
Identifying Rigidity-Preserving Bipartitions
in Planar Multi-Robot Networks ?

Daniela Carboni ∗ Ryan K. Williams ∗∗ Andrea Gasparri ∗

Giovanni Ulivi ∗ Gaurav S. Sukhatme ∗∗

∗University of Roma Tre, Roma, 00146, Italy
(carboni; gasparri; ulivi)@dia.uniroma3.it

∗∗University of Southern California, Los Angeles, CA 90089 USA
(rkwillia; gaurav)@usc.edu

Abstract: In this paper, we consider the problem of identifying a bipartition of a planar
multi-robot network, such that the resulting two sub-teams are rigid networks. As opposed to
approaching the network splitting problem constructively, we instead determine the existence
conditions for rigidity-preserving bipartitions, and provide an iterative algorithm that identifies
such partitions in polynomial time. In particular, the relationship between rigid graph partitions
and the previously identified Z-link edge structure is given, yielding a direction towards which
a graph search is applied. Adapting a supergraph search mechanism from the set generation
literature, we then provide a methodology for discerning graphs cuts that represent valid
rigid bipartitions. Finally, full algorithm details and pseudocode are provided, together with
simulation results that verify correctness and demonstrate complexity.

1. INTRODUCTION

Collaborative networks of intelligent robotic systems have
become a substantial focus for researchers, particularly
within recent years. Driving the multi-robot movement
are the rapid advancement in computation and commu-
nication resources, and the implications that collaborative
systems have for fundamentally important applications.
Examples of such applications include tracking and cover-
age [Brass et al., 2011, Cortes et al., 2004], formation con-
trol and leader-following [Olfati-Saber and Murray, 2002,
Cao et al., 2012], and state consensus and optimization
[Ren and Beard, 2005, Nedic et al., 2010]. Additionally,
multi-robot systems generally hold promise for significant
advantages over single-agent solutions, including hetero-
geneity in mobility and sensing, redundancy and thus
flexibility, and scalability [Di Paola et al., 2011, Williams
and Sukhatme, 2013].

In this work, we are concerned with identifying two prop-
erties of the graph that describes a planar multi-robot
network. First, given a single team of connected robots,
we wish to identify partitions in the network graph that
yield two sub-teams, i.e., graph bipartitions or split ma-
neuvers. Partitioning or splitting a robotic team emerges
as an important behavior primitive in navigating uncertain
or cluttered environments by endowing the team with
the flexibility to change in both composition and scale.
Further, network partitioning in the context of task as-
signment (e.g., [Berman et al., 2009]) is compelling as
it would enable task-centric collaboration per-team and
also the decoupling of teams and tasks across multiple
spatiotemporal scales.
? This work was partially supported by the Italian grant FIRB
“Futuro in Ricerca”, project NECTAR “Networked Collaborative
Team of Autonomous Robots”, code RBFR08QWUV, funded by the
Italian Ministry of Research and Education (MIUR).

Our second and arguably most important concern is that
each partitioned team is rigid (which also implies con-
nected sub-teams). Graph rigidity has important implica-
tions particularly for mission objectives requiring collabo-
ration, e.g., formation stability [Olfati-Saber and Murray,
2002, Anderson et al., 2008] and relative localizability
[Eren et al., 2003, Shames et al., 2013]. Rigidity is also a
necessary component of global rigidity [Hendrickson, 1992],
which can further strengthen the guarantees of formation
stability and localizability. The general study of rigidity
has a rich history in science, mathematics, and engineering
[Laman, 1970, Tay and Whiteley, 1985, Hendrickson, 1992,
Jacobs and Hendrickson, 1997]. In [Tay and Whiteley,
1985] combinatorial operations are defined which preserve
rigidity, with works such as [Olfati-Saber and Murray,
2002, Anderson et al., 2008] extending the ideas to multi-
robot splitting and formation control [Krick et al., 2009,
Eren, 2012]. In [Zelazo and Allgower, 2012] an algorithm
is proposed for generating rigid graphs in the plane based
on the Henneberg construction [Tay and Whiteley, 1985].
Similarly, [Ren et al., 2010] defines decentralized rigid
constructions that are edge length optimal. However, to
our knowledge no previous work has considered the issue of
identifying the conditions for and an algorithmic solution
to rigidity-preserving graph partitioning.

