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Abstract: In this paper, we develop a control algorithm to generate entanglement in a quantum
system with uncertainties. The system under consideration is an uncertain system of two two-
level atoms interacting with each other through a dipole-dipole interaction. The sampling-based
learning control (SLC) strategy is employed to find a control law. An SLC strategy contains two
steps of training and evaluation. In the training step, we obtain several samples to construct
an augmented system by sampling the uncertainties according to a possible distribution of the
uncertainty parameters and learn an optimal control law by maximizing the performance index.
In the evaluation step, we apply the obtained control law from the training step to additional
samples through randomly sampling the uncertainties. Numerical results are presented showing
the success of the SLC method in control design for generating entanglement.
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1. INTRODUCTION

The control of quantum phenomena has received a great
deal of attention in the last few years Wiseman and Mil-
burn (2010); D’Alessandro (2007). Many theoretical and
experimental aspects of quantum control have been stud-
ied (see for example Brif et al. (2010); Dong and Petersen
(2010) and the references therein). One significant problem
is to investigate the design of control laws for quantum
systems with uncertainties since the existence of such
uncertainties is unavoidable for most practical quantum
systems James et al. (2008);Petersen et al. (2012). In the
last several years, some results on quantum robust control
have been presented. For instance, in James et al. (2008),
an H∞ controller synthesis problem for a class of quantum
linear stochastic systems in the Heisenberg picture has
been formulated and solved. In Dong and Petersen (2012),
a sliding mode control approach to deal with Hamiltonian
uncertainties in two-level quantum systems has been pre-
sented. In Petersen et al. (2012), the robust stability of
linear quantum systems has been analyzed.

An interesting phenomenon in the quantum domain
is quantum entanglement Nielsen and Chuang (2000),
which is considered as a central topic in current studies
of collective effects in many-body quantum systems Ficek
and Tana (2002). Generally speaking, quantum entangle-
ment is a physical phenomenon that occurs when pairs (or
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groups) of particles (subsystems) are generated or interact
in ways such that the quantum state of each subsystem
must subsequently be described relative to each other.
Quantum entanglement has many applications in quantum
communication Nielsen and Chuang (2000), quantum tele-
portation Bouwmeester et al. (1997), coding and quantum
cryptography Ekert (1991). With the aid of quantum en-
tanglement, some tasks that are impossible to accomplish
by employing classical systems may be achieved. Thus,
generation of quantum entanglement is an essential de-
mand in quantum information technology.

Quantum control can play an important role in entangle-
ment generation, especially in the robust preparation of
entanglement (e.g., see Xia et al. (2009); Cai et al. (2010);
Posazhennikova et al. (2013); Quintana et al. (2013)). In
Posazhennikova et al. (2013), it has been shown that the
entanglement possibilities can be controlled by changing
system parameters. In Xia et al. (2009), coherent control
and the creation of entangled states were discussed for
a system of two superconducting flux qubits interacting
with each other, which relied on the dynamic control of
the qubit transition frequencies. In Cai et al. (2010), the
radical-pair mechanism was discussed and the question
of how quantum control can be used to either enhance
or reduce the performance of such a chemical compass
was investigated. The results provided a new route to
further study the role of radical-pair entanglement via this
mechanism.
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When we consider a practical task for the generation of
quantum entanglement, it is unavoidable that there exist
different uncertainties in the internal Hamiltonian of each
subsystem or in the coupling between these subsystems. It
is necessary to develop robust methods for entanglement
generation when possible uncertainties exist. In this paper,
a sampling based-learning control (SLC) method, that
was originally presented in Chen et al. (2014) and Dong
et al. (2013) for control design of quantum ensembles and
quantum systems with uncertainties, is used to design a
control law for entanglement generation in an uncertain
quantum system. The SLC method includes two steps: 1)
The training step: we sample the uncertainties according
to possible distributions of uncertainty parameters and
construct an augmented system using these samples. Then
we develop a gradient flow based learning and optimization
algorithm to find the control with desired performance for
the augmented system. 2) The testing and evaluation step:
we test a number of samples, which are artificially created
according to the possible distribution of uncertainty pa-
rameters, to evaluate the control performance. The objec-
tive is to find a control law using the SLC method to drive
two qubits into a maximally entangled state. Numerical
results show that the SLC method is an effective control
strategy for generating entanglement when Hamiltonian
uncertainties are present in the quantum system.

