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Abstract: This work focuses on the design of a fault detection and fault-tolerant control
framework for spatially distributed processes modeled by highly-dissipative partial differential
equations (PDEs) subject to external disturbances and sensor faults. The main objective is to
devise a suitable sensor reconfiguration strategy to reduce the performance degradation due to
the errors resulting from the sensor faults. Initially, a finite-dimensional system that captures
the slow dynamics of the PDE is derived and used to design a obverse-based output feedback
controller. Using Lyapunov techniques, the fault-free and faulty behavior of the closed-loop
system are characterized in terms of the sensor spatial placement, the size of the disturbances,
the magnitude of the sensor faults as well as the controller and observer design parameters.
Based on the fault-free closed-loop dynamics, the Lyapunov stability bound is used as an alarm
threshold to declare the presence of sensor faults. To suppress the performance deterioration, a
performance-based sensor reconfiguration policy is developed whereby the supervisor determines
either to continue using the current faulty sensors or to switch to suitable backup sensors based
on a comparison between the sizes of the achievable terminal sets. A singular perturbation
formulation is used to analyze the implementation of the sensor fault-tolerant control structure
on the infinite-dimensional system. Finally, the results are illustrated through an application to
a representative diffusion-reaction process example.

Keywords: Distributed parameter systems, sensor fault-tolerant control, sensor reconfiguration,
transport-reaction processes

1. INTRODUCTION

With the increased complexity of automated industrial
control systems, how to achieve a graceful degradation in
performance in the presence of faults in the control system
components has become a central objective in the control
and operation of chemical processes. This is necessitated
by the requirements of handling the possible unsatisfactory
performance, or even instability, in the event of malfunc-
tions in the sensors, actuators or other system components
when applying conventional feedback control designs to a
complex system. To overcome these limitations, various
approaches to control system design have been developed
in order to tolerate component malfunctions while main-
taining the desirable stability and performance properties,
and hence fault-tolerant control (FTC) has become the
focus of considerable research interest over the past few
decades in both the academic and industrial circles. Most
of the research work in this area, however, has focused
on spatially homogeneous processes modeled by systems
of ordinary differential equations (e.g., see Simani et al.
(2003), Blanke et al. (2003), Steffen (2005), Jiang et al.
(2006), Mhaskar et al. (2006), Zhang et al. (2010), Jiang
and Yu (2012), Liu et al. (2012) for some results and
references), while many systems encountered in the pro-
cess industry, such as transport-reaction processes, are
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inherently characterized by the presence of strong spatial
variations due to the underlying physical phenomena, such
as diffusion, convection and phase dispersion.

While fault-tolerant control of spatially-distributed pro-
cesses has received increasing attention in recent years
(e.g., see Ghantasala and El-Farra (2007), Armaou and
Demetriou (2008), Ghantasala and El-Farra (2009), Yao
and El-Farra (2011) for some recent results in this area),
the majority of efforts in this direction have focused mainly
on controller reconfiguration in the event of actuator
faults. Sensor faults, on the other hand, have received
less attention even thought they are more commonplace
in practice and are critical for the overall system per-
formance, especially with the increased reliance on dense
sensor deployment and sensor networks in many industrial
applications. The measurement errors that can be caused
by sensor faults may deteriorate the overall control quality
and need to be accounted for explicitly in the control
system design and operation.

In this paper, we focus on sensor fault-tolerant control of
spatially distributed processes modeled by highly dissipa-
tive PDEs under external disturbances. We first develop
an observer-based output feedback controller based on
a reduced-order model of the PDE to robustly stabilize
the closed-loop system in the absence of faults. Using
Lyapunov techniques, we investigate the stability proper-
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ties of the closed loop system for the spatial placement
of the measurement sensors and control actuators, and
explicitly characterize the terminal regions of the fault-
free and faulty closed-loop systems. Based on the fault-
free and faulty behaviors of the closed-loop state, a fault
detection scheme is developed by monitoring the evolution
of the observer state and declaring faults when the state
breaches an alarm threshold. A sensor switching strategy
is then devised whereby the supervisor can determine to
either keep the faulty sensor in use or activate a fall-back
sensor configuration based on a comparison of the fault-
free and faulty terminal regions.

