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Abstract: Flow control has recently become an attractive technique to manipulate the
behavior of fluid flow to achieve either mixing enhancement or the stabilization of turbulent
flow. While it is understood that the location where mixing occurs is important, existing
studies on mixing enhancement are limited to the hydrodynamics without considering the
direct effect on mass/heat transfer improvement. This paper presents a reduced-order model
for mass transfer equation which allows the analysis of the effect of an external actuation on
mass transfer enhancement in a channel flow. When Reynolds number and temporal frequency
of the external force are low, the effect of a forced wall slip velocity on the overall flow profile in
a channel can be approximated by its instantaneous component. The estimated concentration
profiles from the reduced-order model are in good agreement with CFD simulations. The
key feature of the reduced-order model proposed in this paper is that it allows system
analysis and control design to be performed by considering both spatial and temporal variables
simultaneously.
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1. INTRODUCTION

Recent integration of different disciplines from control
theory, fluid mechanics, Navier-Stokes mathematics to nu-
merical methods has promoted flow control into an active
area of research (Bewley [2001]). Flow control involves the
manipulation of fluid flow into desired behavior commonly
with the purpose to suppress turbulence or to enhance
mixing. It may employ different control strategies, includ-
ing active, passive, open-loop and closed-loop (Kim and
Bewley [2007], Aamo and Krstić [2003]).

Aamo et al. [2003] presented the mixing enhancement
through the application of feedback control on 2D chan-
nel boundary layer. The work has also been successfully
extended to 3D pipe flow (Balogh et al. [2005]). It has
been shown that by carefully controlling the flow system,
mixing can be improved considerably using only small
control effort realized by flow suction and injection across
the wall. Furthermore, Schuster et al. [2008] studied the
mixing enhancement of electrically conduction fluids mov-
ing in electromagnetic fields. The effect on heat transfer
improvement of the fluids under electromagnetic field
actuation was also presented (Luo and Schuster [2006]).
However, existing mixing enhancement studies that utilize
flow control only consider the fluid dynamics while exclud-
ing the underlying mass and heat transfer phenomena
in the problem formulation. In most cases, fluid mixing
enhancement does not translate to the same degree of
mass and heat transfer improvement. Furthermore, ignor-

1 This work is partially supported by ARC Discovery Project
DP110101643

ing the mass and heat transfer equations means that it is
impossible to quantify the transfer enhancement directly.

The case where fouling reduction of membrane system
operation in the laminar flow region motivates the in-
vestigation of the effect of flow control to mass transfer
enhancement in a channel flow. As a membrane pro-
cess operates, rejected substances in the feed accumu-
late near the feed side of the membrane and then form
concentration polarization. This leads to the increased
resistance to filtration, which reduces productivity and
increases energy consumption. An external field method
as a means to reduce concentration polarization and foul-
ing has a potential for implementation because it can
be applied independently of the velocity and membrane
modifications (Nadh Jagannadh and Muralidhara [1996]).
Applying an external field near a membrane surface can
potentially disrupt the concentration boundary layer and
enhance mass transfer (by increasing mixing) and there-
fore, reduce concentration polarization/fouling (Ouyang
et al. [2013], Liang et al. [2014]).

In this paper, a reduced-order model (ROM) which com-
bines the Navier-Stokes (NS) and mass transfer equations
is presented. The model can simulate the effect of the
externally applied forced wall slip velocity on the so-
lute concentration response in a membrane channel flow.
Furthermore, the ROM provides an explicit relationship
between forced slip velocity and solute concentration,
and therefore can be used for system analysis and has
a potential to aid control design.
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Fig. 1. 2D channel with developed parabolic velocity
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Fig. 2. 2D channel with developing concentration

2. SYSTEM DESCRIPTION

The system under consideration includes a 2D rectangular
channel with a membrane installed on the lower wall.
An ionic solution is fed into the channel at a constant
rate which allows a steady-state flow to be developed in
the channel. The system is described using impermeable-
dissolving wall model, which provides a good approxi-
mation of the flow behavior and mass transfer in actual
membrane systems without the need to explicitly model
permeation (Fimbres Weihs et al. [2006]). The model
assumes that the membrane side wall has constant so-
lute concentration and the feed contains only solvent.
For actuation, electrodes are installed below the mem-
brane to generate an electric field that induces electro-
osmotic flow, causing wall slip velocity in the stream-wise
x-direction (Ouyang et al. [2013], Liang et al. [2014]).
At equilibrium, a developed velocity profile (parabolic)
and a developing solute concentration profile exist in the
channel as illustrated in Fig. 1 and Fig. 2. Furthermore,
the forced wall slip velocity acts as a perturbation to the
system hence all of the systems are assumed to start from
the steady-state condition.