Thus, we propose in this work an iterative algorithm to
determine the existence of a rigidity-preserving bipartition
of a planar graph, with guaranteed polynomial complexity.
While previous work has provided constructive intuition
for rigid splitting and rejoining (e.g., [Olfati-Saber and
Murray, 2002]), instead in this work we identify how to find
such partitions and the conditions under which they will
be found. We first provide an analysis of the relationship
between the existence of rigid graph partitions and the
topological conditions that must then hold, yielding a
sound direction for searching the graph for feasible par-

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 8085

titions. Then, we reason on determining through graph
search, when a graph cut represents a rigidity-preserving
bipartition of the graph. Finally, full algorithm details and
pseudocode are provided as well as simulation results and
Monte Carlo analysis that verifies our claims of complexity
and correctness.

2. PRELIMINARIES

Consider a system composed of n robots (agents) indexed
by I = {1, . . . , n} operating in R2, each possessing com-
munication capabilities, denoting by (i, j) a bi-directional
communication link between agents i and j. The primary
concern of this work is the rigidity property of the underly-
ing graph G describing the network topology 1 , again given
the fundamental guarantees that rigid graphs provide for
example in both localizability and formation stability of
multi-robot systems [Anderson et al., 2008]. The first com-
binatorial characterization of graph rigidity was described
by Laman in [Laman, 1970], and is summarized as follows
(also called generic rigidity) 2 :

Theorem 1. [Laman, 1970] A graph G = (V, E) with
realizations in R2 having n ≥ 2 nodes is rigid if and only if
there exists a subset Ē ⊆ E consisting of |Ē | = 2n−3 edges
satisfying the property that for any non-empty subset
Ê ⊆ Ē , we have |Ê | ≤ 2k − 3, where k is the number

of nodes in V that are endpoints of (i, j) ∈ Ê .

We refer to the above as the Laman conditions, where
it follows that any rigid graph in the plane must then
have |E| ≥ 2n− 3 edges, with equality for minimally rigid
graphs. Further, edges that belong to the edge set Ē are
called independent, i.e., the edges necessary to establish a
graph’s rigidity.

The task of determining the rigidity of G, was origi-
nally solved in a centralized manner by [Jacobs and Hen-
drickson, 1997], with decentralization and parallelization
achieved in [Williams et al., 2013a,b]. Our goal in this
work will ultimately be to partition (or split) the graph G
such that each resultant component is rigid and follows the
properties outlined above. Thus we define the following:

Definition 2.1. A bipartition of a graph G = (V, E) is a
division of the graph into two disjoint components, namely
G1(V1, E1) and G2(V2, E2), such that V1 ∪ V2 = V and
V1∩V2 = ∅. We refer to a k-bipartition as the case in which
we choose k ∈ R+ such that |V1| = k and |V2| = n − k,
dictating the size of the resulting partitions.

Note that if a graph can be partitioned, it follows that
there exists a cut :

Definition 2.2. A cut C = {(i, j) ∈ E | i ∈ V1, j ∈ V2}, is
a set of edges that must to be removed from G in order to
obtain the disjoint components.

To conclude, we recall two useful results and intuition
from [Olfati-Saber and Murray, 2002] which will aid us
in determining proper graph partitions.

1 We provide a brief overview of rigidity theory here. We direct the
reader to [Tay and Whiteley, 1985, Laman, 1970] for a technical
primer on the subject.
2 The extension of Laman’s conditions to higher dimensions is at
present an unresolved problem in rigidity theory.

Fig. 1. [Olfati-Saber and Murray, 2002, Figure 7] A Z-link
in four possible configuration of edges.

Definition 2.3. [Olfati-Saber and Murray, 2002] We refer
to a bipartite graph K2,2 with three edges, shown in Fig. 1,
as a Z-link.

Corollary 1. [Olfati-Saber and Murray, 2002] Two min-
imally rigid graphs that are connected using a Z-link
construct a minimally rigid graph

3. IDENTIFYING RIGID BIPARTITIONS

We now turn our attention to exploiting the fundamental
results of rigidity theory to describe an algorithm that
identifies rigid bipartitions in planar networks. First, our
target problem is stated formally as follows:

Problem Given a minimally rigid graph G = (V, E)
with |V| = n, partition G into two disjoint subgraphs
G1 = (V1, E1) and G2 = (V2, E2) having |V1| = k and
|V2| = n− k such that G1 and G2 are minimally rigid.