The paper is organized as follows: Section 2 presents
the model and problem formulation. Section 3 describes
the sampling-based learning control algorithm. Numerical
results for applying the SLC algorithm to entanglement
generation are given in Section 4. The paper is concluded
with final remarks in Section 5.

2. MODEL AND PROBLEM FORMULATION

In this section, we introduce a quantum system consisting
of two two-level atoms. A two-level atom can be used as
a quantum bit (qubit). Quantum entanglement between
two atoms or ions has been demonstrated Eichmann et al.
(1993); DeVoe and Brewer (1996); Ficek and Tana (2002)
in such systems as two barium ions confined in a spherical
Paul trap Eichmann et al. (1993); DeVoe and Brewer
(1996); Agarwal (1970). We assume that the two-qubit
system under consideration can be approximated as a
closed quantum system with the following evolution

i|ψ̇(t)〉 = H(t) |ψ(t)〉 . (1)

Here, |ψ(t)〉 is the quantum state of the system which
corresponds to a complex vector in the underlying Hilbert
space and H(t) is the system Hamiltonian. For the two-
qubit system, |ψ(t)〉 can be represented using the four basis
vectors |g1, g2〉, |e1, g2〉, |g1, e2〉 and |e1, e2〉 as follows

|ψ(t)〉 = c1(t) |g1, g2〉+ c2(t) |e1, g2〉
+ c3(t) |g1, e2〉+ c4(t) |e1, e2〉 ,

where |ej〉 denotes the excited state of the atom j and |gj〉
denotes the ground state of the atom j. Also, the complex
coefficients c1(t), c2(t), c3(t) and c4(t) satisfy the following
condition

|c1(t)|2 + |c2(t)|2 + |c3(t)|2 + |c4(t)|2 = 1.

The two two-level system is shown in Fig. 1. Assume
that the time dependent system’s Hamiltonian is given as
follows:

H(t) = H0 +Hint +Hu. (2)

|e1,e2›

|g1,e2›

|e1,g2›

|g1,g2›

Ω12

Ω12

ω1

ω2

Fig. 1. Schematic energy level diagram of two two-level
atoms as an equivalent four-level system.

Here,

H0 =

2
∑

i=1

ωiσ
i
z, (3)

is the Hamiltonian describing the energy of the atoms,
ωi is the atomic transition frequency for atom i and
σi
z = 1

2
(| ei〉〈ei | − | gi〉〈gi |). The term

Hint =

2
∑

i6=j

Ωijσ
i
+σ

j
−,

represents the dipole-dipole interaction between the two
qubits (atoms) and Ωij is the dipole-dipole interaction
parameter. It is known that most atoms have attractive
forces between each other due to dipole moments, when the
electrons of an atom leave the positively charged nucleus
unshielded. This is called dipole-dipole interaction Jaksch
et al. (2000). The last term

Hu = u1(σ
1
+ + σ1

−) + u2(σ
2
+ + σ2

−)

+ u3i(σ
1
+ − σ1

−) + u4i(σ
2
+ − σ2

−)

+ u5(σ
1
+σ

2
+ + σ1

−σ
2
−)

+ u6

2
∑

i6=j

σi
+σ

j
− + u7

2
∑

i=1

σi
+σ

i
− + u8

2
∑

i=1

σi
−σ

i
+

represents the possible control Hamiltonian, where σi
+ =

|ei〉〈gi|, and σi
− = |gi〉〈ei|. These operators can be rep-

resented in matrix form as follows σz =

[

1 0

0 −1

]

, σ+ =
[

0 1

0 0

]

, σ− =

[

0 0

1 0

]

.

The main goal in this paper is to find the functions
ui(t), which define the control Hamiltonian, to drive
the quantum system to a particular target state with
a desired level of fidelity even when uncertainties exist.
Here, the proposed control Hamiltonian includes differ-
ent terms. The first four terms u1(σ

1
+ + σ1

−), u2(σ
2
+ +

σ2
−), u3i(σ

1
+ − σ1

−), u4i(σ
2
+ − σ2

−) are local controls, and

the term u5(σ
1
+σ

2
+ + σ1

−σ
2
−) represents two photon ex-

change. These terms can be achieved in a quantum system
by applying a specific electromagnetic field. The term

u6
2
∑

i6=j

σi
+σ

j
− represents the change in the dipole-dipole

interaction between the atoms. This term can be controlled
by changing the distance between the two atoms, or tuning
the frequency of the driving field. The last two terms
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control the Lamb shift in the atomic resonance frequency
of every atom.

