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Abstract:
We propose a robust actuator fault tolerant control strategy for systems with linear parameter
varying (LPV) uncertainty model description. The scheme employs a set-based robust fault
detection and identification (FDI) approach and a bank of virtual actuators (VA). An interesting
feature is that the virtual actuators are used both for FDI and controller reconfiguration (CR)
tasks. The robust FDI method is based on the separation of relevant sets defined for measurable
residual signals, which are computed based on the virtual actuator signals and taking into
account model uncertainty, noises and process disturbances. For CR, each VA is designed to
operate adequately in combination with a nominal controller (designed for the fault-free plant)
to achieve correct reconfiguration for a particular fault situation in a considered range of fault
scenarios. The resulting robust fault tolerant control scheme ensures boundedness of the closed-
loop system trajectories under a wide range of actuator fault scenarios. The performance of the
scheme is illustrated through a simulation example.
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1. INTRODUCTION

Fault tolerant control (FTC) systems integrate fault de-
tection and identification (FDI) with controller reconfigu-
ration (CR) in an overall strategy aimed at maintaining
closed-loop stability and designated performance levels
under a range of fault situations. Detailed treatments of
FDI, FTC and CR can be found in the books [1]–[3].
Recently, virtual actuators (VA) have been introduced as
a reconfiguration approach after actuator faults for linear
systems, see [1] and [3]. In [4], some of the current authors
proposed the use of a bank of virtual actuators in an
FTC scheme for LTI systems, with the new feature that
the VAs perform both FDI and CR tasks, without the
need of additional FDI observers. Each VA is designed
to operate in combination with a nominal controller to
achieve correct CR for a particular fault situation within
a finite range of scenarios. A residual signal is defined
for each VA with distinctive behaviour when its model
“matches” the actual fault situation and when changes to
a “non-matching” fault situation occur. The FDI principle
relies on monitoring the residual signals to assess which VA
matches the current fault situation and should be engaged.

In [5], the authors extended for the case of sensor faults
the ‘dual’ virtual-sensor based FTC methodology to a
class of systems having polytopic model uncertainties with
a linear parameter varying (LPV) description. The LPV
modelling approach has received major attention from
the control community in recent years as a tractable

1 Corresponding author. Email: raheleh.nazari@uon.edu.au

framework to deal with nonlinear systems. A motivation
behind this interest is the connection between LPV models
and gain-scheduling control, which is an effective technique
applicable to a large class of nonlinear systems [6]. LPV
systems typically employ self-scheduling control, where the
parameters of the control system are scheduled in real time
according to the current value of the varying parameter.
The self-scheduling idea was employed for CR after sensor
faults in [7]. Our work in [5] extended the approach of [7]
to consider the design of both, the FDI unit and the CR
module, in an integrated fashion.

In the present paper, the scheme of [4] based on a bank
of virtual actuators performing both FDI and CR tasks
is extended to discrete-time systems with convex LPV
model uncertainty. A schematic of the proposed FTC
scheme is shown in Figure 1. In this scheme, a bank of
self-scheduled VAs operates in closed-loop with a self-
scheduled observer-based tracking controller designed for
the nominal (fault free) plant. A suitable residual signal
is associated to each VA. Correct FDI is guaranteed if
a residual “matching” set (which characterises the fault
free situation) has no intersection with “non-matching”
sets (which characterise all other fault situations within
a finite range of considered scenarios). A switching logic
monitors these residual signals to determine which set they
belong to, and engages in the loop the VA that matches the
currently diagnosed fault situation. Closed-loop stability
under both healthy and faulty conditions is guaranteed
under the proposed robust FTC scheme. The performance
of the scheme is illustrated by a numerical example.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6722



u

VAM

w
η

r0, u0, y0
u

Switching

logic

VA0
LPV Plant

Nominal

controller
LPV

y

rM ,uM ,yM

ycuc

Fig. 1. FTC scheme with LPV plant, bank of VAS: VA0
to VAM , switching logic and nominal LPV controller.