In other words the problem is to find a proper cut over
the graph G; we refer to this as the rigid bipartitioning
problem. According to the minimal rigidity assumption,
we know that

• G must have 2n− 3 independent edges
• G1 must have 2k − 3 independent edges
• G2 must have 2(n− k)− 3 independent edges

Hence we can conclude that |G1| + |G2| = 2n − 6, and
thus there must exist 3 independent edges that connect
G1 and G2 that are lost when G is partitioned, i.e., edges
that are independent with respect to (G1 ∪G2). Therefore,
we can argue that a feasible cut must be composed
of exactly three edges, as formalized by the following
theorem. Furthermore, we can prove that, after identifying
a cut over G, it is sufficient to check if the two induced
components G1 and G2 have the desired number of vertices,
in order to ensure they are two minimally rigid graphs.
Thus, as stated in the following theorem, there is no
requirement to count the number of edges in the graph,
a convenient property for our purposes.

Theorem 2. Let G = (V, E) be a minimally rigid graph
and let be C a cut over G such that |C| = 3. Let
G1 = (V1, E1) and G2 = (V2, E2) be the two subgraphs
of G that are obtained after the cut. Then, G1 (or G2) has
k vertices ⇐⇒ it has 2k − 3 edges.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8086

Proof (=⇒) Let us assume that G1 has k vertices. It
follows that G2 has n − k vertices. Since G1 and G2 are
subgraphs of G, condition 2 of Theorem 1 must hold for
both and then |E1| ≤ 2k − 3 and |E2| ≤ 2(n − k) − 3. We
know also that |E1|+|E2| = |E|−|C| = 2n−6. This equation
is satisfied only when |E1| = 2k−3 and |E2| = 2(n−k)−3.
(⇐=) Let us assume that E1 = 2k − 3 edges, then
|E2| = |E| − |C| − |E1| = 2(n − k) − 3. Three cases are
possible:

- |V1| < k. This implies that condition 2 of Theorem 1
doesn’t hold for G1. However, this contradicts the
minimal rigidity assumption over G.

- |V1| > k. This implies that |V2| < n − k and thus
condition 2 of Theorem 1 doesn’t hold for G2. Again,
this contradicts the minimal rigidity assumption over
G.

- |V1| = k. This is the only admissible case. 2

From Theorem 2, we can argue that given a cut C over
minimally rigid graph G, if the cut is composed by 3
edges, then the two induced components, namely G1 and
G2, are minimally rigid. Among all 3 edge cuts of G, we
concern ourselves with cuts that have the Z-link structure
from Corollary 1. Although extending our methods to
account for all rigidity-preserving cuts is straightforward,
Z-links are the only cuts that are structurally guaranteed
to be amenable for decentralization. While we present our
algorithms (Section 3.1) in a centralized form for clarity,
our future goal is to extend the methods to decentralized
contexts, and thus our Z-link focus.

Now that we understand the structural elements we seek
in order to partition the graph, let us characterize our
expectations in searching for such cuts:

Remark 1. An upper bound to the number of Z-links in
the graph can be obtained by considering that, in the worst
case, each group of three edges is a Z-link. So the number
of Z-links must be bounded by(|E|

3

)
=

|E|!
3! (|E| − 3)!

=
|E|(|E| − 1)(|E| − 2)

6
= O(|E|3)

as the graph is minimally rigid, with |E| = 2n− 3.

Once a Z-link has been identified it is finally necessary to
verify two properties: that it is a cut over G, since there
could be some Z-links in the graph that are non cuts, and
if the two subgraphs obtained by the cut are minimally
rigid graphs with k and n− k nodes, as we could discover
feasible cuts that do not meet this condition. Given the
result in Theorem 2, i.e., a cut yields two minimally rigid
subgraphs over which counting vertices is sufficient, we can
simply perform an exploration of the graph by means of a
simplified depth-first search (DFS). Starting from a node
of the Z-link, the graph exploration is carried out avoiding
all the edges that belong to the Z-link. The search ends
when no more nodes can be visited. Letting V ′ be the set
of visited nodes, we can obtain one of the following results:

• |V ′| = n: the considered Z-link is not a cut because
the DFS algorithm has explored the whole graph.
• |V ′| < n ∧ |V ′| 6= k ∧ |V ′| 6= n − k: the considered

Z-link is a cut but it is not our desired cut.
• |V ′| = k ∨ |V ′| = n − k: the considered Z-link is a

proper cut.

