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Abstract: This paper considers distributed estimation over heterogeneous sensor networks. We
propose a distributed estimation strategy based on PageRank algorithm, where the link weight
depends on the edge estimation covariances. We prove that the proposed estimator obtains
better estimates than one typical estimator under identical initial conditions. Motivated by the
advantage of the sensors with high accuracy locating at important positions, we propose an
optimal sensor deployment strategy to arrange locations for sensors in a given physical network.
Numerical examples are provided to demonstrate the effectiveness of the proposed estimator,
showing a better performance under the optimal sensor deployment.

1. INTRODUCTION

Fueled by applications in a variety of fields including
battlefield surveillance, intelligent transportation, environ-
ment monitoring, health care, etc., there has been a recent
surge of interest in distributed state estimation using a
wireless sensor network (WSN) which is composed of a
large number of geographically distributed sensor nodes,
which are capable of measuring certain parameters of in-
terest such as temperature, humidity, position and velocity
of a vehicle. In the last decade, many works on consensus-
based distributed estimation have been reported since it
can drastically reduce the communication resource require-
ments, where each sensor can observe the target state
and exchange the estimates with its neighbors. By doing
that, some advantages are obtained such as no requirement
on network topology, lower energy cost, more flexible for
ad-hoc deployment when compared with centralized and
decentralized estimations, see Anderson et al. [1979]-Iftar
[1993].
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The design of efficient consensus-based distributed esti-
mation algorithm is a current focus of active research in
the literature. Under standard assumptions, distributed
estimators combined with a consensus term give conditions
to ensure that the estimate of each node approaches the
state of the target asymptotically, see Spanos et al. [2005]-
Shen et al. [2010]. The existing distributed estimation
algorithms can be classified into two categories: one is
adding a consensus term to the update step, see Olfati-
Saber et al. [2005]-Olfati-Saber [2009] and the other is
driving consensus on the priori estimate in the prediction
step, see Stankovi¢ et al. [2009], Cattivelli et al. [2010].
More precisely, they can be referred to as distributed
weighted average consensus algorithm in (Spanos et al.
[2005], Spanos et al. [2005]), distributed Kalman filtering
in (Olfati-Saber et al. [2005]-Olfati-Saber [2009]), decen-
tralized state estimation with intermittent observations
and communication faults in (Stankovié¢ et al. [2009]),
diffusion strategies for distributed Kalman filtering and
smoothing in (Cattivelli et al. [2010]), distributed estima-
tion of deterministic signals with noisy links in (Schizas
[2008]), distributed parameter estimation over a WSN with
bit rate constraint in (Li et al. [2007]), adaptive consensus
filter in (Demetriou [2010], Xi et al. [2010]), distributed
consensus filtering algorithm with pinning observers in (Yu
et al. [2009]), distributed Hoo-consensus filtering over a
finite-horizon for sensor networks with multiple missing
measurements in (Shen et al. [2010]).
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From a practical point of view, however, the network
estimation accuracy given identical credit to every node
could be improved in a heterogeneous sensor network. In
last decade, the PageRank algorithm employed at Google,
which assigns a measure of importance to each webpage
for rankings in search results, has gained more and more
attraction. In the algorithm, those webpages who are more
related to the keywords obtain higher rankings. As a result,
they can be searched with higher probability. An intuitive
conclusion is, giving higher credits to those sensors with
higher estimation accuracy will lead to better estimates
compared with identical credit to all the sensors. Similar
to the PageRank algorithm, we can design edge weight
between each pair of neighboring nodes to assign credit
to each node. Currently, some related works also consider
weight design but only provide numerical simulations.
Stankovi¢ et al. [2009] designed relative weights which
are proportional to the diagonal elements of the inverse
of the covariance matrices of the local estimators to
the communicated estimates. Demetriou [2010] proposed
adaptive observers to the estimates including a coupling
term which penalizes the disagreement of the estimates. In
this paper, a distributed estimation algorithm based on the
PageRank algorithm is proposed. The weight of the link
from sensor ¢ to sensor j depends on the diagonal elements
of the inverse of the edge covariance matrices between
sensor ¢ and sensor j over the sum of the edge covariance
matrices between sensor ¢ and its neighboring sensors.
Under standard assumptions, sensors with the proposed
estimator approach the target state asymptotically. Given
identical initial conditions, the proposed estimator obtains
better estimates when compared with a typical consensus-
based distributed estimator at each time step.

