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Abstract: Piecewise affine (PWA) models serve as an important class of models for nonlinear systems.
The identification of PWA models is known to be a difficult task and often implies solving a non-convex
combinatorial optimization problems. In this paper, we revisit a recently proposed PWA identification
method. We do this to give a novel derivation of the identification method and to show that under certain
conditions, the method is optimal in the sense that it finds the PWA function that passes through the
measurements and has the least number of hinges. We also show how the alternating direction method
of multipliers (ADMM) can be used to solve the underlying convex optimization problem.
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1. INTRODUCTION

Piecewise affine functions are known for their universal ap-
proximation properties (Lin and Unbehauen, 1992; Breiman,
1993) and are therefore popular in control. The identification
of PWA is however often difficult. In fact, most PWA methods
can be seen as clever approaches for solving a non-convex op-
timization problem. The underlying non-convex optimization
problem varies slightly depending on what assumptions that are
made but essentially expresses the desire to

• label the training data by identifying what submodel each
of the entry in the training data belongs to and

• identify the different submodels using the labeled training
data.

The problem is that to label the data, the submodels are needed
and to identify the submodels, the labels are needed. The two
tasks should therefore ideally be done simultaneously. More
formally, given the training data {(yk, xk)}Nk=1 this can be written
as

minimize
{Mi}

m
i=1,{θi}

m
i=1

N∑
k=1

m∑
i=1

δk∈Mi J(yk − θ
T
i xk) (1)

where Mi is an index set, containing the indices of the training
data that belong to submodel i, J a cost function measuring fit
and δk∈Mi an indicator function that is zero whenever k < Mi
and one otherwise. θi is the model parameter of submodel i.
Note that we both optimize over the model parameters {θi}

m
i=1

and the index sets {Mi}
m
i=1 (essentially the labels). This problem

is non-convex.

Existing PWA identification methods can in general be said be-
ing either a greedy or a relaxation approach. Greedy approaches
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to PWA identification alternate between finding the labels and
the submodels. That is, a local optimum to (1) is sought by alter-
nating between minimizing with respect to {Mi}

m
i=1 and {θi}

m
i=1.

These types of methods are known for being computationally
efficient but are dependent on a good initialization for finding a
good estimate.

More recently, a number of methods have been presented that
approach the PWA identification problem by the use of relax-
ations and convex optimization. This type of method seek a
convex relaxation of (1). The performance of these methods
does not depend on a clever initialization. This valuable prop-
erty is often traded for with a higher computational complexity
compare to the greedy methods.

In this contribution, we study a method of the last type. Rather
different than many other relaxation methods, the problem
of simultaneously computing the label and the submodels is
avoided by never computing the submodels. Instead, of using
θT

i x∗ as an estimate for the output at x∗ from submodel i,
the method uses that we can linearly interpolate/extrapolate
data from submodel i to give an estimate for the output at x∗
from submodel i. Since the submodel parameters {θi}

m
i=1 are

never computed, the algorithm does not produce an estimate
for {θi}

m
i=1. Instead, given a set of training data {(yk, xk)}d+1

k=1
from some unknown PWA function f , the considered method
computes a data-based representation of a PWA map Π which
models f . That is, given a set of grid points {x̂k}

N̂
k=1, the

corresponding outputs {ŷk}
N̂
k=1 are estimated. The PWA method

is therefore discriminative rather than generative, since it only
implicitly computes a PWA model. One important advantage of
the approach is that it implicitly provides the rule for labeling
new data, while many other methods only provide the labels for
the training set. The method seeks the set of outputs that:

(1) Maximizes the fit to the training data and
(2) generate an estimate for the sought outputs at the given

grid points from a PWA model with the minimum number
of hinges.
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The method we revisit in this contribution was previously pre-
sented in Maruta and Sugie (2011, 2012). In this contribution,
theoretical background of the method is investigated, and a fact
which is useful in determining the regularization parameter,
which is the most important design parameter in the method, is
derived. Also, it is shown that the alternating direction method
of multipliers (ADMM) algorithm is effective numerical solver
for the method.