The rest of the paper is organized as follows. In Section 2,
the class of PDEs under consideration is described. Then in
Section 3, the observer-based output feedback controller is
introduced and the fault detection and performance-based
sensor reconfiguration policy are developed for the finite-
dimensional closed-loop system. A singular perturbation
formulation is then used in Section 4 to derive precise
conditions for the implementation of finite-dimensional
FD-FTC architecture on the infinite-dimensional system.
Finally, the theoretical results are illustrated using a
diffusion-reaction process example in Section 5.

2. PRELIMINARIES

As a motivating example, we consider a class of spatially-
distributed processes modeled by highly dissipative PDEs
of the form:

∂x̄(z, t)

∂t
= α

∂2x̄

∂z2
+ βx̄ + ω

m∑

i=1

bi(z)ui(t)

+

p∑

j=1

wj(x̄)dj(z)θj(t), |θj(t)| ≤ θjb

(1)

yl(t) =

∫ π

0

qkl (z)x̄(z, t)dz + fk
l (t),

l ∈ {1, · · · , n}, k ∈ K , {1, · · · , N}
(2)

subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, t0) = x̄0(z) (3)

where x̄(z, t) ∈ R denotes the process state variable, z ∈
[0, π] is the spatial coordinate, t ∈ [t0,∞) is the time, ui ∈
R denotes the i-th manipulated input, y(t) represents the
measured output,m and n are the numbers of manipulated
inputs and measured outputs, bi(·) is the i-th actuator
distribution function, qkl (·) is the l-th sensor distribution
function associated with the k-th sensor configuration,
wi(·) is a sufficiently smooth nonlinear function, dj(·) is
a known function that specifies the positions of action of
the bounded uncertain variable θj , f

k
l represents a fault in

the l-th sensor, α > 0 and β are constant parameters, and
x̄0(z) is a smooth function of z. Throughout the paper,
the norm notations | · | and ‖ · ‖ are used to represent the
standard Euclidean norm and the L2 norm, respectively.

Using standard techniques from operator theory (e.g., see
Curtain and Pritchard (1978)), one can represent the PDE
of (1)-(3) as an infinite-dimensional system of the form:

ẋ = Ax+ Bu+W(x)θ, y = Qx+ fk, x(0) = x0 (4)

where x(t) = x̄(z, t), t > 0, z ∈ [0, π] is the state function
defined on the Hilbert space H = L2(0, π) endowed with
inner product and norm:

〈ω1, ω2〉 =

∫ π

0

ω1(z)ω2(z)dz, ‖ω1‖2 = 〈ω1, ω1〉
1

2 (5)

where ω1, ω2 are two elements of L2(0, π), A is the

differential operator defined by Aφ = αd2φ
dz2 + βφ, z ∈

[0, π], where φ(·) is a smooth function on [0, π] with
φ(0) = φ(π) = 0. B is the input operator defined
by Bu = ω

∑m

i=1
bi(·)ui, W is the uncertainty operator

defined by W(x)θ =
∑n

j=1
wj(x̄)dj(z)θj(t), x0 = x̄0(z),

y = [y1, · · · , yn]
T and Q denotes the output operator

defined by Qx = [〈q1, x〉, · · · , 〈qn, x〉]
T .

By solving the eigenvalue problem Aφk = λkφk, k ∈
{1, · · · ,∞}, the solution can be obtained from λk = β −

αk2, φk(z) =
√

2

π
sin(kz), k ∈ {1, ·,∞}, where λk and φk

denote the k-th eigenvalue and eigenfunction, respectively.
By analyzing this solution, it can be seen that all the
eigenvalues of A are real and ordered. Also, for a given
α only a finite number of unstable eigenvalues exists, and
the distance between two consecutive eigenvalues (i.e.,
λk and λk+1) increases as k increases. Furthermore, the
spectrum of A can be partitioned as σ(A) = σ1(A)∪σ2(A)
; where σ1(A) = {λ1, · · · , λm} contains the first m (with m
finite) “slow” eigenvalues and σ2(A) = {λm+1, λm+2, · · · }
contains the remaining “fast” stable eigenvalues where
|λm|/|λm+1| = O(ǫ) and ǫ < 1 is a small positive number
that characterizes the extent of separation between the
slow and fast eigenvalues of A. This separation property
implies that the dominant dynamics of the PDE can be
described by a finite-dimensional system, and motivates
the application of modal decomposition techniques to
decompose the infinite-dimensional system of (4) into the
following interconnected subsystems (see Christofides and
Daoutidis (1996), Christofides (2001)):