2. CONVEX POLYTOPIC LPV PLANT AND
ACTUATOR FAULT MODELS

We consider a discrete-time LPV system given by 2

x+ =A(ρ)x+B(ρ)Fu+ Ew, (1a)

y =C(ρ)x+ η, (1b)

v =Cvx, (1c)

where x and x+ ∈ Rn are the current and successor system
states, u ∈ Rm is the control input, w ∈ Rr is a bounded
process disturbance, y ∈ Rp is the plant measured output,
v ∈ Rq is a performance output and η ∈ Rp is a bounded
measurement noise. ρ ∈ RL is an a priori unknown
time-varying parameter whose measurement is available
at each sample time, and A(ρ) ∈ Rn×n, B(ρ) ∈ Rn×m,
C(ρ) ∈ Rp×n, for each ρ (the results can be easily extended
to the case where the matrix E also depends on ρ).

The “fault matrix” F ∈ Rm×m in (1a) is used to model
actuator faults. We consider a finite range of fault situa-
tions represented by the matrix F taking M + 1 different
values F ∈ {F0, F1, . . . , FM}. In particular, F0 = I (the
identity matrix) represents the “healthy” situation, that
is, no actuator fault. Typically, the most critical faults
for the process performance are considered, for example,
total outage of actuators. We will say that an abrupt
change in the actuator fault situation occurs if F changes
from F = Fi to F = Fj , i, j ∈ {0, . . . ,M}, j 6= i,
at some time kF ≥ 0. The parameter ρ is assumed to
lie in some bounded set Γ ⊂ RL and we assume that
the system matrices can be written as a convex combi-

nation A(ρ) =
∑N
i=1 αi(ρ)Ai, B(ρ) =

∑N
i=1 αi(ρ)Bi and

C(ρ) =
∑N
i=1 αi(ρ)Ci for certain constant matrices Ai ∈

Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n, and continuous functions

αi : Γ→ R such that αi(ρ) ≥ 0,
∑N
i=1 αi(ρ) = 1, ∀ρ ∈ Γ.

It is assumed that the pairs (Ai, Ci) are detectable and
the pairs (Ai, BiFj), for i = 1, . . . , N and j = 0, 1, . . . ,M

are stabilisable. In addition,

([
Ai 0
Cv I

]
,

[
BiFj

0

])
are sta-

bilisable, for i = 1, . . . , N and j = 0, 1, . . . ,M . (This is
required for the VA design.)

We will further assume that the process disturbance and
the measurement noise satisfy w(k) ∈ W and η(k) ∈ N
2 The dependence of variables on discrete time k will be omitted
when clear from the context.

for all time instants k ≥ 0, where the bounding sets are
defined as 3 W , {w ∈ Rr : |w| ≤ w} and N , {η ∈ Rp :
|η| ≤ η} for some nonnegative vectors w ∈ Rr and η ∈ Rp.

3. NOMINAL LPV CONTROLLER

We consider the following observer-based, reference track-
ing LPV controller:

uc = −Ks(x̂− xref) + uref , (2)

x̂+ = Asx̂+Bsuc + Ls(yc − Csx̂), (3)

x+ref = As xref +Bsuref , (4)

where, under healthy conditions (F = F0 = I), uc = u,
yc = y (u, y are the signals in the plant (1), see Figure 1).
More generally, u, uc, y and yc are related through the
virtual actuator selected by the switching logic (cf. (7)–
(9)) according to the detected fault situation.

In (2)–(4), As, Bs, Cs, Ks and Ls are “self-scheduled”
matrices which are calculated at each sample time when a
new measurement of the varying parameter ρ is acquired.
Given the functions αi(ρ) for all i = 1, . . . , N , defined in
Section 2, the matrices As, Bs and Cs are calculated as

As = A(ρ) =
∑N
i=1 αi(ρ)Ai, Bs = B(ρ) =

∑N
i=1 αi(ρ)Bi

and Cs = C(ρ) =
∑N
i=1 αi(ρ)Ci. Similarly, the gains Ks

and Ls are computed as

Ks = K(ρ) =

N∑
i=1

αi(ρ)Ki, Ls = L(ρ) =

N∑
i=1

αi(ρ)Li.

The matrices Ki and Li, i = 1, . . . , N are a set of stabilis-
ing controller and observer gains, whose computation will
be explained later.