3. MODELING AND ANALYSIS

3.1 Reduced-order Navier-Stokes Equations

For incompressible fluids with constant properties, the
dimensionless linearized Navier-Stokes equations for a
2D channel flow are given as follows (Aamo and Krstić
[2003]):

∂3ψ

∂t∂y2
+

∂3ψ

∂t∂x2
+ Ũ

∂3ψ

∂y2∂x
−

∂2Ũ

∂y2
∂ψ

∂x
+ Ũ

∂3ψ

∂x3

−

4

Re

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
= 0,

(1)

where ψ(x, y, t) is a single valued stream function such
that

u(x, y, t) =
∂ψ

∂y
(x, y, t), v(x, y, t) = −

∂ψ

∂x
(x, y, t),

and

(U, V ) =

(
Û

v0
,
V̂

v0

)
, t =

v0
l0
t̂,

Re =
4ρl0v0
µ

, (x, y) =

(
x̂

l0
,
ŷ

l0

)
.

where (U, V ) denotes the dimensionless velocity vector,
t is the dimensionless time variable, and (x, y) is the
dimensionless position vector. Re is the Reynolds number
dependent on the fluid density (ρ), dynamic viscosity (µ),
characteristic flow velocity v0 (the average velocity of
parabolic flow profile), and characteristic channel length
l0. In this paper, the discretization method requires that

0 ≤ x ≤ L and −1 ≤ y ≤ 1, such that l0 = ĥch/2, where

ĥch is the channel height. It should be noted that the
length scale used in defining the Reynolds number is not
the characteristic length l0, but the hydraulic diameter
(dh), which is defined as 4 times the characteristic length
(dh = 4l0). Furthermore, the ’overhat’ denotes actual
variables.

Perturbation variables are used to study the effect of wall
slip velocity to the hydrodynamics in the 2D channel:

u , U − Ũ , v , V − Ṽ , (2)

with (Ũ = 3
2 (1− y2), Ṽ = 0) is the steady-state solution.

To obtain homogeneous boundary conditions, the follow-
ing change of variables is performed

φ(x, y, t) , ψ(x, y, t)− V12(t)w(x)f(y) (3)

where V12(t) =
V̂12(t)

Ṽ12

and w(x) = Ṽ12×ŵ(x̂)
v0

is the spatial

field profile. Ṽ12 is defined as the base voltage, i.e. Ṽ12 =
1 Volt. f(y) = 1

4 (y
3
− y2 − y + 1) is used to satisfy the

boundary conditions, such that equation (1) becomes

∂3φ

∂t∂y2
+
dV12
dt

w
d2f

dy2
+

∂3φ

∂t∂x2
+
dV12
dt

d2w

dx2
f

+ Ũ

(
∂3φ

∂x∂y2
+ V12

dw

dx

d2f

dy2

)
−

d2Ũ

dy2

(
∂φ

∂x
+ V12

dw

dx
f

)

+ Ũ

(
∂3φ

∂x3
+ V12

d3w

dx3
f

)
−

4

Re

[(
∂4φ

∂x4
+ V12

d4w

dx4
f

)

+2

(
∂4φ

∂x2∂y2
+ V12

d2w

dx2
d2f

dy2

)
+

(
∂4φ

∂y4
+ V12w

d4f

dy4

)]

= 0,
(4)

and boundary conditions in terms of φ are

φ(x, y = 1, t) = 0, φ(x, y = −1, t) = 0,

∂φ

∂y
(x, y = 1, t) = 0,

∂φ

∂y
(x, y = −1, t) = 0.

3.2 Discretized Perturbation Navier-Stokes Equations

The Partial Differential Equation (PDE) is then dis-
cretized using the standard Fourier-Galerkin method in
the stream-wise x-direction and the Chebyshev colloca-
tion method in the wall-normal y-direction. The Fourier-
Galerkin method discretize x spatial domain into different
wave numbers using a Fourier complex series as follows:
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φ(x, y, t) =

M∑

m=−M

am(y, t)Pm(x), (5)

w(x) =

M∑

m=−M

wmPm(x), (6)

where Pm = eiαmx and αm = 2πm
L

.