ẋs = Asx+ Bsu+Ws(xs, xf )θ, xs(0) = Psx0 (6)

ẋf = Afx+ Bfu+Wf (xs, xf )θ, xf (0) = Pfx0 (7)

y = Qsxs +Qfxf + fk (8)

where xs = Psx ∈ Hs := span{φ1, · · · , φm} is the
state of a finite dimensional system that describes the
evolution of the slow modes, xf = Pfx ∈ Hf :=
span{φm+1, φm+2, · · · } is the state of an infinite dimen-
sional system that captures the evolution of the fast
eigenvalues, Hs, Hf are modal subspaces of A, and Ps

and Pf are the orthogonal projection operators, where
As = PsA is an m × m diagonal matrix of the form
A = diag{λ1, · · · , λm}, Bs = PsB, Ws = PsW and
Qs = PsQ. Af = PfA is an unbounded differential
operator which is exponential stable (following from the
fact that λm+1 < 0 and the selection of Hs and Hf ),
Bf = PfB, Wf = PfW and Qf = PfQ. In what follows,
the xs− and xf−subsystems will be referred to as the slow
and fast subsystems, respectively. Neglecting the fast and
stable xf−subsystem of (7), the following approximate,
m-dimensional slow system can be obtained:

˙̄xs = Asx+ Bsu+Ws(x̄s, 0)θ, y = Qsxs + fk (9)

where the bar symbol denotes that the variable is associ-
ated with a finite-dimensional system.

3. FINITE-DIMENSIONAL SENSOR
FAULT-TOLERANT CONTROL

3.1 Output feedback controller synthesis

The focus of this section is on the design of the proposed
sensor fault-tolerant control structure. Due to the lack
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of full state measurement, we first introduce a finite-
dimensional state observer to estimate the evolution of
the slow state and use it to synthesize an observer-based
output feedback controller of the form:

uk = Fkη, η̇ = Âsη + B̂su
k + Lk(ȳ −Qk

sη) (10)

where η is an observer estimate of x̄s, Âs and B̂s are
bounded operators that represent models of As and Bs,
respectively, Fk and Lk are the controller and observer
gains associated with the k-th configuration.

Considering the output feedback controller of (10) is
implemented on the fault-free slow system of (9) (i.e., with
fk = 0) and defining the augmented state as ξ̄ = [x̄s, η]

T ,

which is an element of the extended state space Hξ
s ,

Hs × Hs, the closed-loop system can be expressed in the
following augmented formulation:

˙̄ξ = Λk ξ̄ + Γθ, ‖ θ(t) ‖ ≤ θb (11)

where

Λk =

[
As BsF

k

LkQk
s Âs + B̂sF

k − LkQk
s

]
, Γ =

[
Ws

O

]

Examining the structure of the above augmented system,
it can be seen that by proper selection of Fk and Lk one
can ensure exponential stability of the origin of the unper-
turbed closed-loop system of (11) (i.e., with θ = 0). From
converse Lyapunov theorems, there exists a continuously
differentiable function V (ξ̄) defined by V (ξ̄) = ξ̄TP kξ̄ such
that (Λk)TP k + P kΛk = −Q holds, where P k, Q are real
symmetric positive-definite matrices. Then, by analyzing
the evolution of V (ξ̄) along the trajectories of the closed-
loop augmented system of (11), the following inequality
can be obtained:

V̇ (ξ̄) ≤ −λmin(Q)‖ ξ̄ ‖2 + 2‖ ξ̄ ‖‖P kΓ ‖θb

and it can be shown that V̇ (ξ̄) < 0, if

‖ ξ̄ ‖ > γ̄k
1 (z

k
s , θb) , 2λ−1

min
(Q)‖P kΓ ‖θb

This result indicates that practical stability of the aug-
mented closed-loop system of (11) is achieved, leading to
the existence of a terminal region associated with fault-free
closed-loop system of (11) and defined by:

T̄ k(zks , θb) , {ξ̄ : ‖ ξ̄ ‖ ≤ γ̄k
1 (z

k
s , θb)} (12)

Remark 1. The existence of a fault-free terminal region,
T̄ k(zks , θb), implies that the trajectories of the closed-loop
system of (11) converge to T̄ k(zks , θb) in finite time and
never leave. From the definition of T̄ k(zks , θb), it can be
observed that the size of the terminal region is dependent
on the spatial placement of the sensors, zks , the size
of the disturbances, θb, and the controller and observer
design parameters, (Fk, Lk). Therefore, the performance
of the closed-loop system is influenced by how these
various design parameters are chosen. Specifically, even
though a large disturbance may result in a large terminal
region (and thus poor performance), one may be able
to improve the closed-loop performance by placing the
sensors and actuators at locations which are more robust
to the external disturbance (i.e., the locations with smaller
terminal regions).