2. BACKGROUND

PWA systems serve as popular models of nonlinear systems
due to their universal approximation properties (Lin and Un-
behauen, 1992; Breiman, 1993). In addition, it can also be
shown that PWA systems are equivalent to certain types of
hybrid systems, see e.g., Bemporad et al. (2000); Heemels et al.
(2001). This makes PWA systems a very important class of
systems with an increasing interest. Five methods that have
attained special attention in the literature are the clustering-
based approach (Ferrari-Trecate et al., 2003), the bounded error
approach (Bemporad et al., 2005), the mixed integer quadratic
programming approach (Bemporad et al., 2001; Roll et al.,
2004), the Bayesian approach (Juloski et al., 2005) and the
algebraic approach (Vidal et al., 2003). For an overview of
contributions see Paoletti et al. (2007); Garulli et al. (2012).
The identification of PWA models is a complex task in which,
simultaneously, both the labels and the linear submodels have
to be found. The underlying problem is often non-convex and
many methods can be seen as greedy approaches. These are
then highly dependent on a good initialization for delivering a
satisfying model. See e.g., Roll (2003) for an overview.

The approaches discussed in Ohlsson (2010); Maruta and Sugie
(2011); Bako (2011) approximates the underlying optimization
problem with a convex relaxed problem. It is therefore insen-
sitive to initialization, since it is convex, while being solvable
for problems of practical sizes. Among them, the approaches
studied in Ohlsson (2010); Bako (2011) only provide labels for
the training data while the method discussed in this contribu-
tion (Maruta and Sugie, 2011) implicitly provides the rule for
labeling new data.

The approach presented in Bemporad et al. (2001); Roll et al.
(2004) discuss solving the non-convex problem (1) directly,
without relaxing it. In the setting studied in Bemporad et al.
(2001); Roll et al. (2004) the non-convex problem can be
shown to be a mixed integer quadratic program. Such programs
are known to be hard to solve (NP-hard in the worst case
(Roll et al., 2004)) and the approach is therefore practically
applicable only to very small problems.

The discussed approach is also related to sparse subspace
clustering (SSC (Elhamifar and Vidal, 2013)).

3. NOTATION AND ASSUMPTIONS

For conciseness, we denote the set {x1, x2, · · · , xN} by {xk}
N
k=1.

We will in general use x for inputs and y for outputs and
assume that the inputs are in Rd and that the outputs are real
scalars. Given a set of input-output pairs {(yk, xk)}d+1

k=1 , we will
be interested in the d-dimensional hyperplane spanned by the
set of pairs. In particular, we will denote the linear interpolation
of the output at a given input x ∈ Rd using the notation:

Fig. 1. Illustration of a data-based representation of a PWA
map model. The PWA map model Π is represented by
a set of data points {(x̂k, ŷk)} connected according to a
triangulation T .

Lerp
(
x, {(xk, yk)}d+1

k=1

)
,

[
x
1

]T

·


xT

1 1
xT

2 1
...

...
xT

d+1 1


−1

·


y1
y2
...

yd+1

 . (2)

We will define Co(P) as the convex hull of a set of points P. For
a vector v, we denote `p norm of v by ‖v‖p. Especially, ‖v‖0 is
defined as the number of non-zero elements in v.

4. PWA MODEL IDENTIFICATION

In this paper, we study an PWA model identification method
which is based on data-based representation of PWA maps and
`1 relaxation. Before describing the main problem, the data-
based scheme used for representing the PWA map model Π and
complexity measure for the model are explained.

4.1 Data-based Representation of PWA Map

In the data-based representation scheme, a PWA map Π is rep-
resented by a set of data points {(x̂k, ŷk)}N̂k=1 connected accord-
ing to a triangulation T . x̂1, x̂2, . . . x̂N̂ ∈ R

d and ŷ1, ŷ2, . . . , ŷN̂ ∈

R are inputs and outputs of the data points which represents
the PWA map, respectively and T is a triangulation which
subdivides Co

(
{x̂k}

N̂
k=1

)
into d-dimensional simplexes (triangles

if d = 2). An example of data-based PWA map is shown in
Fig. 1, and concrete definition of the data-based PWA map is as
follows.
Definition 1. (Data-based PWA map). For given data set
{(x̂k, ŷk)}N̂k=1 and triangulation T , define the PWA map

Π : Co
(
{x̂k}

N̂
k=1

)
⊂ Rd 7→ R (3)

as the map whose value Π(x) is calculated by the following
procedure [P1]–[P2]:

[P1] Choose the simplex (triangle) which includes x from T ,
and let the vertexes of the simplex be x̂v1 , x̂v2 , . . . , x̂v(d+1) .