Because the PDE in (4) is linear, the Fourier-Galerkin
discretization produces a set of equations which are decou-
pled in terms of wave number k, which can be decomposed
into the real and imaginary parts of ak (aRk and aIk). The
discretization in the y-direction follows the Chebyshev
collocation method on N + 1 Chebyshev-Gauss-Labotto
points defined as:

yj = cos
πj

N
, j = 0, 1, 2, . . . , N, (7)

N should be chosen such that the details of the solute con-
centration boundary layer can be represented sufficiently
using the discretization.

The boundary conditions of PDE (4) are then represented
as:

aRk (y0) = aIk(y0) = aRk (yN ) = aIk(yN ) = 0

aRk (y1) = lT1 ā
R, aIk(y1) = lT1 ā

I

aRk (yN−1) = lT2 ā
R, aIk(yN−1) = lT2 ā

I

(8)

where
[
lT1
lT2

]
= −

[
d01 d0(N−1)

dN1 dN(N−1)

]
−1 [

d02 d03 · · · d0(N−2)

dN2 dN3 · · · dN(N−2)

]

and

āk = [ak(y2) ak(y3) · · · ak(yN−2)]
T
.

ak =




0T

lT1
IN−3

lT2
0T



āk = Iaāk,

with DN ∈ R
(N+1)×(N+1) is the differentiation matrix

defined as

(DN )jl , djl =





c̄j
c̄l

(−1)j+l

yj − yl
j 6= l

−

yj
2(1− y2j )

1 ≤ j = l ≤ N − 1

2N2 + 1

6
j = l = 0

−

2N2 + 1

6
j = l = N

(9)

and

c̄j =

{
2 j = 0 or N
1 otherwise

(10)

The systems describing the dynamics of each wave num-
ber k can then be written in linear time invariant (LTI)
state space form as follows:

[
˙̄a
R

k

˙̄a
I

k

]
= Āk,mod

[
āRk
āIk

]
+ B̄k,mod

[
V12(t)
dV12
dt

]
(11)

where

Āk,mod =

[
M̄−1ĀR

R M̄−1ĀI
R

M̄−1ĀR
I M̄−1ĀI

I

]

B̄k,mod =

[
M̄−1(wI

kq1 + wR
k q2) −wR

k M̄
−1g

M̄−1(−wR
k q1 + wI

kq2) −wI
kM̄

−1g

]

with

M̄ = R̄
(
D

2
N − α2

kI
)
Ia

R̄ =
[
0(N−3×2) IN−3 0(N−3×2)

]

ĀR
R = ĀI

I =
4

Re
R̄
(
D

4
NIa − 2α2

kD
2
NIa + α4

kIa

)

ĀI
R = −ĀR

I = R̄
(
αkŨND

2
NIa −

(
αkŨ

(2)
N + α3

kŨN

)
Ia

)

q1 = R̄
(
αkŨN f

(2)
N −

(
αkŨ

(2)
N + α3

kŨN

)
f
(0)
N

)

q2 =
4

Re
R̄
(
α4
kf

(0)
N − 2α2

kf
(2)
N + f

(4)
N

)

g = R̄
(
f
(2)
N − α2

kf
(0)
N

)
.

(12)

and

Ũ
(r)
N =




drŨ

dyr
(y0) 0 · · · 0

0
drŨ

dyr
(y1) · · · 0

...
...

. . .
...

0 0 · · ·

drŨ

dyr
(yN )




, r = 0, 1, 2, · · ·

f
(r)
N =

[
drf

dyr
(y0)

drf

dyr
(y1) · · ·

drf

dyr
(yN )

]T
, r = 0, 1, 2, · · ·

From āRk (t) and āIk(t), the coefficients of the Fourier series

expansion in (5) (i.e. φ(x, y, t) =
∑M

k=−M ak(y, t)Pk(x))
are obtained. Hence, the perturbation velocities at loca-
tion (x, yj) can be evaluated from

u(x, yj , t) =
∂φ

∂y
(x, yj , t) + V12(t)w(x)

df(yj)

dy
, (13)

v(x, yj , t) = −

∂φ

∂x
(x, yj , t)− V12(t)

dw(x)

dx
f(yj), . (14)

The solution to ODE (11) is
[
āRk (t)
āIk(t)

]
= eĀk,mod t

∫ t

0

eĀk,mod τ B̄k,mod

[
V12(τ)
dV12
dτ

]
dτ.