Remark 3.1. (Reference System). The reference system (4)
generates a trajectory (uref , xref) which is designed such
that it is bounded and the output Cvxref , where Cv is
the plant performance output matrix in (1c), asymptot-
ically tracks a bounded external signal v∗; that is, such
that limk→∞[Cvxref(k) − v∗(k) ] = 0. The signal v∗ is
a reference trajectory that we ultimately wish the plant
output v in (1c) to track, in the absence of disturbances,
under all possible fault situations. (The signal uref in (4)
can be designed by a number of methods; for the example
of Section 7 we employ a technique proposed by [7].)
Given the designed reference system, it is easy to obtain
constant vectors u0ref ∈ Rm and uref ∈ Rm such that
uref(k) ∈ Uref ={u ∈ Rm : |u−u0ref | ≤ uref} for all k≥0. ◦

The augmented system, with estimation error x̃ , x − x̂
and tracking error z , x−xref as the states, under nominal
(healthy) conditions F = F0 = I, uc = u and yc = y, is[

x̃+

z+

]
= φs

[
x̃
z

]
+

[
E
E

]
w +

[
−Ls

0

]
η, (5)

where

φs ,

[
As − LsCs 0
BsKs As −BsKs

]
=

N∑
i=1

N∑
j=1

N∑
h=1

αi(ρ)αj(ρ)αh(ρ)φijh , φ(ρ)

and where

3 Inequalities and absolute values are taken elementwise.
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φijh =

[
Ai − LhCi 0
BiKj Ai −BiKj

]
. (6)

There are several methods that can be used to calculate
the controller and observer gains (respectively, Kj and Lh
in (6)) which stabilise the augmented system (5) in the
entire parameter domain. For example, Theorem 3 of [9]
can be applied leading to bilinear matrix inequality (BMI)
conditions that can be solved numerically.

4. BANK OF VIRTUAL ACTUATORS

We will consider a bank of VAs with integral action [3].
The `th self-scheduled VA in the bank, associated with
the fault matrix F`, `=0, . . . ,M (with F0 =I), is given by[

θ+`
σ+
`

]
=

[
As 0
tCv I

] [
θ`
σ`

]
+

[
Bs
0

]
uc −

[
Bs
0

]
F`u`, (7)

u` = −MF`
s

[
θ`
σ`

]
+NF`

s uc + dF` , (8)

y` = y + Csθ`, (9)

where θ` ∈ Rn is the VA state; σ` ∈ Rq is the integral
action state; t > 0 is an arbitrary scalar. The matricesMF0

s
and NF0

s in (8) satisfy (in order to recover the nominal
control action for ` = 0)

MF0
s = 0, NF0

s = I. (10)

For ` 6= 0, partitioning the self-scheduled VA feedback

gains MF`
s as MF`

s =
[
MF`

s,θ MF`
s,σ

]
, the `th VA closed-

loop matrices AF`
s take the form

AF`
s ,

[
As +BsF`M

F`

s,θ BsF`M
F`
s,σ

tCv I

]
. (11)

Applying the convex properties to AF`
s , we have

AF`
s =

N∑
i=1

N∑
j=1

αi(ρ)αj(ρ)AF`
ij (12)

where

AF`
ij =

[
Ai +BiF`M

F`

j,θ BiF`M
F`
j,σ

tCv I

]
. (13)

The self-scheduled matricesNF`
s =NF`(ρ)=

∑N
i=1αi(ρ)NF`

i
in (8) are in principle arbitrary matrices but could be
chosen to satisfy some desired design specifications. The
signals dF` in (8) are constant vectors that represent de-
grees of freedom in the design and satisfy

BiF`d
F` = 0 for ` ∈ {0, 1, . . . ,M}, i ∈ {1, . . . , N}. (14)

All other parameters and variables are as in the plant and
nominal controller equations (1)–(4). Combining (7), (8),
and using (11)–(14), the dynamics of each VA satisfy[

θ+`
σ+
`

]
= AF`

s

[
θ`
σ`

]
+

[
Bs
0

]
(I − F`NF`

s )uc. (15)

In order to stabilise the LPV system (15) for uc = 0 for
each fault situation F`, a similar method to the one used
for stabilising the augmented system (5) can be employed

to calculate the gains MF`
j,σ and MF`

j,θ in (12)–(13) (see the

last paragraph of Section 3).

The VA signals u` and y` in (8)–(9) are fed back into the
closed-loop system whenever the switching logic engages
the `th VA according to the diagnosed fault situation; in

particular u = u` is applied to the plant and yc = y` to
the nominal controller (see Figure 1). Also, whenever the
switching logic selects the VA with index ` = 0, its initial
condition is reset as follows:[

θ0(k0)
σ0(k0)

]
=

[
0
0

]
∀ time k0 when ` = 0 is chosen. (16)

Note that (16) implies that the VA associated with the
nominal condition F = F0 becomes inactive when it is
selected by the switching logic. Indeed, together with (10),
the resetting (16) implies that u = u0 = uc + dF0 (with
BiF0d

F0 = Bid
F0 = 0 for all i ∈ {1, . . . , N} according to

(14)) and thus the plant (1a) receives the nominal control
law under nominal conditions.