[P2] Determine Π(x) by linearly interpolating the data chosen
in [P1] as

Lerp

x,
{(

x̂vk

ŷvk

)}d+1

k=1

 . (4)
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Extrapolation
ErrorFocal Hinge

Fig. 2. Illustration of the extrapolation error calculated for
distinguishing whether the focal hinge is broken or not
(d = 2).

By Definition 1, Π reproduces the data set, that is

Π (x̂k) = ŷk

(
k = 1, 2, . . . , N̂

)
, (5)

and is a piece-wise affine map with d-simplex facets.

4.2 Measure of Model Complexity

PWA map models can have arbitrary complicated structures and
can reproduce any data set. However, excessively complicated
models constructed from noisy data sets tend to reproduce
the noise in the training data and are not useful in practical
situations. To control the complexity of the PWA model, we
introduce a complexity measure.

In essence, we measure the complexity of the map by counting
the number of broken hinges in the map. To distinguish whether
a hinge in the map is broken or not in a mathematical way,
we focus on the pair of faces which shares a hinge as their
edge, and let the indexes corresponding to their vertexes be
(q1, q2, . . . , qd+1) and (p, q1, . . . , qd) (see Fig. 2). We then cal-
culate the error between the extrapolation from the data set on
one face (q1, q2, . . . , qd+1) and the point exclusively belonging
to the other face p, that is,

ŷp − Lerp

x̂p,

{(
x̂q`
ŷq`

)}d+1

`=1

 , (6)

and call this error the extrapolation error. Fig. 2 illustrates this
extrapolation error for d = 2. As seen in the figure, the hinge is
broken if the error is non-zero. The number of broken hinges is
hence equal to the number of non-zero extrapolation errors. We
can hence write the complexity measure as∑

(p,{q`}d+1
`=1 )∈S

∥∥∥∥∥∥∥ŷp − Lerp

x̂p,

{(
x̂q`
ŷq`

)}d+1

`=1


∥∥∥∥∥∥∥

0

, (7)

where S is the index set of all neighboring simplex-point pairs
in T , and the summation is done over all elements in S . Since
this summation counts a hinge twice, (7) equals twice the
number of broken hinges in Π.

Fig. 3. An example of Delaunay triangulation for P in the plane.
No point in P is inside the circumcircle of any Delaunay
triangle (simplex).

4.3 Problem Setting

Here, we consider a system described by
y = f (x) + η, (8)

where x ∈ Rd is the known input of the system; y ∈ R is
the measurable output of the system; and f : Rd 7→ R is an
unknown map. Although f is unknown, it is assumed that f is
a PWA map with a finite number of modes, and η ∈ R, which is
defined as the difference between f (x) and y, can be regarded
as a stochastic noise.

The problem here is to construct a PWA map Π : Rd 7→ R
which models f given a training data set consisting of N pairs
of I/O data points {(

x1
y1

)
,

(
x2
y2

)
, . . . ,

(
xN
yN

)}
, (9)

from (8). In constructing Π, a set of grid points at which the
output of Π is of interest and a triangulation T is assumed to
be given. For example, {x̂k}

N̂
k and T could be chosen by ran-

domly sample from the required model domain and a Delaunay
triangulation could be used.
Remark 2. To obtain T , we could use Delaunay triangulation.
Delaunay triangulation is a triangulation, where the interior
of the circumcircle of any triangle in Delaunay triangulation
contains no points of the set (see Fig. 3). Delaunay triangulation
also can be extended to higher dimensions and has a lot of ap-
plications. For more information about Delaunay triangulation,
see e.g., de Berg et al. (2008).

4.4 Identification Procedure

Given a noisy data set {(xk, yk)}Nk=1, the grid points {x̂k}
N̂
k=1 and

the triangulation T , we seek to construct Π by minimizing the
complexity and by maximizing the fit to the given training data
set. Consequently, we consider to determine {ŷk}

N̂
k=1 through the

following optimization problem:

minimize
ŷ1,ŷ2,...,ŷN̂

1
2

N∑
k=1

(yk − Π (xk))2

+ λ
∑

( p
{q`}d+1

`=1

)
∈S

∥∥∥∥∥∥∥ŷp − Lerp

x̂p,

{(
x̂q`
ŷq`

)}d+1

`=1


∥∥∥∥∥∥∥

0

(10)

where S is the set consists of all pairs of faces and neighboring
vertexes in T , and λ > 0 is a regularization parameter for
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balancing between model fit and the model complexity. Since