(15)
From equation (15), the values of āRk (t) and āIk(t) are

the results of the multiplication between eĀk,mod t and
the integral term. Since Āk,mod is dependent on Re num-
ber (because AR

R and AI
I depend on Re, as shown in

equation (12)), then the eigenvalues of Āk,mod are also
dependent on Re number. A simple calculation can be
performed to show that lower Re will result in more
negative eigenvalues (real part) of Āk,mod, which implies

that for sinusoidal inputs (V12 and dV12

dt
), φ(x, y, t) =∑M

k=−M ak(y, t)Pk(x) will decay faster to 0. Additionally,

if the input to the system (11) (i.e. dV12

dt
) is small, then the

values of āRk (t) and āIk(t) are also expected to be small.
Therefore, for bulk flow with small Re numbers and low
temporal frequency of input voltage, the first term on
the RHS of equation (13) to (14) can be assumed to be
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negligible in comparison to the instantaneous (second)
term. It is then possible to approximate u and v in
equations (13) and (14) as:

u(x, y, t) ≃ V12(t)w(x)
df(y)

dy
, (16)

v(x, y, t) ≃ −V12(t)
dw(x)

dx
f(y). (17)

3.3 Reduced-order Heat/Mass Transfer Equations

It has been shown in Section 3.2 that the perturbation ve-
locity profile can be approximated using its instantaneous
component. By exploiting this observation, the following
section provides a novel representation that provides a
direct link between a forced wall slip velocity and mass
transfer enhancement. Unlike the reduced-order pertur-
bation NS-equations which is linear, the reduced-order
mass transfer equation still exhibits input nonlinearity
due to the non-spatially uniform solute concentration.
Therefore, the extension of the discretization method
from NS-equations to mass transfer equation is not trivial.

For the case of developing concentration boundary layer,
the dimensionless solute concentration can be defined as:

Y =
Ŷ − Y0
Yw − Y0

(18)

where Ŷ is actual concentration (mass fraction), Y0 is
the concentration at inlet and Yw is the concentration on
the lower wall. The dissolving wall dimensionless mass
transfer equation is described as follows (Bird et al.
[2002]):

∂Y

∂t
+ U

∂Y

∂x
+ V

∂Y

∂y
=

4

Pe

(
∂2Y

∂x2
+
∂2Y

∂y2

)
, (19)

where Pe is the Peclet number and Pe = ReSc
(Sc = µ

ρDAB
is the Schmidt number), DAB is the

diffusivity coefficient of the solute to the bulk solution.

Suppose that (Ũ , Ṽ = 0, Ỹ ) is the steady-state solution to

the mass transfer equation (19) and ω , Y −Ỹ is the mass
fraction deviation variable. The simplified perturbation
mass transfer equation is obtained by omitting the second
order perturbation terms:

∂ω

∂t
+ u

∂Ỹ

∂x
+ Ũ

∂ω

∂x
+ v

∂Ỹ

∂y
=

4

Pe

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(20)

3.4 Discretized Perturbation Mass Transfer Equation

The mass transfer equation is discretized following the
same method as for the Navier-Stokes equation. Consider
the Fourier complex series

ω(x, y, t) =

M∑

m=−M

bm(y, t)Pm(x),

∂Ỹ

∂y
(x, y, t) =

M∑

m=−M

sm(y, t)Pm(x),

∂Ỹ

∂x
(x, y, t) =

M∑

m=−M

rm(y, t)Pm(x).

(21)

where Pm = eiαmx and αm = 2πm
L

. The two main diffi-
culties in studying the effect of slip velocity to mass/heat

transfer enhancement are equation (20) requires knowl-
edge of the velocity profile at every location in the channel

and the nonlinear input terms (i.e. u∂Ỹ
∂x

and v ∂Ỹ
∂y

) . How-

ever under certain conditions as discussed in Section 3.2
(laminar bulk flow and slow variation of perturbation
signal), the perturbation hydrodynamics variables which
affect the mass transfer are u and v can be approximated
as (16) and (17), such that:

u
∂Ỹ

∂x
= V12(t)

df(y)

dy

M∑

m=−M

∑

m=p+q

wprq(y, t)Pm(x) (22)

v
∂Ỹ

∂y
= −V12(t)f(y)

M∑

m=−M

∑

m=p+q

αpiwpsq(y, t)Pm(x)

(23)
Equation (20) can be written in separate wave number k
as follows:
∂bk

∂t
= −Ũαkibk +

4

Pe

∂2bk

∂y2
− V12(t)

df(y)

dy

∑

k=p+q

wprq(y, t)

+ V12(t)f(y)
∑

k=p+q

αpiwpsq(y, t)−
4

Pe
α2
kbk .