Fault hiding goal. The VAs have the property of “hid-
ing” faults from the nominal controller, that is, they re-
store the controller signals uc and yc to their nominal tra-
jectories [3]. To show this property, we define the variables

ξ` , x+ θ`, ` = 0, . . . ,M. (17)

Using (1) and (7) we have

ξ+` = Asξ` +Bs(Fu− F`u`) +Bsuc + Ew. (18)

Suppose F` = F (i.e., the `th VA “matches” the actual
fault situation) and u = u`, yc = y` (i.e., the `th VA is
engaged in the closed-loop system by the switching logic,
see Figure 1). Then, using (1b), (9) and (18), yields the
following equations associated with (17):

ξ+` = Asξ` +Bsuc + Ew, (19)

yc = Csξ` + η. (20)

System (19)–(20) coincides with the nominal plant dynam-
ics (F = F0 = I) with input uc and output yc (see (1)).
This means that the VA has the effect of hiding the fault
from the nominal controller (2)–(4) by always providing it
with its nominal input yc.

In Section 6, we will show that the reconfiguration of the
closed-loop system by engaging the `th VA whenever the
plant’s fault matrix F in (1a) is F = F`, leads to the
preservation of closed-loop stability for all fault situations.
In the following section we describe the role of the bank
of virtual actuators in residual generation and FDI.

5. RESIDUAL GENERATION AND ROBUST FDI

In this section we first define residual signals directly
generated by the bank of VAs. We then derive invariant
“matching” sets, where the residuals associated with the
VA that matches the plant fault situation evolve while
this situation remains unchanged; and “after-change” sets,
where these residuals “jump” when a change in the plant
fault situation occurs. Finally, we propose a robust FTC
algorithm that identifies the fault based on set membership
of the residual signals, and reconfigures the controller’s
output using the corresponding VA dynamics.

We define the residual associated with the `th VA as

r` , y` − Csx̂, (21)

where y` is as in (9) and x̂ is the nominal observer’s state,
see (3). Consider also the following error variables:

ξ̃` , ξ` − x̂, (22)

ζ` , ξ` − xref, (23)
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for ` = 0, . . . ,M , where ξ` is as defined in (17). From (18),
(20) and (2)–(4), and the equivalent expression for the
nominal control law (2) (see (22)–(23))

uc = −Ksζ` +Ksξ̃` + uref, (24)

we obtain the following dynamics for the error variables:

ξ̃+` = Asξ̃` +Bs(Fu− F`u`) + Ew − Ls(yc − Csx̂), (25)

ζ+` = (As −BsKs)ζ` +Bs(Fu− F`u`) +BsKsξ̃` + Ew.
(26)

Also, using (9), (1b), (17) and (22) in (21) yields

r` = Csξ̃` + η. (27)

Matching conditions. Suppose, without loss of general-
ity, that F` = F (i.e., the `th VA “matches” the actual
plant fault situation) and consider that the correct FDI
decision is made so that u = u` and yc = y`; that is, the `th
VA is engaged in the closed-loop system by the switching
logic, see Figure 1 (note that this is not an assumption;
in fact, in Section 6 we provide the required conditions to
ensure that this matching situation is indeed satisfied, see
Theorem 6.3). Using (20), (22), we then have that (25)–
(26) become

ξ̃+` = (As − LsCs)ξ̃` + Ew − Lsη, (28)

ζ+` = (As −BsKs)ζ` +BsKsξ̃` + Ew. (29)

Note that (28)–(29) has the same dynamics as (5)–(6),
which was designed to be stable (see the last paragraph of
Section 3). Then, since the disturbance signals w and η are
bounded, the trajectories of the above system are bounded.

To obtain attractive invariant sets Ξ̃ and Z associated with
system (28) and (29), respectively, we employ a technique
proposed in [8]. 4 Note that these sets are “centred” at zero
since the same holds for the disturbance sets. From (27)

we then have that, whenever ξ̃` ∈ Ξ̃, and under the
condition that the matching VA (F` = F ) is engaged in
the closed-loop system (u = u`, yc = y`), the residual
signal associated with the matching VA satisfies the set
membership (⊕ denotes Minkowski sum)

r` ∈ R, where R , Co

{
N⋃
i=1

CiΞ̃

}
⊕N . (30)

Note that R is centred at zero since the same holds for Ξ̃
and N (N was defined at the end of Section 2).