Π (xk) and Lerp

x̂p,

{(
x̂q`
ŷq`

)}d+1

`=1

 in (10) are linear in ŷ1, . . . , ŷN̂ ,

(10) can be written in the following form:

minimize
ŷ

1
2
‖y − Aŷ‖22 + λ ‖Fŷ‖0 , (11)

where y ,
[
y1, . . . , yN

]T is the vector of given output data;
ŷ ,

[
ŷ1, . . . , ŷN̂

]T is the vector of output data for representing
the PWA model Π; A ∈ RN×N̂ is the matrix depends on
{xk}

N
k=1 , {x̂k}

N̂
k=1 and triangulation T ; F ∈ RM×N̂ is the matrix

depends on {x̂k}
N̂
k=1 and triangulation T ; and M is the number

of hinges in Π.

Although the solution of the problem (11) would be the one
with least number of broken hinges with a certain fit, the
problem is known to be NP-hard. So, we relax (11) to the `1-
regularized least squares problem:

minimize
ŷ

1
2
‖y − Aŷ‖22 + λ ‖Fŷ‖1 , (12)

This relaxed problem can be solved efficiently and still provides
us good models as shown in the following sections.
Remark 3. A is sparse matrix with d + 1 non-zero elements in
each row since every element in y is interpolated from d + 1
elements in ŷ by Π.
Remark 4. F is sparse matrix with d + 2 non-zero elements in
each row since every extrapolation error is calculated from d+2
elements in ŷ.

5. THEORETICAL ANALYSIS

5.1 Regularization Path and Critical Parameter Value

The estimated parameter ŷ as a function of the regularization
parameter λ is called the regularization path for the problem.
Roughly, large values of λ result in PWA map models with
simpler structure but worst fit. To find a suitable model, we have
to evaluate ŷ for various λ. A basic result from convex analysis
tell us that there is a value λmax such that ŷ(λ) corresponds a flat
linear map (no broken hinges) if and only if λ ≥ λmax. It is very
helpful to know the critical parameter value λmax in practice
since it gives a very good starting point in finding a suitable
value of λ.

Let ŷ(λmax) be the estimated parameter correspond to flat linear
map. Then ŷ(λmax) is calculated as

ŷ(λmax) = X̂
(
XT X

)−1
XT y, (13)

where

X ,
[
x1 x2 · · · xN
1 1 · · · 1

]T

, X̂ ,
[
x̂1 x̂2 · · · x̂N̂
1 1 · · · 1

]T

.

Then ŷ(λmax) is optimal solution of (12) if and only if 0 is in the
subdifferential of the objective function at ŷ = ŷ(λmax),{

AT (
−y + Aŷ

(
λmax)) + λFT z

∣∣∣ ‖z‖∞ ≤ 1
}
, (14)

and we can calculate λmax from the solution of the linear
program

minimize
µ,z

− µ (15a)

subject to µAT (
−y + Aŷ

(
λmax)) + FT z (15b)

‖z‖∞ ≤ 1 (15c)
as λmax = 1

µ
.

5.2 Guaranteed Recovery of the Solution with the Least
Number of Hinges

It is interesting to analyze under what conditions the relaxation
of the zero norm by the `1 norm is tight. To gain some insight,
consider the noise free case. We are then led to the problem of
finding a PWA function that satisfies the measurements and that
minimizes the number of hinges,

minimize
ŷ

‖Fŷ‖0,

subject to y = Aŷ.
(16)

Interestingly, (11) and (16) can be shown equivalent if λ ≤ λmin

in (11), for some certain λmin ≥ 0. It can also be shown that
there exists a λ̃min ≥ 0 such that whenever λ ≤ λ̃min the relaxed
versions of (11) and (16) are the same.

A hot topic in compressive sensing (CS, Candès et al. (2006);
Donoho (2006)) has been to derive conditions for when the
relaxation is tight. However, all work we are aware of discuss
F = I, where I is the identity matrix.

The following definition will become useful.

Definition 5. (RIP). For a given integer k, A ∈ RN×N̂ , and
F ∈ RM×N̂ , we say that the pair (A, F) is (ε, k)-RIP, with

ε = argmaxŷ,0

∣∣∣∣∣ ‖Aŷ‖22
‖ŷ‖22

− 1
∣∣∣∣∣

subject to ‖Fŷ‖0 ≤ k.
(17)

Theorem 6. (Uniqueness). Let (A, F) be (ε, 2k)-RIP with ε <
1. If ŷ satisfies ‖Fŷ‖0 ≤ k, and y = Aŷ then ŷ is unique.