In parallel with weight design problem, sensor deploy-
ment under a given physical network topology influences
network estimation accuracy in a heterogeneous sensor
network as well. Intuitively, a sensor with high accuracy
locating at an important location obtains better estimates
when compared with a sensor with low accuracy. In this
paper, an optimal sensor deployment strategy is designed
by solving an optimization problem. To implement sensor
deployment efficiently in practice, some indices character-
izing node importance in complex network are utilized to
order the positions in physical sensor networks.

The remainder of the paper is organized as follows. In
Section 2, we describe the system model and introduce
some notations. In Section 3, we design link weight for a
consensus-based distributed estimation algorithm. A suffi-
cient condition is given to guarantee the convergence of the
proposed estimation algorithm. Differences between the
improved weighted estimator and the constant weighted
estimator are analyzed. In Section 4, an optimal sensor
deployment strategy are proposed. In Section 5, we verify
the results derived in Section 3 by a numerical example.
Finally, some concluding remarks and future work are
given in Section 6.

Notation. We use tr(-) to denote the trace of a matrix.
vec(A) is the vector formed by “stacking” the columns of
A in the natural order. diag(A) denotes a diagonal matrix
with the elements of main diagonal of A. The cardinality
of a set A is denoted |A|. A ® B is the Kronecker product
of matrices A and B. We write A > 0 if A is positive
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semi-definite, and A > B if A — B > 0. Moreover, A > 0
if A is positive-definite, and A > B if A — B > 0. We
use 1 to denote a vector of arbitrary dimension with each
component equal to one. Let I denotes the identity matrix.
For an n X n symmetric matrix A, \(A) € R™ denotes
the vector of eigenvalues of A. The minimal product of
two vectors x and y in R" is denoted < z,y >_, and is
defined by < x,y >_= min, []\", iy (;), where 7(-) is a
permutation of 1,2,...,n.

2. PROBLEM SETUP

Consider a given target system

w(k+1) = Ax(k) + w(k), (1)
where z(k) € R™ is the target system state at time
step k, w(k) € R™ is the system noise with zero mean
and covariances E{w(k)w(s)T} = Q6 s, where & 5 is the
Kronecker Delta function and ¢ > 0. The initial state
x(0) is also zero-mean Gaussian with covariance m, and
is independent of w(k) for all k. We consider m = 2 as
all the results can be extended to m > 2 using Kronecker
product.

Assume that a wireless sensor network consisting of n
sensors, where each sensor can observe the target state.
The measurement equation of the i-th sensor is given by,

yi(k) = Hiz(k) + vi(k), (2)
where y;(k) € R™ is the measurement of i-th sensor at
time step k, v;(k) is the measurement noise with zero
mean and E{v;(k)v] (k)} = R;0ks, R; > 0. Assume that
E{vi(k)v] (s)} = 0 for all i # j and all s, k.

The wireless sensor network is modeled as an undirected
graph G = (V,E) with the nodes V = {1,2,...,n}
being sensors, and the edges £ C V x V representing the
available communication links. The existence of edge (3, j)
means sensor ¢ can exchange information with sensor j.
Define the neighboring sensors of sensor ¢ by N; = {j :
(i,7) € E}. Let d; = |N;| be the number of neighboring
sensors of the i-th sensor. Define the Laplacian of G as
L = [l;;], where l;; = —1if (i,j) € E,i # j and
- Z;L:I Lij-

Each sensor can receive the prior estimates of its neighbors.
The estimator of i-th sensor is designed as follows:

lis =

&y (k) = &i(klk — 1) + K, (k) [yi (k) — Hia(k[k = 1)],(3)

Zi(klk) = &;(k|k) + emi; (k) Y (&;(k|k) — &:(k|k)),
JEN;
Zi(k + 1|k) = Az (k|k),
where
Ky (k) = P'(k)H'" (HP'(k)H] + R;)~
Pi(k+1)=P'(k)+Q

—PY(k)HT[HP'(K)HF + R;]"'H,P' (),
and 0 < € < 1 is the consensus gain, m;;(k) is the
link weight. Different from the existing works, we design
the link weight based on the PageRank algorithm, which
represents the credit of sensor j to sensor i¢. The sensor
with higher estimation accuracy is assigned with higher
credit. Let the initial state P*(0) > 0 for all i.
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3. WEIGHT DESIGN FOR DISTRIBUTED
CONSENSUS FILTER

In this section, we design link weight for sensors to improve
the estimation accuracy, and compare the estimation per-
formance of the proposed estimator with that of a constant
weighted estimator.