Based on the fault-free behavior of the augmented system
of (11), we can then analyze the evolution of the closed-
loop state when faults take place in some of the active
sensors (i.e., fk 6= 0). We consider the case when these

faults can be properly detected and satisfy some mea-
surable bound. The augmented system in the presence of
sensor faults can then be formulated as follows:
˙̄ξ = Λkξ̄ + Γθ +Πkfk, ‖ θ(t) ‖ ≤ θb, ‖ fk(t) ‖ ≤ fk

b (13)

where Πk is an operator matrix defined by Πk = [O, Lk]T .
Following the same analysis approach used for the fault-
free augmented system, it can be verified that the time-
derivative of V (ξ̄) along the trajectories of the closed-loop
system of (13) satisfies the following inequality:

V̇ (ξ̄) ≤ −λmin(Q)‖ ξ̄ ‖2 + 2‖ ξ̄ ‖(‖P kΓ ‖θb + ‖P kΠ ‖fk
b )

Comparing this inequality with the one obtained for the
fault-free system, it can be seen that the bound on V̇ (ξ̄)
increases due to the effect of sensor faults. As a result, the
decaying trend of V (ξ̄) can be maintained (V̇ (ξ̄) < 0), only
when

‖ ξ̄ ‖ > γ̄k
2 (z

k
s , θb, f

k
b ) , 2λ−1

min
(Q)(‖P kΓ ‖θb + ‖P kΠ ‖fk

b )

and, therefore, the terminal region in the presence of sensor
faults is also enlarged as:

S̄k(zks , θb, f
k
b ) , {ξ̄ : ‖ ξ̄ ‖ ≤ γ̄k

2 (z
k
s , θb, f

k
b )}. (14)

Remark 2. Note from the definitions of T̄ k(zks , θb) and
S̄k(zks , θb, f

k
b ) that the ultimate bound derived for the

faulty system is additionally parameterized by the mag-
nitude of the sensor faults. This is consistent with the
intuition that the deterioration of the closed-loop perfor-
mance becomes more significant in the presence of more
severe sensor faults. In addition, as can be seen from (12)
and (14), the fault-free and faulty terminal regions exhibit
similar dependencies on the sensor locations, zks , such that
sensor configurations with larger T̄ k(zks , θb) have larger
S̄k(zks , θb, f

k
b ) as well.

3.2 Sensor fault detection scheme

The closed-loop behaviors obtained fore the fault-free and
faulty augmented systems provide a way to derive some
rules for sensor fault detection in the finite-dimensional
closed-loop system. The key idea is to monitor the evolu-
tion of the state and use the fault-free ultimate bound
γ̄k
1 (z

k
s , θb) as an alarm threshold to declare a fault in

the operating sensor configuration. As can be seen from
the definition of the fault-free terminal region T̄ k(zks , θb),
the implementation of the above fault detection scheme
requires the state measurement x̄s, which in practice is
not available. To deal with this limitation, the evolution
of the observer state, η, is monitored instead, and we define
a new monitoring set in terms of η which can be expressed
as:

T̂ k(zks , θb) , {η : ‖ η(t) ‖ ≤ γ̄k
1 (z

k
s , θb)} (15)

Since η is a component of the augmented state, ξ̄, the

detection of η outside the terminal set T̂ k(zks , θb) always
indicates the fact that ξ̄ has already breached T̄ k(zks , θb).

Applying the new monitoring set T̂ k(zks , θb) to the pro-
posed fault detection logic, a fault can be declared at time
Td > Tc if η breaches the alarm threshold γ̄k

1 (z
k
s , θb), i.e.,:

‖ η(Td) ‖ > γ̄k
1 (z

k
s , θb) ⇒ fk(Td) 6= 0 (16)

where Td is the time when the faults are detected, Tc is

the earliest time when η converges into T̂ k(zks , θb) defined

as Tc , min{t : ‖ η(t) ‖ ≤ γ̄k
1 (z

k
s , θb)}. Applying a similar

approach to the faulty system of (13), a new monitoring
set for the observer estimate η can be obtained as follows:

Ŝk(zks , θb, f
k
b ) , {η : ‖ η(t) ‖ ≤ γ̄k

2 (z
k
s , θb, f

k
b )} (17)
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Note that having η escape from Ŝk(zks , θb, f
k
b ) at some time

is an indication that the augmented state, ξ̄, has already
moved out of S̄k(zks , θb, f

k
b ).