Proof. Assume that ŷ is not unique and that there exists a ỹ
such that y = Aỹ, ‖Fỹ‖0 ≤ k, and ỹ , ŷ. Since both y = Aỹ
and y = Aŷ, we have that A(ỹ − ŷ) = 0. It also holds that
‖F(ỹ − ŷ)‖0 ≤ 2k. We hence have that∣∣∣∣∣ ‖A(ỹ − ŷ)‖22

‖ŷ‖22
− 1

∣∣∣∣∣ = 1 (18)

for a vector ỹ − ŷ , 0 and ‖F(ỹ − ŷ)‖0 ≤ 2k. This is a
contradiction since it was assumed that (A, F) is (ε, 2k)-RIP
with ε < 1. We hence have that ỹ = ŷ and that the solution is
unique.
Corollary 7. (Recovery). Let y∗ be the solution of

minimize
ŷ

‖Fŷ‖1,

subject to y = Aŷ.
(19)

The solution of (16) is identical to that of (19) if ‖Fy∗‖0 ≤ k
and (A, F) is (ε, 2k)-RIP with ε < 1.

Proof. This result follows from the previous theorem since
under the conditions of the corollary, any solution to y = Aŷ
with ‖ŷ‖0 ≤ k is the unique solution to (16).

6. NUMERICAL SOLVER

The problem (12) can be converted to a convex quadratic
programming problem and a number of optimization methods
for convex optimization problems and quadratic programming
problems are available for solving the problem. Among them,
we focus on the alternating direction method of multipliers
(ADMM) algorithm which possess remarkable advantages for
the problem as described in this section.
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Algorithm 1 ADMM algorithm for (12)

Require: y, λ, A, F
Ensure: ŷ

1: Initialize z1 ∈ RM ,u1 ∈ RM

2: k := 1
3: repeat
4: ŷk+1 :=

(
AT A + ρFT F

)−1 (
AT y + ρFT

(
zk − uk

))
5: zk+1 := S λ/ρ

(
ρFŷk+1 + uk

)
6: uk+1 := uk + Fŷk+1 − zk+1

7: k := k + 1
8: until termination criteria satisfied
9: ŷ := ŷk

The essential part of ADMM algorithm for solving (12) is
shown in Algorithm 1, where ρ > 0 is a user-defined constant
and S λ/ρ is the soft thresholding operator with level λ/ρ. For the
details of these components and termination criteria, see e.g.,
Boyd et al. (2011).

6.1 Scalability

The first advantage of ADMM algorithm in solving (12) is its
capability to solve large-scale problems. Indeed, the complexity
is only linear in N̂ for each ADMM iteration as discussed in the
following.

Here, we assume that grid points {x̂k} and T are obtained via
Delaunay triangulation of randomly distributed points. Under
this assumption, the expected number of hinges M is propor-
tional to the number of grid points N̂ (Dwyer, 1991). The com-
plexity of the Delaunay triangulation algorithm is O

(
N̂dd/2e+1

)
and polynomial in N̂ (Cignoni et al., 1998).

In Algorithm 1, we have to solve a linear system for updating
ŷk (line 4) and this is the most significant step when considering
the required amount of computation. Although solving the
linear equation for general AT A + ρFT F costs O

(
N̂3

)
flops

for initial factorization and O
(
N̂2

)
flops for each iteration, the

equation can be solved in much more efficient way when AT A+
ρFT F is sparse (Boyd et al., 2011, §4.2.2). As for the problem
(12), AT A + ρFT F is a sparse matrix with O

(
d2N̂

)
non-zero

elements because A and F have sparsity patterns stated in
Remarks 3 and 4. This sparsity allows efficient calculation with
a permuted Cholesky factorization. Although the permutation
in this process rely on heuristic algorithm and it is difficult
to ensure the performance, the algorithm is well established
(George and Liu, 1989) and the total amount of calculation for
solving the linear system is empirically proportional to N̂ as
shown through a numerical example in Section 7. Note that the
other calculations in the algorithm also costs flops proportional
to N̂ since the number of non-zero elements in A and F are
proportional to N̂.