(a)

· · ·

(b)

Fig. 2. For this example n = 8 and k = 3. In red are the
Z-link edges. In blue are the visited nodes. (a) At the
end of the graph exploration exactly k vertices have
been visited, hence the Z-link is a proper cut. (b) All
the n vertices have been explored hence the Z-link is
not a cut.

This intuition is illustrated in Figure 2. The graph has
n = 8 vertices and for the bipartition it is chosen k = 3.
Red edges belong to the Z-link. A vertex is blue if it is
visited. In case (a) exactly k vertices can be visited, in
fact the selected Z-link is a proper cut. In case (b) all the
n vertices are reachable indicating that the Z-link is not a
cut.

3.1 Algorithm Details and Pseudocode

The proposed algorithm is now described in detail. As
described above, the Z-link structure is vital to identifying
the graph cut that yields rigid partitions. To find Z-links in
G we adapt the graph search mechanism applied in [Boros
et al., 2007], known simply as theX−e+Y method. Briefly,
the method is concerned with generating all members of
the set F = {X |X ⊆ E is a minimal set s.t. π(X) = 1},
where π(X) : 2E → {0, 1} is a monotone boolean function
indicating the satisfaction of some desired property X. In
our case, we desire quads, that is sets of four nodes, which
contain at least one Z-link, and thus the X−e+Y method
applied in this context will generate all Z-link containing
quads in G. Our adaptation of this method for finding
Z-links and ultimately a rigidity-preserving partition is
shown in Algorithm 1, a complete explanation of which is
now given. Starting from a minimally rigid graph G(V, E)
the first step is to find an initial Z-link containing quad
for the supergraph search, as in Algorithm 2. For each
node i ∈ V the 2-hop neighborhood is considered in order
to identify the set of all quads as shown in algorithm 3,
in which the set nodes = {i} ∪ Ni ∪ {Nj ,∀j ∈ Ni} is
generated. Then the set quads is obtained simply by pick-
ing from nodes all possible combinations of four distinct
elements of nodes so if |nodes| = |p| then |quads| =

(
p
4

)
.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8087

Algorithm 1 Partition a graph into two rigid components

1: procedure splitGraph(G = (V, E), k)
2: [quad, zls]← initialSupernode(G)
3: for each zlink ∈ zls do
4: if checkZLink(G, k, zlink) then
5: return zlink
6: end if
7: end for
8: P ← quad
9: while P 6= ∅ do

10: [quad, P]← removeFromQueue(P)
11: Q← insertIntoQueue(Q, quad)
12: for v ← 1 to 4 do
13: [S, zls]← swapSetFromQuad(G, quad, v)
14: for nbrQuad ∈ S do
15: if nbrQuad ∩ (P ∪Q) = ∅ then
16: for each zlink ∈ zls do
17: if checkZLink(G, k, zlink) then
18: return zlink
19: end if
20: end for
21: P ← insertIntoQueue(P, nbrQuad)
22: end if
23: end for
24: end for
25: end while
26: end procedure

Algorithm 2 Finds a quad with Z-links

1: procedure initialSupernode(G)
2: for each i ∈ V do
3: quads← quadsFromNode(G, i)
4: for each quad ∈ quads do
5: zlinks← zLinksFromQuad(G, quad)
6: if zlinks = ∅ then
7: return {quad, zlinks}
8: end if
9: end for

10: end for
11: end procedure

Algorithm 3 Determine the quads that a given node
participates in

1: procedure quadsFromNode(G, i)
2: nodes← {i} ∪ N (i)
3: for each j ∈ N (i) do
4: nodes← nodes ∪N (j)
5: end for
6: quads← combosWithoutRepetition(nodes, 4)
7: return quads
8: end procedure

