 3.

3. SIMULATION EXAMPLES

Example 1: Consider the FO TITO process model ab-
stracted from a thermo-electric temperature control test
bed, [29],

P (s) =

 1.2

2s0.5 + 1

0.6

3s0.7 + 1
0.5

s0.8 + 1

1.5

3s0.6 + 1

 .

An output noise is added to emulate the measurement
noise with the signal-to-noise ratio (SNR) of about 30dB.
The step responses of the individual channels before and
after decoupling are plotted in figure 5, from which it can
be observed that the three decoupling methods are valid
for different fractional orders as long as the condition in
equation (15) is satisfied. The output signals from the
inverted decoupler are plotted in figure 6 for reference and
later discussion.
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Fig. 5. The open-loop step responses of the system in
Example 1, before and after decoupling.
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Fig. 6. The output signals of the inverted decoupler. Left:
u1 step, u2 zero; right: u1 zero, u2 step. Top plots are
from D12 and bottom are from D21.

Example 2: To illustrate the concept in section 2.5,
consider the following FO process with dead time, which is
modified from the Wood-Berry distillation process in [30],
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by changing the integer order to half order and swapping
the dead time of the primary and the interactive loops,

P (s) =

 12.8e−3s

16.7s0.5 + 1

−18.9e−s

21.0s0.5 + 1
6.60e−s

10.9s0.5 + 1

−19.4e−7s

14.4s0.5 + 1

 .

Since L12 < L11 and L21 < L22 in this example, the
manipulation of dead time needs to be included into the
decoupler design. Following equation (19), the simulation
result is shown in figure 7. While the artificial time delays
ensure the causality of the decoupler, the advantage of
being able to derive the input to decoupling element from
the secondary loop actuator is lost [2]. It can be seen
that although both decouplers achieve “perfect control” at
steady state, [28], there are differences in the transients.
The simplified decoupling (red line) with the artificial time
delay can completely eliminate the interaction, although
it changes the primary loop (this change can be compen-
sated by controllers). In contrast, the inverted decoupling
(black line) keeps the primary loop unchanged, but the
decoupling effect at the initial part is a little off from
expectation. In practical implementation, the selection of
which decoupling to be used can be determined by control
performance specifications.
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Fig. 7. The open-loop step responses of the system in
Example 2, using different decoupling methods.

Example 3: Consider again the process model in example
2, but change the input u2 to a periodic signal,

u (t) =

[
u1
u2

]
=

[
unit step
0.5sin(10t)

]
.

Such input signal combinations are usually used in chemi-
cal reaction processes where one reaction species is kep-
t at a constant supply rate while the other is injected
periodically. In this case, the frequency dependant RGA
will play a more important role than the static RGA. For
comparison, the RGAs of the original and the modified
Wood-Berry process are plotted in figure 8 as an illustra-
tion of section 2.6. In this example, although the frequency
dependant RGA differs from the integer order model, the
paring does not change. For some practical processes, the
paring may even change across broad band.
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Fig. 8. The RGA of the original and modified Wood-Berry
processes.

The simulation result using unit feedback with inverted
decoupling is plotted in figure 9. The green line shows that
the two primary loops interfere each other significantly be-
fore decoupling, which appears in the form of fluctuations
for channel 1 and a bias for channel 2. The blue line shows
that the interaction is well decoupled by the fractional
order inverted decoupler.
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Fig. 9. The closed-loop step response for Example 3, with
both inputs on.

The above simulations are performed in Matlab with the
help of “Ninteger” toolbox [31] for solving the fractional
integration and differentiation.

4. REMARKS

The decoupling results in the above simulations look
encouraging; yet, an important remark is commented here
with regards to some realistic aspects in industrial process
controls, i.e. the control authority limitation.

In motion control, the inverse actuation can almost always
be achieved by applying brake force onto wheels driven by
engines, or applying revered voltage to a motor. In circuit
control, the charge and discharge of a capacitor can also
be performed bi-directionally. Unlike these circumstances,
process controls often have no inverse actuation capability
in quite a lot of applications, i.e. only on/off actuation
or some status in between is allowed, but the actuation
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in the opposite direction is not available. For instance,
a water tank with no draining pump will have a fixed
draining speed determined by the liquid level and tank
specifications; an oven with only heaters has no way to
cool down faster than natural dissipation; sheet metal
stretch bed are usually not equipped with compressing
capabilities, etc. Dealing with these processes is much more
challenging not only due to their nonlinear behavior in
nature, but also because of the fundamental limitations in
mechanical configuration [28]. In such cases, the negative
control signals shown in figure 6 is not applicable, and
the decoupling techniques based on approximated linear
models may not give satisfactory results. Multi-variable
control or predictive control strategies need to be employed
instead of decentralized control.

To overcome this disadvantage, it is sometimes possible
to adjust the operational point of the actuators so as to
make them behave as if having the bi-directional actuation
ability. For example, in a temperature control scenario, by
assigning a higher duty cycle to the actuator at fundamen-
tal temperature can enable the process to cool down faster
than natural dissipation from a high temperature. Similar
tricks can be employed to confine the decoupler output
signals within the permissible range. All in all, the key
point is that decoupling may not be omnipotent, and the
applicable scenario needs to be evaluated before attempt
such effort.

5. CONCLUSION

In this work, the conventional decoupling techniques for
integer order TITO processes are extended to fractional
order cases, which results in the so-called fractional order
decouplers. The effectiveness of such attempt is verified
through both theoretical analysis and case studies. It
is revealed that the decoupling techniques including the
decoupler design and input-output paring need to be re-
evaluated for fractional order MIMO systems. Our future
work would be in performing experimental studies on our
test-bench TITO system.

REFERENCES

[1] W. Luyben, “Distillation decoupling”, AIChE Journal, Vol. 16,
Issue 2, (1970) 198-203.

[2] H. Wade, “Inverted decoupling: a neglected technique”, ISA
Transactions, Vol. 36. No. 1, (1997) 3-10.

[3] E. Gagnon, A. Pomerleau and A. Desbiens, “Simplified, ideal
or inverted decoupling?” ISA Transactions 37 (1998) 265-276.

[4] Y. Luo, H. Liu and L. Jia, “An extended approach of inverted
decoupling”, Proceedings of the 29th Chinese Control Confer-
ence, July, 2010, Beijing, China.

[5] J. Garridoa, F. Vázqueza and F. Morilla, “Improved inverted
decoupling control using dead-time compensator for MIMO
processes”, Journal of Process Control, 21 (2011) 55-68.
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