From (24), and using Ξ̃ and Z, the nominal controller
output satisfies

uc ∈ Uc , Co

{
N⋃
i=1

(−Ki)Z

}
⊕Co

{
N⋃
i=1

KiΞ̃

}
⊕Uref , (31)

(where Uref is defined in Remark 3.1) whenever ξ̃i ∈ Ξ̃ and
ζi ∈ Z. The set Uc is centred at the reference offset u0ref ,
which is the centre of Uref (see Remark 3.1).

For each VA, in particular the matching VA (associated
to the current fault F`), we can use its associated dynam-
ics (15) and the fact that the LPV matrix AF`

s was designed
to be stable and uc is bounded as in (31) to compute an

4 The results of [8] apply to switching systems for which the
coefficient functions αi ∈ {0, 1}; however, it is easy to show that the
results extend to the convex case where αi ∈ [0, 1] and ΣNi=1αi = 1.

attractive invariant set which will retain its states (θ`, σ`)
whenever uc remains in Uc. Let us denote this set S` and
observe that, whenever (θ`, σ`) ∈ S` and uc ∈ Uc, the
control output (8) associated with VA` satisfies

u` ∈ U` , Co

{
N⋃
i=1

(−MF`
i )S`

}
⊕Co

{
N⋃
i=1

NF`
i Uc

}
⊕{dF`}.

(32)

After-change sets and FDI logic. Let a change in
the plant fault situation occur so that the fault matrix
F in (1a) changes from F = F` to F = Fj , for some
j, ` ∈ {0, 1, . . . ,M}, j 6= `. Note that u is still equal to
u` and yc is still equal to y` at the time of the change
since no reconfiguration has been made yet. Using (25) we
then have that the “after-change” residual signal of the
previously matching VA` satisfies

r+`j ∈ R
+
`j , Co

{
N⋃
i=1

CiΓ`j

}
⊕N , (33)

where

Γ`j , Co

{
N⋃
i=1

N⋃
h=1

(Ai − LhCi)Ξ̃

}
⊕

Co

{
N⋃
i=1

Bi(Fj − F`)U`

}
⊕ EW ⊕ Co

{
N⋃
h=1

(−Lh)N

}
whenever ξ̃` ∈ Ξ̃ and u` ∈ U`. Notice that the second term
in the definition of Γ`j above has the possibility to cause
a shift of this set away from zero. From (31)–(32) this
shift depends on the reference offset u0ref and the ‘degree
of freedom’ signals dF` , which can then be utilised as a
mechanism to “separate” the matching and after-change
sets. We thus consider the following condition.

Assumption 5.1. (Set Separation). For each ` ∈ {0, ...,M},
the matching set R and the after-change sets R+

`j , for
j = 0, . . . ,M , j 6= `, are all disjoint. ◦

We also consider the following fault scenario.

Assumption 5.2. (Fault Scenario). Between any two con-
secutive changes in the fault matrix F , sufficient time
T elapses such that the system states converge to their
respective attractive invariant sets. (The maximum time
of convergence T to these sets can be estimated using
techniques from [8].) ◦

Under Assumptions 5.1 and 5.2, a robust FDI algorithm
can be implemented by monitoring the residual r` associ-
ated with the matching VA`, as follows.

Algorithm 5.3. (Robust FTC algorithm).

(1) For the matching VA` compute its associated residual
signal r` as in (21).

(2) If r` ∈ R [c.f. (30)] go to step 1; if r` ∈ R+
`j for some

j ∈ {0, 1, . . . ,M}, j 6= ` [c.f. (33)], then engage VAj

in the loop by setting u = uj and yc = yj .
(3) Wait a time period T before performing any action.
(4) Go to step 1.

The waiting time T at step (3) is required for the reconfig-
ured system’s states to converge to the relevant invariant
sets so that new changes in the fault situation can be
correctly diagnosed.
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6. CLOSED-LOOP PROPERTIES

The first result in this section shows the stability proper-
ties of the closed-loop system under matching conditions.

Lemma 6.1. (Matching Properties). Suppose that F = F`
in (1a) and let u = u`, yc = y`, that is, the matching
`th VA is engaged in the closed-loop system of Figure 1,
thus consisting of the plant (1), nominal controller (2)–(4)
and VA` (7)–(9). Then all closed-loop system variables are
bounded and, if the disturbance signals w, η are zero, the
error variables (22)–(23) asymptotically converge to zero.