Next, for each quad ∈ quads the presence of a Z-link
is revealed as in Algorithm 4. We know that there are
only three ways to partition a quad whose set of nodes is
{1 2 3 4}:
• {1, 2} and {3, 4}
• {1, 3} and {2, 4}
• {1, 4} and {2, 3}

The presence of a Z-link can then be revealed according
to the following proposition.

v1 v2

v3v4

P̂1 = {1, 2} P̂2 = {3, 4}
Ê12 = {(1, 3), (1, 4), (2, 3)}

(a)

Ê12 = {(1, 2), (1, 4), (2, 3), (3, 4)}
P̂2 = {2, 4}P̂1 = {1, 3}

v1 v2

v3v4

(b)

Fig. 3. An example of the conditions stated in Proposi-
tion 1. The red edges belong to the set E12 so they
are the edges that will be removed. In case (a) a Z-
link is found whereas in case (b) it isn’t possible since
|E12| = 4.

Proposition 1. Let us consider a graph Ĝ = (V̂, Ê) with 4

vertices. Ĝ is a Z-link if there exist a partition of V̂ into two
sets P̂1 = {i ∈ V̂ : |P̂1| = 2} = {v1, v2} and P̂2 = V̂ \ P̂1

such that given the set Ê12 = {(i, j) ∈ E : i ∈ P̂1, j ∈ P̂2},
all the following conditions hold:

• |Ê12| = 3

• ∃(i, j) ∈ Ê12 : i = v1
• ∃(i, j) ∈ Ê12 : i = v2

In other words, if a pair has exactly three outgoing
edges, where each nodes contributes then there is a Z-link.
The conditions introduced in Proposition 1 are explained
through an example in Figure 3. Two possible bipartitions
of a graph with 4 vertices are shown. The red edges belong
to the set E12 so they are candidates to be removed if the Z-
link is chosen. In case (a) a Z-link is found by partitioning
the graph into P1 = {1, 2} and P2 = {3, 4}. In case (b) a
Z-link cannot be found since |E12| = 4, in fact the removal
of the red edges doesn’t lead to a bipartite graph. After a
Z-link is detected we must check if it is a cut over the graph
G, and if the removal of the edges that belong to the Z-
link yield two disjoint components, one with k nodes and
the other with n − k nodes. This operation is described
in Algorithm 6. As introduced above, a simplified DFS
is performed. The depth-first-search is simplified by the
fact that only one node is taken into account as root of
the exploration tree. At the end of this recursive search
the visited nodes are counted and if this number is equal
to k or equal to n − k it means that a proper Z-link is
found. Otherwise the Z-link has to be discarded and the
search must continue until either a valid bipartitioning Z-
link is found, or the graph is deemed infeasible for the
desired k-bipartition. To close, we now provide a proof of
the expected complexity of our proposed algorithm.

Theorem 3. Consider a minimally rigid planar graph G.
By construction, Algorithm 1 and its constituent compo-
nents exhibit polynomial complexity when applied to G,
and therefore the rigid bipartitioning problem is solved in
polynomial time.

Proof For brevity, we provide here a condensed reasoning
of algorithm complexity. From [Boros et al., 2007] it follows
that the search mechanism illustrated in Algorithm 1 runs

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8088

Algorithm 4 Returns the Z-links in a given set of 4 nodes

1: procedure zLinksFromQuad(G, quad, parts)
2: for each pair ∈ parts do . pair = {p1, p2}
3: if |N (quad(p1))| + |N (quad(p2))| = 3 and
|N (quad(p1))| ≥ 1 and |N (quad(p2))| ≥ 1 then

4: for each j ∈ N (quad(p1)) do
5: zlink ← zlinks ∪ (quad(p1), j)
6: end for
7: for each j ∈ N (quad(p2) do
8: zlink ← zlinks ∪ (quad(p2), j)
9: end for

10: zlinks← zlink
11: end if
12: end for
13: return zlinks
14: end procedure

Algorithm 5 Generates the nodes which yield Z-links
when swapped

1: procedure swapSetFromQuad(G, quad, v, parts)
2: for each u ∈ N (quad(v)) do
3: nodes← nodes ∪N (u)
4: end for
5: nodes← nodes \ quad
6: for each node ∈ nodes do
7: swapQuad← quad
8: swapQuad(v)← node
9: zls← zLinksFromQuad(G, swapQuad, parts)