6.2 Warm Start

The second advantage of ADMM algorithm is its capability to
perform warm start. In the initialization step (line 1), z1 and
u1 are initialized by zero in a standard manner. When we run
the algorithm multiple times for slightly different problems, we
can initialize these values by zk and uk in the previous run to
obtain good results in far fewer iterations. This is called warm

start. For obtaining the regularization path, we have to solve
(12) a number of times for different λ, and this warm start
initialization significantly reduce the computation time.

7. EXAMPLES

We illustrate the method and the above discussions through
examples. In the following examples, MATLAB is used for
implementing the ADMM algorithm, and CVX (Grant and
Boyd, 2013, 2008) is used for solving (15).

Example 1: Numerical Example

Consider the system
y = max (1 − ‖x‖1 , 0) + η (20)

where d = 2 and η ∼ N
(
0, 0.12

)
. For this system, a PWA map

model Π, whose domain is {x | ‖x‖∞ < 1.1 }, is constructed.
The input to the system {x}Nk is uniformly distributed random
number. For the identification process, 2 000 (= N) samples are
generated from the system (20) and additional 2 000

(
= Nvld

)
samples

{(
xvld

k , yvld
k

)}Nvld

k
are generated for validation purpose.

First, the grid points {x̂k}
N̂
k=1 and the triangulation T for repre-

senting Π, which covers the model domain, is set by clipping
Delaunay triangulation of uniformly distributed points. The
number of data points used for representing Π is 8830

(
= N̂

)
.

Then, {ŷk}
N̂
k=1 is estimated with the method described in Sec-

tion 4.4. The result for 2λmax ≥ λ ≥ 10−4λmax, where λmax

is calculated in advance by solving (15), is shown in Fig. 4
with the error between the obtained map Π and the validation
data. It is confirmed that a good model which reproduce the
pyramid-shaped structure of the system is obtained by choosing
λ which minimizes the validation error. We clearly see that
small λ results in model affected by noise and large λ eliminates
important model structures.

As stated in Section 5.1, λ ≥ λmax produces the flat linear
model and calculation of λmax provides a good starting point
for searching best λ.

To clarify the capability of the method for large-scale problems,
calculation time required for one ŷk update in Algorithm 1
is examined for various N̂ (other settings are the same as
above). The circles in Fig. 5 shows the required time for the
factorization stage (executed at the first iteration) and required
time for each iteration separately. The lines show the fitted
power functions. As seen in the plot, required computation time
is almost linear to N̂ as stated in Section 6.1, and the scalability
of the method is confirmed.

Example 2: Application to Mechanical System

Let us consider an example with real data to confirm the
effectiveness in practical situations. The rotary actuator FHA-
17C-100-E250 manufactured by Harmonic Drive Systems Inc.
(shown in Fig. 6) is the target system in this example. This
actuator is equipped with a harmonic drive speed reducer,
which is commonly used in industrial robots and have strong
nonlinear friction (Taghirad and Bélanger, 1998). The input to
the system is torque command voltage u [V], and the output
is the angular speed ω [rad/s] which is obtained by taking
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Fig. 4. Regularization path and error with validation data for Example 1. Obtained PWA map Π for λ = 10−4λmax, 5.7 ×
10−3λmax, 2λmax are shown.
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Fig. 5. Calculation time required for ŷk update in Algorithm 1
and fitted power functions. Calculation time required for
factorization stage and each iteration are separately shown.

backward difference of the rotation angle measured by the built-
in optical encoder. This system is already modeled by a PWA
model with two-dimensional input in Maruta and Sugie (2012).
Here, we are going to model the system by a PWA model with
three-dimensional input to obtain a more accurate model and
to show the advantage of using ADMM in a relatively large
problem. The problem here is to construct a non-linear dynamic
model

ω(k) = Π
(
[ω(k − 1), ω(k − 2), u(k)]T

)
, (21)

Fig. 6. Rotary actuator (Harmonic Drive Systems Inc. FHA-
17C-100-E250)

where ω(k) and u(k) are the k-th sample of ω and u sampled
with 10 ms interval, respectively. And, Π is the PWA map

Π : x 7→ y


ω(k − 1)
ω(k − 2)

u(k)

 7→ ω(k)

 (22)

going to be estimated.