In this paper, we are interested in uncertain quantum
systems, where the Hamiltonian parameters may not be
very well defined. We assume that the Hamiltonian (2)
can be written as follows:

H(t) = K(φ)H0 + β(ϕ)Hint + f(θ)Hu, (4)

whereK(φ), β(ϕ) and f(θ) represent possible uncertainties
in the free Hamiltonian, the interaction Hamiltonian and
the control Hamiltonian, respectively. We assume that the
parameters φ, ϕ and θ are time-independent and bounded,
where φ ∈ [−χ1, χ1] and ϕ ∈ [−χ2, χ2] and θ ∈ [−χ3, χ3].
The constants χi ∈ [0, 1] represent the bounds of the
uncertainty parameters.

The solution of the Schrödinger equation (1) is given as
follows;

|ψ(t)〉 = U(t) |ψ(0)〉 , (5)

where U(t) is the propagator operator which satisfies

iU̇(t) = H(t)U(t). (6)

Also, suppose that C(t) =









c1(t)

c2(t)

c3(t)

c4(t)









. Using the Schrödinger

equation (1), we have

iĊ(t) = H(t)C(t).

The Hamiltonian H(t) is written in a matrix form as
follows

H(t) =

K(φ)









−∇ 0 0 0

0 Λ 0 0

0 0 −Λ 0

0 0 0 ∇









+ β(ϕ)









0 0 0 0

0 0 Ω12 0

0 Ω21 0 0

0 0 0 0









+ f(θ)u1









0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0









+ f(θ)u2









0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0









+ f(θ)u3









0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0









+ f(θ)u4









0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0









+ f(θ)u5









0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0









+ f(θ)u6









0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0









+ f(θ)u7









0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2









+ f(θ)u8









2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0









,

where ∇ = ω1 + ω2 and Λ = ω1 − ω2.

Now, we define the performance function as follows

J(u) = | 〈ψ(T )|ψtarget〉|2, (7)

where |ψ(T )〉 is the state of the system at the end time
T of the evolution, and |ψtarget〉 is the target state. This
performance function will be used to measure the fidelity

of the system with a given control law. An optimal control
law can be found by maximizing J(u).

3. SAMPLING-BASED LEARNING CONTROL
ALGORITHM

In this section, we recall the sampling-based learning
control (SLC) algorithm that has been presented in Chen
et al. (2014), Dong et al. (2013) for control design of
inhomogeneous quantum ensembles and quantum systems
with uncertainties. The basic idea is to first use some
artificial samples to construct an augmented system, then
employ a learning algorithm to find an optimal control law
for the augmented system, and finally evaluate the control
performance using additional samples. A sampled-based
learning algorithm contains two steps of “training” and
“evaluation”.

Training step: In this step, we assume that N samples
are obtained through sampling uncertainties according to
a particular distribution (e.g., uniform distribution) of the
uncertainty parameters φ, ϕ, θ. In the training step, the
main task is to find an optimal law u(t) = u∗i which
maximizes the performance index

JN (u) =
1

N

N
∑

n=1

| 〈ψφn,ϕn,θn(T )|ψtarget〉|2. (8)

where |ψφn,ϕn,θn(T )〉 is the final state of the training sam-
ple n. For a sample n, the propagator operator Uφn,ϕn,θn(t)
satisfies

d

dt
Uφn,ϕn,θn(t) = −iHφn,ϕn,θn(t)Uφn,ϕn,θn(t)

where Uφn,ϕn,θn(0) = I. This task to find the optimal
control law can be accomplished using a gradient flow
based iterative learning algorithm shown in Algorithm
1 (for details, see, e.g., Chen et al. (2014), Dong et al.
(2013)).

Evaluation step: We apply the control u∗ obtained in
the training step to additional samples through randomly
sampling the uncertainties. If the fidelity for the tested
samples satisfies the required level of fidelity, we accept
the designed control law and complete the control design
process. Otherwise, we should go back to the training
step and generate another optimized control strategy (e.g.,
restarting the training step with a new initial control
strategy or a new set of samples).