Define the estimation error as é;(k|k) = Z;(klk) — x(k),
ei(klk) = 2;(k|k)—=z(k) and é; (k|k—1) = &;(k[k—1)—2(k),
respectively. Then one has
&i(k|k) = (I — K (k) Hi)éi(klk — 1) + K} (k)vi(k)(4)
ei(klk) = éi(k|k) + € Z mi; (k) (&5 (k[k) — éi(k|k)),
é;(k+ 1|k) = Ae;(k|k) —Lw(k).

Further define their corresponding estimation error covari-
ances as

Py (k|k) = E[é;(k|k)eT (k|k)],
P;(k|k) = Ele;(k|k)e] (k|k)],
Pi(k + 1|k) = Eléi(k + 1k)el (k + 1]k)].
Then
Pi(k|k) = (I, — K},(k)H;) Py(k|k — 1) (I, — K} (k)H;)" (5)
Py(klk) = (1 — €)*Pi(k|k) (6)
+€ > my (k) Py (klk)ma; (k)"
JEN;
+(1—e)e Y Pyj(klk) M (k)
JEN;
(1= e)e > mi;(k)Pij(k|k),
JEN;
By(k+1|k) = AP (k|k) AT + Q, (7)
and

Byj(klk) = (In — K3 (k)H;) Py (k|k — 1) (I, — K3 (k)H;)T,

Pij(klk) = Py (klk) + e Z mir (k) (Prj(k|k) — Pij(k|k))
renN;
+e Y mys(k)(Pis(k[k) — Py (k[k))
sEN;
Z Z mzr mJS k)(prs(k|k) - Prj(k|k)
reN; 9€N
— Py (k|k) + Py (k|k)),
Pij(k + 1]k) = AP;;(k|k)AT + Q,
where
-1
mi;(k) = diag [ P (klk) | Y P'(k|k) ,j € Ni.
JEN;
(8)

First, we investigate the convergence properties of the
presented estimator (3). Let

é(k+1lk) = [er(k+1[k)T, éx(k+1[k)T, ..., en(k+1]k)T]T,

v(k) = [v1(k),v2(k), ... v (k).
Define the block matrix M (k) = 7 (k) as,
_mz](k)a if (’L:j)EEaZ#]v
m”(k) — Z m”(k‘) lf 7= j,
JEN;
0 otherwise.

Remark 1. If m;;(k) = I, ® (1/d;),j € N;, then the
second equation in the proposed estimator (3) utilizes
the constant weighted consensus protocol. For comparison
in subsequent discussion, we call it constant weighted
estimator, and denote its estimation error covariance for

each step by PO(k|k), P?(k|k) and PO(k+1|k), respectivly.

The entire estimation error is

é(k+ 1k) = T(k)é(k|k — 1) + W (k), (9)
where

(k) = (I, ® I, — eM(k))(I, ® A)diag(I,, — K(k)H;),
W (k) = (I, ® Iy — eM (k) (I, ® A)diag(K}(k))v(k)

-1, @ w(k).
Define P(k|lk — 1) = E[é(k|k — 1)é(k|k — 1)T] as the
associated estimation error covariance. Then one obtains
P(k+1|k) = D(k)P(k|k—1)T (k)T +EW (k)W (k)T). (10)
Assumption 2. The pair (A, H;) is detectable for all 4, and
(A, Q'?) is stabilizable.

First, we analyze the stability of the proposed estimator
(3). By using similar methods in (Stankovié¢ et al. [2009],
Cattivelli et al. [2010]), we can obtain the following results.

Lemma 3. Under Assumption 2, if 0 < € < 1, then
lim E[é(klk —1)] =0
k— o0

and P(k + 1|k) converges to a constant positive semi-
definite matrix P as k — oo.

Proof: Assumption 2 guarantees that limg Pi(k) = P
for any initial condition [T, > 0. Thus, M (k) and K} (k)
also converge to M and Ki for all i. Let K = (I, ®
A)diag(I,, — K} H;). By Lemma 1 in Cattivelli et al. [2010],
it is easy to prove that the matrix K is stable. Furthermore,
since 0 < € < 1, the matrix I, ® I,,, — eM has non-
negative entries with the sum of each row equals to one
(i.e., (In ® I, —eM)1, = 1. By Lemma 2 in (Cattivelli
et al. [2010]), the matrix I'(k) converges to a stable matrix
I'. Therefore

lim E[é(klk—1)]=0

k—o0
and steady-state estimation covariance is bounded as k
goes infinity.
Remark 4. Here, P satisfies

TPTT —P+Q =0,
where

T = (I, ® I, — eM)(I,, ® A)diag(I,, — K} H,),
Q = diag(AK})[(I, — eM) @ I, ]diag(R;)
(I, — M) ® I,) " diag(AK:)T + 117 ® Q.
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Lemma 5. Let
Ci=LP+1LP+ - +1,P,,
1 1 1
Co=—P+—Po+--+ —P,.
n n n
If
Dl +la+--+1,=
1) 0<ly <lp <o <y,
’LZZ)P12P22 ->P, >0,
then01§02.