Remark 3. It should be noted that the alarm threshold,
γ̄k
1 (z

k
s , θb), accounts for the influences of the external

disturbances and is used to declare a fault after the process
state has already converged into the fault-free terminal
region. For the case when t < Tc (i.e., prior ro convergence
to the terminal set), a time-varying alarm threshold can be
applied based on the analysis of fault-free dynamics of η.
Moreover, the presence of a sensor fault cannot be detected
immediately but requires a short period time until η

breaches T̂ k(zks , θb). This detection delay can be minimized
by proper choices of the sensor/actuator locations as well
as the controller and observer design parameters (Fk,Lk)
to ensure that the threshold is sufficiently tight.

3.3 Performance-based sensor reconfiguration policy

Following the declaration of a fault in the operating
sensor configuration, we need to determine whether a
corrective action in the form of switching to a healthy fall-
back sensor configuration needs to be executed based on
the knowledge of the sensor fault. From the dependence
of the terminal regions, T̄ k(zks , θb) and S̄k(zks , θb, f

k
b ),

on sensor locations zks , it can be verified that keeping
the faulty sensor configuration active (subject to a non-
critical fault) may provide better closed-loop performance
than activating a fall-back sensor configuration in cases
where the faulty terminal region, S̄i(zis, θb, f

i
b), is smaller

than the fault-free terminal region subject to the backup
configuration, T̄ j(zjs , θb). In that case, the faulty sensor
configuration should be kept in use, even after the existing
sensor fault has been detected. On the other hand, when
S̄i(zis, θb, f

i
b) becomes larger than T̄ j(zjs , θb) due to a

severe fault taking place, the backup sensor configuration
corresponding to the smallest fault-free terminal region
among all the feasible configurations must be activated
to replace the faulty sensor configuration. This logic is
formalized in Theorem 1 below. The proof is conceptually
straightforward and is omitted for brevity.

Theorem 1. Consider the closed-loop system of (13),
where ‖ θ(t) ‖ ≤ θb and ‖ fk(t) ‖ ≤ fk

b , for some θb, f
k
b > 0.

Let T ik
f be the earliest time such that the ik-th fault is

detected. Then the following switching rule:

k(t) =





i0 = argmin
i∈K

γ̄i
1, ∀ t ∈ [t0, t1)

i1 = argmin
i∈K,i6=i0

{γ̄i
1, γ̄

i0
2 }, ∀ t ∈ [t1, t2)

...
...

ij = argmin
i∈K,i6=ij−1

{γ̄i
1, γ̄

ij−1

2 }, ∀ t ∈ [tj , tj+1)

(18)

guarantees that the state of the closed-loop system is
ultimately bounded.

4. SENSOR FAULT-TOLERANT CONTROL OF THE
INFINITE-DIMENSIONAL SYSTEM

4.1 Fault-free controller implementation

Considering the design of fault-tolerant control structure
described in the previous section is implemented using the

measured outputs of the infinite-dimensional system of (6)-
(8), the observer-based output feedback controller can be
formulated as follows:

uk = Fkη, η̇ = Âsη + B̂su
k + Lk(y −Qk

sη) (19)

which has a similar structure to the controller of (10),
except that the output y (instead of ȳ) is used to im-
plement the observer. Introducing the augmented state
ξ = [xs, η]T , we can express the infinite-dimensional
augmented system in the following singularly perturbed
form (see Christofides (2001) for the basis and details of
this formulation):

ξ̇ = Λkξ +Θθ + Ξxf +Πkfk (20)

where Θ , [Ws(xs, xf ), O]T (with Θ = Γ when xf =

0), and Ξ , [O, LkQf ]
T . Note that the slow and

fast subsystems are coupled together due to the use
of the output of the infinite-dimensional system which
contains both the slow and fast states. The stability
properties of the infinite-dimensional closed-loop system
are summarized in the following proposition, which ties
the controller design with the separation between the slow
and fast eigenvalue of A. The result can be justified using
singular perturbation techniques.