10: if zls 6= ∅ then
11: zlinks← zlinks ∪ zls
12: swap← swap ∪ node
13: end if
14: end for
15: return {swap, zlinks}
16: end procedure

in polynomial time if and only if the set of reachable
quads returned by swapSetFromQuad can be generated
in polynomial time. In our case, as each quad must
contain exactly four elements, while swapping only a single
element, each set is generated by inspecting at most O(n)
swap possibilities, with each inspection trivially requiring
O(1) operations (i.e., by applying Algorithm 4). Thus,
we conclude that swapSetFromQuad runs in polynomial
time, and our result follows. 2

4. SIMULATION RESULTS

To demonstrate the correctness and complexity of our
proposed methods, we simulated various rigid networks
and identified their feasible rigid bipartitions, the results
of which we now report. For analyzing complexity, a
Monte Carlo analysis for a network with a number of
nodes varying from 4 to 20 has been considered. 1000
trials were run for each configuration and average values
were taken. Figure 4 shows the average (blue solid line)
of the number Z-links found in the network by varying
the number of nodes, providing evidence of the scale of
the Z-link search problem, and ultimately complexity. In
particular, the information concerning the average values
is compared with the curve O(n2) (red dashed line) in
order to demonstrate that this is an upper bound for the
cardinality of a network’s Z-links. Clearly, this working

Algorithm 6 Check if a Z-link is a proper cut over a graph

1: procedure checkZLink(G = (V, E), k, zl)

2: Ê ← E \ zl
3: Ĝ ← (V, Ê)

4: visited← simplifiedDFS(Ĝ, v) . v is an arbitrary
node of zl

5: if |visited| = k then
6: G1 ← visited
7: G2 ← V \ visited
8: return true
9: elseIf |visited| = n− k

10: G1 ← V \ visited
11: G2 ← visited
12: return true
13: end if
14: end procedure

Algorithm 7 Explore a graph with a DFS approach

1: procedure simplifiedDFS(G = (V, E), u)
2: for each i ∈ V do
3: state(i)← 0
4: end for
5: simplifiedDFSVisit(G, u)
6: visited← {v ∈ V : state(v) = 1}
7: return visited
8: end procedure

Algorithm 8 Performs a depth-first visit of a graph node

1: procedure simplifiedDFSVisit(G = (V, E), u)
2: state(u)← 1
3: for each v ∈ Nu do
4: if state(v) = 0 then
5: simplifiedDFSVisit(G, v)
6: end if
7: end for
8: end procedure

bound is far superior to the combinatorial bound given
previously; revising the theoretical bound is a topic of our
current work. Our claim of overall polynomial complexity
is then verified by Figure 5 showing the average of the
number of operations performed by Algorithm 1, as a
function of the number of nodes. It is apparent that our
method exhibits O(n3) complexity, making it a feasible
means of rigid splitting in multi-robot teams.

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed the conditions under which
rigidity-preserving bipartitions are identified and an iter-
ative algorithm to perform such identification. Motivation
was derived both from the implications of rigid networks
for example in formation control and localizability, but also
the flexibility that splitting can provide for a robotic team.
Our methods exploited the previously considered Z-link
structure for defining rigid partitions, and a supergraph
search mechanism to facilitate the discovery of network Z-
links. Finally, simulation results corroborated our claims
of algorithm correctness and guaranteed polynomial com-
plexity. Future work will focus on extending the algorithm
to decentralized domains, considering possible application

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8089

4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400

Number of nodes

N
u

m
b

e
r

o
f
Z

−
lin

k
s

Average number of Z−links

O(n
2
)

Fig. 4. The average number of Z-links found by varying
the number of nodes.

4 6 8 10 12 14 16 18 20
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of nodes

N
u

m
b

e
r

o
f
o

p
s

Average number of ops

O(n
3
)

Fig. 5. The average number of operations performed by
Algorithm 1, as a function of the number of nodes.

in a three-dimensional workspace, and finally real-world
experimentation to solidify our results.

REFERENCES

B. Anderson, C. Yu, B. Fidan, and J. Hendrickx. Rigid
graph control architectures for autonomous formations.
Control Systems, IEEE, 28(6), 2008.