Proof: According to the condition i) and ii), there exists
a l; such that [; < % and ;11 > % Then

1 1 1
C,—Co=(li—=)Pi+--+ (i —=)P; + (liz1 — —)Pipa
n n n
1
. _7P
++ (ln n)n
1
S(l1+52+---+li—5i)Pi
1 .
s+ bn = —(n = 0)) Pipy
1
:(ll+l2+"'+li_ﬁi)(Pi_]Di+1)
<0

The last inequality follows from condition iii).

Theorem 6. Assume that the proposed estimator (3) with
link weight (8) and constant weighted estimator are ini-

tialized identically. Then P;(k + 1|k) < P?(k + 1|k).

Proof: Since P;(1/0) = PY(1]0), we have that P;(1]1) =
PP(1]1) for all 4. Since Pj(k|k) is bounded for all j,
we can always Aﬁnd a sufficiently small e such that
€ ZjGN m; (k)P (k|k)m”( )T is close to zero. Note that

mi; (k) Py (k|k) = ZV mij (k)1 - (I

where V; denotes a matrlx in which the entries outside the
l-th element of main diagonal are all zero, P;;(k|k)(:,1)

denotes the I-th row of matrix P;;(k|k). Setting m; (k) as
equation (8), the m;;(k);,; is arranged in decreasing order

@ Pij(k[k) (1)),

by j if the P;;(k|k) is arranged in increasing order by j.
Since P;;(1[1) = P2 (k|k), by Lemma 5, then

> Viemg (D (L

® By (11)(:.1))

JEN;
1 .
=D DRy CT))
JEN:

for all I. Thus,

> mi(1)P;(11) < Z 0 (1]1).

JEN; JEN,
Then one has P;(2]1) < P°(2|]1) for all i. Note that
Pyj(k|k) — Pyj(|k) = cou(é,(k|k) — &(k[k), &;(k|k)). Sim-

i
) —

ilarly, one has P;;(2|1) < P0 (2\ ). Furthermore, by induc-
(

tion, it is easy to show that Pi(k +1|k) < PO(k + 1]k).
Therefore the proof is completed.

4. SENSOR DEPLOYMENT FOR DISTRIBUTED
CONSENSUS FILTER

In Section 3, when the position of each sensor is given, we
have designed link weight to improve the estimation per-
formance. In this section, we consider a related problem:
if given fixed physical network topology, how to deploy
sensors at optimal positions to improve the estimation
accuracy? In heterogeneous sensor network, putting sensor
with higher accuracy at important position leads to better
estimates. In contrast, the estimation error increases if
sensors with lower accuracy located at important posi-
tions. We label the sensors as s, s9,...,s, and the node
positions on network as ni,ns, ..., n,. Consider a random
initial sensor positions and let the Laplacian of sensor
network topology be Ly. The problem is transformed to
find optimal sensor deployment ng,k € {1,...,n} for
sensor s;. We formulate the problem as follows

(11)

ming tr P
st. L=KLoKT
K eTl,

where II is the set of n x n permutation matrices.

(P1) :

Since problem P; is an quadratic assignment problem
(QAP), which belongs to the class of combinatorial op-
timization problems, there is no known algorithm for solv-
ing it in polynomial time. In (Anstreicher et al. [2001]),
Anstreicher et. al. proposed a parallel B&B algorithm to
solve the QAP based on the serial algorithm in (Brixius
et al. [1998]).

The quadratic programming bound for P; is of the form

(Py) : min tr P+ Avec(K)TQvec(K) +7v) (12)
st. K1=K"1=1
A>0K >0,
where Q = (Lo ®I) — (I ® S) — (T ®I). Let V be an

n X (n — 1) matrix whose columns are an orthonormal
basis for the nullspace of 17. The matrices S and T are
obtained from the spectral decompositions of V7'V and
VILyV, and v =< A(VIV),A\VTLyV) >_.