Proposition 2. Consider the infinite-dimensional system of
(6)-(8), with fk(t) ≡ 0 for a fixed k ∈ K, subject to the
control law of (19) and choose Fk and Lk such that Λk is
exponentially stable. Then exists a positive real number,
ǫ∗, such that if ǫ ∈ [0, ǫ∗), the zero solution of the infinite-
dimensional closed-loop system is stable and the closed-
loop state is ultimately bounded.
Remark 4. According to the result of Proposition 2, the
output feedback controller that stabilizes the approxi-
mate finite-dimensional system continues to stabilize the
infinite-dimensional system provided that the separation
between the slow and fast eigenvalues is sufficiently large.
This restriction, which requires that a sufficient number of
slow states be included in the finite-dimensional controller
design, is needed to ensure that the error introduced by
using y instead of ȳ is sufficiently small.

4.2 Sensor fault detection and reconfiguration

In the controller implementation on the infinite-dimensional
system, the observer estimates are generated using y
(which depends on both xs and xf ) instead of ȳ which
was used in the finite-dimensional case. Consequently,
some modifications must be made to the fault-free and
faulty terminal regions to minimize the false alarms which
could result from the approximation error made in neglect-
ing xf when deriving the approximate finite-dimensional
system. These modifications are summarized in the fol-
lowing proposition and can be used as an alarm thresh-
old to decide conclusively when a fault can be declared
and consequently when to switch sensor configurations in
the infinite-dimensional system. The proof is omitted for
brevity.

Proposition 3. Consider the infinite-dimensional system of
(6)-(8), subject to the control law of (19) where Fk and
Lk are chosen such that Λk is exponentially stable. Then
given any set of positive real numbers {d, T1, Tb < T1},
there exists a positive real number ǫ̂ such that the fault-
free and faulty threshold γk

1 (z
k
s , θb) and γk

2 (z
k
s , θb, f

k
b ) of

the observer estimate η satisfy, ∀ t ∈ [Tb, T1],

γk
1 (z

k
s , θb) = γ̄k

1 (z
k
s , θb) + d (21)
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γk
2 (z

k
s , θb, f

k
b ) = γ̄k

2 (z
k
s , θb, f

k
b ) + d (22)

Remark 5. Proposition 3 introduces three modifications
to the fault detection and fault reconfiguration scheme
developed based on the approximate finite-dimensional
system. The first modification involves enlarging the fault
detection alarm threshold by d = O(ǫ), which reflects
the size of the approximation error. Notice, however,
that d can be chosen arbitrarily small provided that ǫ is
sufficiently small. The second modification is evaluating
the residual only after a small period of time [0, Tb] has
elapsed to ensure that xf has converged sufficiently close
to zero. This waiting period can also be made small if ǫ
is sufficiently small. The final modification is limiting the
time window for fault detection to a finite time-interval
[Tb, T1]. The reason for this is the fact that, owing to
the bounded stability of the fault-free closed-loop system,
closeness between the solution of the finite-dimensional
and infinite-dimensional systems can be established only
over a finite time interval. This fault detection window,
however, can be made as large as desired provided that ǫ
is sufficiently small.

Remark 6. Similar to the way that the output feedback
control and fault detection strategies are implemented,
one can show using singular perturbation arguments that
the sensor reconfiguration logic of (18) which is based
on the approximate finite-dimensional system continues
to enforce closed-loop stability in the infinite-dimensional
system and to guarantee the best control performance
among all the possible fall-back choices provided that ǫ
is sufficiently small.

5. SIMULATION STUDY: APPLICATION TO A
DIFFUSION-REACTION PROCESS

We consider the following representative diffusion-reaction
process which describes a long, thin catalytic rod in a
reactor with a zeroth-order exothermic reaction taking
place on the rod. Under standard modeling assumptions,
the spatiotemporal evolution of the dimensionless rod
temperature is described by:

∂x̄

∂t
=

∂2x̄

∂z2
+ (βT γe

−γ − βU )x̄ + βUb(z)u+ d(z)θ

yl =

∫ π

0

ql(z)x̄dz + fl(t), l = 1, · · · , n
(23)

subject to boundary conditions x̄(0, t) = x̄(π, t) = 0,
where x̄ denotes the dimensionless temperature, βT =
50.0, γ = 2.0, βU = 4.0 denote dimensionless heat of
reaction, activation energy and heat transfer coefficient,
respectively, u(t) denotes the dimensionless temperature
of the cooling medium, θ is a parametric uncertainty in
the heat of reaction, and b(z) is the actuator distribution
function. It can be verified that the operating steady state
x̄(z, t) = 0 (with u = θ = 0) is unstable. The control
objective is to stabilize the temperature profile near this
unstable, spatially uniform steady state by manipulating
the temperature of the cooling medium, in the presence of
uncertainty and sensor faults.