The I/O data set for the identification is obtained by changing
u with random numbers normally distributed with zero mean
and 1 V standard deviation in every 0.1 s. The I/O data for the
first 5 s is shown in Fig. 7. Here, 512 000 samples are obtained
and 300 001st to 400 000th samples are used as the training data
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Fig. 7. Training data obtained from rotary actuator for first 5
seconds

{xk, yk}
N
k=1 (N = 100 000). For the validation purpose, 400 001st

to 500 000th samples are used.

For constructing model, the grid points {x̂k}
N̂
k=1 (N̂ = 10 000) are

set by random points normally distributed with the empirical
mean and covariance of {xk}

N
k=1, and triangulation T is set as

Delaunay triangulation of
{
Σ−1/2 x̂k

}N̂

k=1
, where Σ is the empirical

covariance matrix of {xk}
N
k=1 and used for normalizing the input

variables with different physical dimensions.

With the above setting, Π is constructed by the method de-
scribed in Section 4.4 for λ ∈

[
10−4λmax, 2λmax

]
, where λmax

is calculated in advance by solving (15). The plot in Fig. 8
shows the root mean square error (RMSE) between the output
signal of the validation set and the output of the model (21) with
Π obtained for various λ. The figure shows that λmax obtained
from (15) is a good starting point for finding the best λ for this
problem. The RMSE value is minimized to 0.585 rad/s when
λ = 3.08 × 10−2λmax and the last 10 s of the model output for
the validation input is shown in Fig. 9. Since RMS value of
the validation output is 8.37 rad/s, about 93% of the output is
successfully modeled.

For the comparison purpose, the output of the Hammerstein-
Wiener model obtained with nlhw function in MATLAB Sys-
tem Identification Toolbox is also shown in Fig. 9. In using
nlhw function, the input and output nonlinearities are set to 10
units piecewise linear blocks (default setting), and the model
orders for the linear dynamic block are set to

(
nb, n f , nk

)
=

(7, 8, 0), where nb is the number of zeros plus 1, n f is the
number of poles, and nk is the input delay. These parameters
are chosen from{(

nb, n f , nk

) ∣∣∣1 ≤ nb ≤ 10, 1 ≤ n f ≤ 10, 0 ≤ nk ≤ 9
}

(23)

to minimize the RMSE value for the validation data. The RMSE
value for the model is 1.998 rad/s, and about 76% of the output
is modeled by the method.

To validate the generalization ability, we compare the response
of the models with the real system for different type of input
signal. The cyclic input signal used for the validation and
responses are shown in Fig. 10. In the figure, the response of
the experiment device for 200 cycles are shown as the red thin
lines and the response of the model (21) with Π obtained for

10-4 10-3 10-2 10-1 1
0.5

1

1.5

2

2.5

3

3.5

2

Fig. 8. Regularization path and error with validation data for
Example 2.
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Fig. 9. Response of rotary actuator (red thick line) model
with Π for λ = 3.08 × 10−2λmax (blue solid line) and
Hammerstein-Wiener model obtained with nlhw function
in MATLAB System Identification Toolbox (green dashed
line) for validation data

λ = 3.08×10−2λmax is shown as the blue solid line. In addition,
the Hammerstein-Wiener model obtained with nlhw function
in MATLAB System Identification Toolbox is also shown as
green dashed line for comparison. These results shows that an
appropriate PWA model is obtained by the method described in
Section 4.4 for the practical system, which is difficult to model
with the method based on Hammerstein-Wiener model.

As for the calculation time, it is confirmed that the warm-
start feature of the ADMM algorithm is effective in a practical
situation. While it takes 48.2 s to solve (12) by interior-point
algorithm with MATLAB quadprog function for λ = 0.1, the
ADMM algorithm requires only 6.8 s to obtain a solution of
comparable quality starting from the solution for λ = 0.08.

8. CONCLUSION

This paper revisits a previously presented method for PWA
system identification. We revisit the method to give a novel
derivation which shows that under some certain conditions, the
method computes the PWA function that passes through the
training data and that has the least amount of broken hinges. We
also derive an efficient implementation using ADMM and a way

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4991



-1.5
-1

-0.5
0

0.5
1

0 5 10 15 20-40

-20

0

20

Experiment (200 cycles)
Model
Model (nlhw)

Fig. 10. Cyclic torque command signal for model validation
(above) and response of experiment device and models
(below)

to obtain a good starting point for the regularization parameter.
A number of examples are shown to illustrate these discussions
and the effectiveness of the method.
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