In (Brixius et al. [1998]), a Frank-Wolfe algorithm is
introduced to solve the problem P, for a small-scale
network. Then we can deploy the sensors to the optimal
positions from K. Here, K gives an order of position
importance in a sensor network. When those sensors
with high estimation accuracy are located at important
positions, the entire network estimation error decreases.
The above method is, however, not effective for a large-
scale network. Moreover, to solve P, we need all the
information of sensors including network topology and
sensor estimation accuracy. It is difficult to implement
in practice. Instead, we try to find a suboptimal method
which is easy to implement. A natural idea is to arrange
the node positions in a network by their importance in
decreasing order using some indices, by doing that, we
know which position in sensor network is important.

In the area of complex network, some indices have been
found to characterize node importance in network, such
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as degree centrality (DC), betweenness centrality (BC),
eigenvector centrality (EC) and PageRank (PR), see New-
man [2010].

Degree centrality: is defined as the number of links
incident upon a node.

Betweenness centrality: is an index of a node’s central-
ity in a network equal to the number of shortest paths
from all vertices to all others that pass through that node.

Eigenvector centrality: is an index of the influence of a
node in a network. It assigns relative scores to all nodes
in the network based on the concept that connections to
high-scoring nodes contribute more to the score of the node
in question than equal connections to low-scoring nodes.

PageRank: is a link analysis algorithm that assigns a
numerical weighting to each element of a hyperlinked set
of documents with the purpose of “measuring” its relative
importance within the set. The PR is also an index of the
influence of a webpage in World Wide Web.

In real applications, if the physical network topology
is given, it is easy to calculate those indices for nodes
according to the Laplacian matrix. Thus, the importance
of the positions in the network could be arranged in order.
In Section 5, we compare the estimation performance of
sensor deployment strategy under five different indices.

5. SIMULATION RESULTS

In this section, we illustrate the results derived in Section 3
and 4 by numerical simulations. Moreover, the estimation
performance of the improved weighted estimator and the
constant weighted estimator are compared.

Consider a wireless sensor network with n = 30 sensors.
The discrete-time system and sensor parameters are given

as follows:
1.01 0 20
A< 0 1.01)7‘9(02)’

H‘(o 251->’Rl—(0 QVi)’

where 0; € (0,1.5], v; € (0,5] for all i. We choose an
undirected network topology G with its second eigenvalue
A2(L) = 1.4536 and maximal degree A = 18. We also
choose ¢ = 0.01. As Fig. 1 shows, all the sensors track
the unstable object system of (1) effectively. Define the
mean-squared estimation error as . eilel /n. Fig. 2
shows that mean squared estimation error decreases to
a bounded region. Similarly to Olfati-Saber [2005], the
disagreement of the estimates is measured by ||6(k)|| =
(30 (6%(k))?)Y/? with 6% (k) = 2% (k|k — 1) — m(k), where
m(k) = L3 .&(klk — 1). From Fig. 3, the improved
weighted estimator has cohesive estimates. The simulation
results in Fig. 4 demonstrate that P;(k+ 1|k) converges to
a P, for all i, and f’” (k + 1|k) also converges for all i, j.
Moreover, it is easy to find that the improved weighted
estimator has lower trace of estimation covariance than
the constant weighted estimator, which verifies the results
derived in Section 3.

Fig. 5 shows that the average trace of estimation covari-
ance of the proposed estimator under five sensor deploy-

Fig. 1. Tracking performance of the proposed estimator

300

2
b

N
S

Mean squared error

v

0 10 20 30 40 50 60 70 80

Fig. 2. Mean squared estimation error

rd
n

average disagreement estimate

) 10 20 30 40 50 60 70 80

Fig. 3. Average disagreement estimate

ment strategies. The performance of the PR strategy is
better than that of the other four strategies, and the
performance of the DC strategy is close to that of the
PR strategy. The intuitive reason is that degree centrality
has similar statistical performance with PageRank value
for undirected network.

6. CONCLUSIONS

In this paper, we considered distributed estimation over
heterogeneous sensor network. First, we have designed link
weight for sensors by the diagonal elements of the inverse of
the edge covariance matrices between linked sensors based
on the PageRank algorithm. We proved that the improved
weighted estimator obtained lower estimation error than
the constant weighted estimator at each time step. Second,
we proposed an optimal sensor deployment strategy to
arrange optimal positions for the sensors. We also have
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Fig. 4. Trace of covariance of the proposed estimator: node
1

—--PR
—EC

=+= Random
BC

Fig. 5. Average trace of covariance of the proposed esti-
mator

verified that the position of the sensors sorted by some
indices obtains better estimates.
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