4. NUMERICAL RESULTS

In this section, we present numerical simulation results
for the proposed two-qubit system presented in Section 2.
The main focus is to find an optimal control strategy that
drives the system to a particular target state. In particular,
we focus in generating entanglement between the two
qubits (atoms). Thus, the target state is chosen to be
one of the four Bell quantum states (see, e.g., Nielsen and
Chuang (2000)). These states are often called maximally
entangled states of two qubits. The four Bell states are
given as follows:

∣

∣Φ±〉 =
1√
2
(|e1, g2〉 ± |g1, e2〉) (9)

∣

∣Ψ±〉 =
1√
2
(|e1, e2〉 ± |g1, g2〉). (10)
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Algorithm 1 Gradient flow based iterative learning algo-
rithm
Set the index of iterations k = 0
Choose a set of arbitrary controls uk=0 = {u0m(t), m =
1, 2, . . . ,M}, t ∈ [0, T ]
repeat

(for each iterative process)
repeat

(for each training samples n = 1, 2, . . . , N)
Compute the propagator Uk

n(t) with the control
strategy uk(t)

until n = N
repeat

(for each control um (m = 1, 2, . . . ,M) of the
control vector u)
δkm(t) = 2 Im (〈ψφn,ϕn,θn(T )|ρtargetVφn,ϕn,θn(t)|ψ0〉)
where ρtarget = |ψtarget〉〈ψtarget| and Vφn,ϕn,θn(t) =

Uφn,ϕn,θn(T )U
†
φn,ϕn,θn

(t)f(θn)HmUφn,ϕn,θn(t)

uk+1
m (t) = ukm(t) + ηδkm(t)

until m =M
k = k + 1

until the learning process ends
The optimal control strategy u∗ = {u∗m} = {ukm}, m =
1, 2, . . . ,M

Here, we consider two two-level atoms in a cavity where
there is no energy transfer between the cavity and the
qubits. A similar model has been experimentally investi-
gated in Majer et al. (2007); Filipp et al. (2011), where a
microwave cavity has been used to couple the two qubits.

The parameters in atomic units are set as follows: The
atomic transition frequencies are (ω1, ω2) = (5.19, 6.45)
and the dipole-dipole interaction parameter Ω12 = 0.0259.
The same relative relationship between the atomic transi-
tion frequencies and the dipole-dipole interaction as that in
the experiment in Majer et al. (2007) has been considered.
The evaluation time is T = 2 and the interval [0, T ] is
discretized equally into Q = 200 time subintervals ∆t,
where ∆t = T

Q
= 0.01. The learning rate is set as η = 0.1.

The initial control law is assumed to be u0i = sin t.

The uncertainty parameters φ, ϕ, θ are assumed to have a
uniform distribution in the interval [1− χ, 1 + χ] and χ =
0.2. For simplification, we assume K(φn) = φn, β(ϕn) =
ϕn, f(θn) = θn. To construct a augmented system for
the uncertainty parameters, we have divided the interval
[1 − χ, 1 + χ] into Nχ + 1 subinterval and chose Nχ = 5
by the same method as that used in Dong et al. (2013).
This implies that number of samples is N = N3

χ = 125 for
training. Next, we present several examples of numerical
results.

In the first example, we assume that all controls ui are
permitted in the Hamiltonian H(t). The initial state is
chosen to be |ψ(0)〉 = 1√

2
(|e1, g2〉+ |g1, e2〉) and the target

state is chosen to be |ψ〉 = 1√
2
(|e1, e2〉 + |g1, g2〉). It is

shown in Fig. 2 that the algorithm converges very quickly
and a control law is found to drive the system to the
target state with high fidelity. Here, the learning algorithm
stops based on the rate of change in the performance
index. For instance, if the rate of improvement in the last
100 iterations satisfies J1000(u) − J900(u) < 0.0001, the
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u
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Fig. 2. Training performance J(u) to find the optimal
control strategy in the first example, where the initial
state is |ψ(0)〉 = 1√

2
(|e1, g2〉+ |g1, e2〉) and the target

state |ψ〉 = 1√
2
(|e1, e2〉+ |g1, g2〉).
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Fig. 3. The testing performance of the optimal control
strategy in the first example, where the initial state
is |ψ(0)〉 = 1√