The solution of the eigenvalue problem for the differen-
tial operator yields λj = βTγe

−γ − βU − j2, φj(z) =√
2

π
sin(jz), j ∈ {1, 2, · · · ,∞}. The first eigenmode is

chosen as the dominant one since only the first eigenvalue
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Fig. 1. Dependence of fault-free and faulty terminal regions on the
sensor spatial placement.

is positive, and Galerkins method is applied to derive an
ODE that describes the approximate temporal evolution
of the amplitude of the first eigenmode:

˙̄a1 = λ1ā1 + g(za)u+ w(z)θ1 (24)

where x̄(z, t) =
∑∞

i=1
ai(t)φi(z), g(za) = βU 〈φ1(z), b(z)〉,

w(z) = βU 〈φ1(z), d(z)〉, and a single point actuator (with
finite support) at za = 0.5π is used for stabilization, i.e.,
b(z) = 1/(2µ) for z ∈ [za − µ, za + µ], where µ is a
sufficiently small positive number and b(z) = 0 elsewhere.
Similarly, a point sensor is also used to measure the output
of the process, and a point heat source is introduced at
0.5π as an external disturbance with θb = 0.02. The above
ODE is used to design the sensor fault detection and
reconfiguration scheme which is then implemented on a
30-th order Galerkin discretization of the PDE (higher-
order discretizations gave the same results).

In Fig.1, the size of the fault-free terminal region and
the terminal regions subject to sensor faults with different
magnitudes are compared, for different placement of the
measurement sensor. As can be observed, the fault-free
and faulty terminal regions exhibit the same dependency
on the sensor location, and the terminal region is enlarged
as the severity level of the sensor fault increases. Moreover,
it can be seen that all the terminal regions shrink as the
sensor is moved closer to the middle of the spatial domain
which implies better closed-loop performance.

In order to demonstrate how the developed FD-FTC
scheme is implemented, we first consider the case when
the operating sensor is placed at zs = 1.5 with 2 backup
sensors at 0.7π and 0.8π. From Fig.2(a), it can be seen that
when a 40% fault (sensor measurement is 60% of the actual
output measurement) takes place at t = 3.5, it cannot be
detected immediately but need to wait a short period of
time until t = 4.8 when η breaches the alarm threshold.
Then, we need to determine whether to switch to one of the
backup sensors or to keep using the current faulty sensor.
Comparing the terminal region subject to 40% fault with
zs = 1.5 and the fault-free terminal region with zs = 0.7π
and zs = 0.8π in Fig.2(b), it can be seen that both backup
configurations can reduce the degradation of the closed-
loop performance, while switching to zs = 0.7π is the best
choice because its leads to a smaller terminal region than
the one for zs = 0.8π. This prediction can be confirmed by
the comparison of the observer state, the amplitude of the
first eigenmode, and the control action profiles depicted in
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Figs.2(a), (c) and (d). As expected, the choice of using the
current faulty sensor leads to the worst performance, while
the smallest offset is achieved by switching to the backup
sensor at zs = 0.7π.
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Fig. 2. Plot (a): Observer state profiles when a 40% fault is
introduced at t = 3.5. Plot (b): Terminal region profiles for
different sensor configurations. Plots (c)-(d): The amplitude of
the first eigenmode and the control action profiles for different
sensor configurations.

When a sensor fault is detected, switching to a backup
sensor may not always result in an improvement in the
closed-loop performance. In order to demonstrate this
possibility, we consider another scenario where the backup
sensor is placed at zs = 0.95π, near the boundary of the
process and a 30% fault takes place at t = 3.5. From
the terminal region profile in Fig.3(a), it can be observed
that the fault-free terminal set for the backup sensor is
larger than the current faulty terminal region. Therefore,
no sensor switching is required after detection of the sensor
fault. This prediction is then confirmed by the comparison
of the observer state and the closed-loop state profiles in
Figs.3 (b)-(d), where the offset of the closed-loop state for
zs = 0.5π is much smaller than the one for the backup
configuration at zs = 0.95π.
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