S. Berman, A. Halasz, M. Hsieh, and V. Kumar. Opti-
mized stochastic policies for task allocation in swarms
of robots. Robotics, IEEE Transactions on, 25(4):927–
937, 2009.

E. Boros, K. Borys, K. Elbassioni, V. Gurvich, K. Makino,
and G. Rudolf. Generating minimal k-vertex connected
spanning subgraphs. In Computing and Combinatorics,
volume 4598 of Lecture Notes in Computer Science,
pages 222–231. Springer Berlin Heidelberg, 2007.

P. Brass, F. Cabrera-Mora, A. Gasparri, and J. Xiao. Mul-
tirobot tree and graph exploration. IEEE Transactions
on Robotics, 27(4):707–717, 2011.

Y. Cao, W. Ren, and M. Egerstedt. Distributed con-
tainment control with multiple stationary or dynamic
leaders in fixed and switching directed networks. Auto-
matica, 48(8):1586–1597, 2012.

J. Cortes, S. Mart́ınez, T. Karatas, and F. Bullo. Coverage
control for mobile sensing networks. IEEE Transactions
on Robotics and Automation, 20(2):243–255, 2004.

D. Di Paola, A. Gasparri, D. Naso, G. Ulivi, and F. Lewis.
Decentralized task sequencing and multiple mission con-
trol for heterogeneous robotic networks. In Proceedings
- IEEE International Conference on Robotics and Au-
tomation, pages 4467–4473, 2011.

T. Eren. Formation shape control based on bearing
rigidity. International Journal of Control, 85(9):1361–
1379, 2012.

T. Eren, W. Whiteley, A. Morse, P. N. Belhumeur, and
B. D. O. Anderson. Sensor and network topologies of
formations with direction, bearing, and angle informa-
tion between agents. In IEEE Conference on Decision
and Control, 2003.

B. Hendrickson. Conditions for unique graph realizations.
SIAM J. Comput., 21(1):65–84, 1992.

D. J. Jacobs and B. Hendrickson. An algorithm for two-
dimensional rigidity percolation: the pebble game. J.
Comput. Phys., 137(2):346–365, 1997.

L. Krick, M. E. Broucke, and B. A. Francis. Stabilisation of
infinitesimally rigid formations of multi-robot networks.
International Journal of Control, 82(3):423–439, 2009.

G. Laman. On graphs and rigidity of plane skeletal
structures. J. Engrg. Math., 4:331–340, 1970. ISSN
0022-0833.

A. Nedic, A. E. Ozdaglar, and P. A. Parrilo. Constrained
Consensus and Optimization in Multi-Agent Networks.
IEEE Transactions on Automatic Control, 55(4):922–
938, 2010.

R. Olfati-Saber and R. M. Murray. Graph rigidity and
distributed formation stabilization of multi-vehicle sys-
tems. In IEEE Conference on Decision and Control,
pages 2965–2971, Dec. 2002.

R. Ren, Y.-Y. Zhang, X.-Y. Luo, and S.-B. Li. Automatic
generation of optimally rigid formations using decentral-
ized methods. Int. J. Autom. Comput., 7(4):557–564,
2010.

W. Ren and R. W. Beard. Consensus seeking in multi-
agent systems under dynamically changing interaction
topologies. IEEE Transactions on Automatic Control,
50(5):655–661, 2005.

I. Shames, A. N. Bishop, and B. D. O. Anderson. Analysis
of Noisy Bearing-Only Network Localization. IEEE
Transactions on Automatic Control, 58(1), 2013.

T.-S. Tay and W. Whiteley. Generating Isostatic Frame-
works. Structural Topology, 1985.

R. K. Williams and G. S. Sukhatme. Constrained Inter-
action and Coordination in Proximity-Limited Multi-
Agent Systems. IEEE Transactions on Robotics, 2013.

R. K. Williams, A. Gasparri, A. Priolo, and G. Sukhatme.
Evaluating Network Rigidity in Realistic Systems:
Decentralization, Asynchronicity, and Parallelization.
IEEE Transactions on Robotics (to appear), 2013a.

R. K. Williams, A. Gasparri, A. Priolo, and G. S.
Sukhatme. Decentralized Generic Rigidity Evaluation
in Interconnected Systems. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013b.

D. Zelazo and F. Allgower. Growing optimally rigid
formations. In American Control Conference, 2012.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8090