Proof. If F = F` in (1a) and u = u`, yc = y`, then the
error variables (22), (23) of the matching VA`, satisfy (28)–
(29) and are therefore bounded as discussed in Section 5
(and converge to zero if w and η are zero). Thus, we
have from (23) that, since xref is bounded, then ξ` is
bounded. Since ξ` is bounded, it follows from (22) that x̂ is
bounded. Finally, since θ` is bounded (in fact, all VAs have
bounded states, see (15), (24) and recall that AF`

s in (11)
is designed to be stable in the entire uncertainty domain),
we have from (17) that x is bounded. In a similar way,
it can be proved from (15), (17), (22) and (23) that the

error variables ξ̃i and ζi for the non-matching VAs are also
bounded. That is, all internal variables in the closed-loop
system remain bounded, thus proving the result. 2

We next establish the fault tolerant properties of the over-
all scheme, under the following initialisation assumption. 5

Assumption 6.2. (Initialisation). Before the first change in
the plant fault situation, the matching VA` (that is, F` =
F in (1a) and (7), u = u` and yc = y`) is engaged in the
closed-loop system, and the error variables of VA`, defined
in (22) and (23) are in their attractive invariant sets Ξ̃
and Z, respectively. In addition, the VA states (θj , σj), for
j = 0, . . . ,M , are in the attractive invariant sets Sj . ◦
Theorem 6.3. (Fault Tolerance). Suppose that Assump-
tion 6.2 holds. Then, under the set separation condition of
Assumption 5.1 and the fault scenario of Assumption 5.2,
the states of the closed-loop system represented in Fig-
ure 1, encompassing the plant (1), the nominal tracking
controller (2)–(4) and the bank of virtual actuators (7)–
(9), reconfigured by Algorithm 5.3, are bounded under all
considered fault situations.

Proof. By Assumption 6.2, before any change in the plant
fault situation the matching VA` (that is, F` = F , u = u`
and yc = y`) is engaged in the closed-loop system and
thus all closed-loop system states are bounded, as shown in
Lemma 6.1. Moreover, also by Assumption 6.2 all relevant
variables are in their respective invariant sets and hence
the analysis of Section 5 under the matching conditions
is validated. In particular, the residual r` associated with
the matching VA satisfies (30) and it is thus sensitive to
any subsequent change in the plant fault situation, which
will cause r` to satisfy (33) one time step after the change
occurs. Hence, Assumption 5.1 ensures that Algorithm 5.3
makes the correct decision and controller reconfiguration

5 This is a natural assumption that holds if the system has evolved
with the matching VA engaged in the loop for sufficiently long time
before any change of the fault situation occurs. This is a reasonable
assumption since the system will typically start operating under
perfectly known actuator conditions.

and, due to the waiting timer of its third step and the fault
scenario of Assumption 5.2, the initialisation conditions of
Assumption 6.2 are recovered after a finite number of time
steps. The same arguments can be applied for subsequent
changes in the fault situation, concluding that the closed-
loop system states remain bounded at all times. 2

7. SIMULATION EXAMPLE

We consider an LPV model of the form (1) with matrices

A(ρ) =

0.25 1 0

0 0.1 0

0 0 0.6 + ρ

 , B =

0 1

1 1

1 1

 , C =

[
1 0 0

0 0 1

]
,

E = I, Cv = [0 0 1], where ρ is a sinusoidal sequence
bounded between 0 and 0.05. The matrix A(ρ) has the
polytopic form α1(ρ)A1 + α2(ρ)A2, where A1 = A(0),
A2 = A(0.05), α1 = (0.05− ρ)/0.05 and α2 = ρ/0.05. We
assume that each component wi of the disturbance vector
is bounded as |wi| ≤ 10−3, and the measurement noise
components ηi satisfy |ηi| ≤ 10−5. The fault situations
considered for the FTC design correspond to the matrices

F0 = I, F1 =

[
f 0

0 1

]
, F2 =

[
1 0

0 f

]
, (34)

where f = 0.1. The tracking controller (2)–(4) employs the
following gains, designed using the conditions in [9]:

K1 =

[
−0.1259 −0.9886 0.2647

0.1141 0.9695 −0.0497

]
,

K2 =

[
−0.1201 −0.6704 0.4071

0.1209 0.6805 −0.0361

]
,

L1 =

 0.2995 −0.0012

0.0079 −0.0034

−0.0011 0.8688

 , L2 =

 0.1918 −0.2678

−0.0058 −0.0359

−0.0037 0.8419

 .
The reference signal xref is designed using the state feed-
back control proposed in [7] with gains

K01 =

[
0.2485 0.9939 −0.5967

−0.2490 −0.9961 −0.0006

]
,

K02 =

[
0.2485 0.9940 −1.0952

−0.2490 −0.9961 −0.0011

]
.