2
(|e1, g2〉+ |g1, e2〉) and the target state

|ψ〉 = 1√
2
(|e1, e2〉+ |g1, g2〉).
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Fig. 4. The optimal control law in the first example, where
the initial state is |ψ(0)〉 = 1√

2
(|e1, g2〉+ |g1, e2〉) and

the target state |ψ〉 = 1√
2
(|e1, e2〉+ |g1, g2〉).

learning process ends. In the evaluation step, we select
300 additional samples to test the control performance.
The control performance is shown in Fig 3. All the samples
achieve the target state with high fidelity. Fig. 4 gives the
optimal control law that is obtained in the training step.
The control laws u1−4 represent local control, which can
be achieved using electromagnetic fields where u1−4 is the
amplitudes of these fields. The second control law u5 can
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Fig. 5. Training performance J(u) to find the optimal
control strategy in the second example, where the
initial state is |ψ(0)〉 = |g1, g2〉 and the target state
|ψ〉 = 1√

2
(|e1, e2〉+ |g1, g2〉).
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Fig. 6. The testing performance of the optimal control
strategy in the second example, where the initial
state is |ψ(0)〉 = |g1, g2〉 and the target state |ψ〉 =
1√
2
(|e1, e2〉+ |g1, g2〉).

be achieved by controlling the distance between the two
atoms or by changing the frequency of the driving field.
The control law u7−8 can be achieved by changing the
transition frequency of the atoms.

In the second example, the initial state is chosen to be
|ψ(0)〉 = |g1, g2〉 and the target state is chosen to be
|ψ〉 = 1√

2
(|e1, e2〉 + |g1, g2〉). In this case, the learning

algorithm converges more slowly than that in the first
example. The performance is shown in Fig. 5. Also, the
testing performance is shown in Fig. 6. It is clear that
the performance in regard to fidelity level in the second
example is worse than that in the first example. The
control law obtained in the training step is shown in Fig.
7.

In the third example, we reduce the number of controls
used in the previous cases but with the same number of
iterations. We only use the controls u1−4 and u6. The
initial state is chosen to be |ψ(0)〉 = |g1, g2〉 and the target
state is chosen to be |ψ〉 = 1√

2
(|e1, e2〉 + |g1, g2〉). Using

the same number of iterations as the above experiments,
Fig. 8 shows that the performance becomes worse. Also,
the fidelity of the tested samples is decreased as shown
in Fig. 9. This clearly shows that reducing the number of
control parameters will make the learning process converge
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Fig. 7. The optimal control law in the second example,
where the initial state is |ψ(0)〉 = |g1, g2〉 and the
target state |ψ〉 = 1√

2
(|e1, e2〉+ |g1, g2〉).
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Fig. 8. Training performance J(u) to find the optimal
control strategy in the third example, where the initial
state is |ψ(0)〉 = |g1, g2〉 and the target state |ψ〉 =
1√
2
(|e1, e2〉+ |g1, g2〉).
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Fig. 9. The testing performance of the optimal control
strategy in the third example, where the initial state
is |ψ(0)〉 = |g1, g2〉 and the target state |ψ〉 =
1√
2
(|e1, e2〉+ |g1, g2〉).

more slowly and make the performance become worse.
However, less control resources are required in this case.
For a practical task, it is worth considering the tradeoff
between the control performance and the requirement of
control resources. It is also possible to improve the training
performance by increasing the number of iterations for the
case with less control resources.
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Fig. 10. The optimal control law in the third example,
where the initial state is |ψ(0)〉 = |g1, g2〉 and the
target state |ψ〉 = 1√

2
(|e1, e2〉+ |g1, g2〉).

5. CONCLUSION

In this paper, we present a control strategy for entangle-
ment generation in a quantum system consisting of two
two-level atoms when uncertainties exist in the Hamilto-
nian. An optimal control law is learned using a sampling-
based learning control algorithm. The numerical results
show that the fidelity depends on the initial state of the
system as well as the number of control parameters used
in the experiments. In the proposed method, we have
assumed that the system is controllable. In fact, we can
further consider the controllability of the augmented sys-
tem that is closely related to performance of the proposed
method. It is a significant problem for future research.
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