The reference design is such that the last state tracks a
constant setpoint v∗ = 0.75. The virtual actuator gains
are calculated via the condition in [9] as follows:

MF0
1 = 0, MF0

2 = 0,

MF1
1,σ =

[
−12.1249 0.5048

]ᵀ
, MF1

2,σ =−
[
2.2790 0.4419

]ᵀ
,

MF1
1,θ

=

[
2.2006 10.0583 −7.4000

−0.2255 −1.0068 −0.0036

]
,

MF1
2,θ

=

[
2.3960 9.9400 −7.3488

−0.2283 −0.9974 0.0017

]
,

MF2
1,σ =

[
−1.0515 4.4372

]ᵀ
, MF2

2,σ =−
[
0.2121 5.0869

]ᵀ
,

MF2
1,θ

=

[
0.2053 0.9831 −0.8033

−2.3219 −9.9840 0.7863

]
,

MF2
2,θ

=

[
0.2308 0.9894 −0.7522

−2.2234 −9.9137 0.0915

]
.

We further take fixed values for matrices NF` as follows:

NF0 = I, NF1 =

[
0.5 0

0 0.2

]
, NF2 =

[
0 −0.3

0.2 0

]
.
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Fig. 2. Separation of the matching sets R (small sets centred at zero) and after-change sets Rij (larger sets away from zero) associated
with the ith observer: corresponding to F0 (left), F1 (centre) and F2 (right).

The “degree of freedom” signals dF` are selected such

that (14) holds as follows: dF0 = [0 0]
T

, dF1 = [0.1 0]
T

,

dF2 = [0 0.2]
T

. Fig. 2 shows the separation of the matching
sets (small sets centred at zero) and after-change sets
(larger sets away from zero) for each of the three VAs.
The left plot corresponds to the VA associated with the
fault matrix F0, the middle plot to F1 and the right plot
to F2. It follows from the separation of these sets for each
VA that Assumption 5.1 holds for this example and thus
correct FDI is guaranteed for the given fault scenario.

The scheme was simulated under the following fault sce-
nario: F1 was used between 140s and 340s, F2 between 590s
and 790s, and F0 at all other times. The FDI Algorithm 5.3
detects, identifies and accommodates the actuator fault
one step after each change in the fault situation. The upper
plot of Fig. 3 presents the evolution of the performance
variable v using f=0.1 in (34). It is observed that v evolves
close to the desired setpoint v∗=0.75 in all fault situations,
with a small offset under F1 and F2, which cannot be
fully compensated due to the LPV nature of the system.
To test robustness agains errors in the FDI decision, we
repeated the test using f = 0.05 (Fig. 3, middle plot) and
f = 0.15 (Fig. 3, bottom plot) in (34) as the ‘actual’ plant
fault magnitudes. In both these cases the FTC algorithm
‘believes’ f to be f = 0.1 and reconfigures the VA with
this value. Note that the performance slightly deteriorates
and the parameter variation becomes apparent, but the
signal remains bounded within acceptable margins.

8. CONCLUSIONS

In this paper, a new LPV actuator fault tolerant control
scheme is presented which integrates a set-separation ap-
proach to FDI together with a controller reconfiguration
method based on a bank of virtual actuators. Each VA is
designed to accomodate an abrupt (common/most critical)
actuator fault over a finite range. In designing the VAs, the
LPV uncertainty of the plant has been taken into account
applying convex polytopic properties. As a result, each
VA, together with the nominal controller and observer are
self-scheduled at each time when a new measurement of
the linear varying parameter is obtained. A switching rule
engages the suitable VA from the bank and is based on sets
defined for residual signals constructed directly from the
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Fig. 3. Performance variable v under different fault magnitudes.

virtual actuators signals. We have shown that the overall
robust scheme guarantees closed-loop boundedness under
all considered fault situations.
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