(24)

For the dissolving wall model, the boundary conditions
for the PDE (20) are represented as:

bRk (y0) = lT3 b̄
R
k , b

I
k(y0) = lT3 b̄

I
k

bRk (yN ) = bIk(yN ) = 0
(25)

where

lT3 = −d−1
00

[
d01 d02 · · · d0(N−1)

]

and
b̄k = [bk(y1) bk(y2) · · · bk(yN−1)]

T
.

bk =




lT3

IN−1

0T



 b̄k = Ibb̄k.

For each wave number k, the real and imaginary parts
of equation (24) can then be written in a linear time
invariant (LTI) state space form as follows:

[
˙̄bR
k
˙̄bI
k

]
= Ak

[
b̄R
k

b̄I
k

]
+BkV12(t) (26)

where

Ak =

[
M−1AR

R M−1AI
R

M−1AR
I M−1AI

I

]
,

Bk =




−M−1R



f
(1)
N

∑

k=p+q

(
wR

p r
R
q − wI

pr
I
q

)




−M−1R



f
(1)
N

∑

k=p+q

(
wR

p r
I
q + wI

pr
R
q

)







+




−M−1R



f
(0)
N

∑

k=p+q

αp

(
wR

p s
I
q + wI

ps
R
q

)




−M−1R


f

(0)
N

∑

k=p+q

αp

(
wI

ps
I
q − wR

p s
R
q

)






with
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Fig. 3. Mass transfer model and CFD simulations (top model, bottom CFD) Re = 280

M = RIb

R =
[
0(N−1×1) IN−1 0(N−1×1)

]

AR
R = AI

I =
4

Pe
R
(
D

2
N − α2

kI
)
Ib

AI
R = −AR

I = R
(
αkŨNIb

)

Fig. 3 shows that the simulation results obtained from
the LTI mass transfer model and Computational Fluid
Dynamics (CFD) are in good agreement with a reasonably
shorter computational time (approximately 1 to 20).

The mass transfer equation (26) is extended to allow
further investigation on the effect of us to mass trans-
fer enhancement by allowing each wave number of the
velocity u(αp) to be adjusted independently such that
wpV12(t) = wp(t) such that

[
˙̄bR
k
˙̄bI
k

]
= Ak

[
b̄R
k

b̄I
k

]
+Bk,extu (27)

where

Ak =

[
M−1AR

R M−1AI
R

M−1AR
I M−1AI

I

]

Bk,ext =


−M

−1R
(
diag(f

(1)
N )g1u + diag(f

(0)
N )g1v

)

−M−1R
(
diag(f

(1)
N )g2u + diag(f

(0)
N )g2v

)



u =
[
wR

0 (t) · · · wR
P (t) w

I
0(t) · · · wI

P (t)
]T

diag(f
(r)
N ) =




drf

dyr
(y0) 0 · · · 0

0
drf

dyr
(y1) · · · 0

...
...

. . .
...

0 0 · · ·

drf

dyr
(yN )




g1u =




(
rRk+0 + rRk−0

)

..

.(
rRk+P + rRk−P

)
(
rIk+0 − rIk−0

)

...(
rIk+P − rIk−P

)




T

, g1v =




α0

(
−sIk+0 + sIk−0

)

..

.

αP

(
−sIk+P + sIk−P

)

α0

(
sRk+0 + sRk−0

)

...

αP

(
sRk+P + sRk−P

)




T

g2u =




(
rIk+0 + rIk−0

)

...(
rIk+P + rIk−P

)
(
−rRk+0 + rRk−0

)

.

..(
−rRk+P + rRk−P

)




T

, g2v =




α0

(
sRk+0 − sRk−0

)

...

αP

(
sRk+P − sRk−P

)

α0

(
sIk+0 + sIk−0

)

.

..

αP

(
sIk+P + sIk−P

)




T

The wall slip velocity spatial profile in the x-direction for
a given us = V12(t)w(x) is described by w(x). If w(x)
is predetermined, then equation (26) allows the analysis
of us in terms of the dynamical effect of V12(t) on the
mass/heat transfer enhancement inside a 2D channel with
a specific bulk flow. One major difference between the
mass transfer LTI and the NS LTI equations is in the term
which includes the convolution sum of wall slip velocity
and equilibrium concentration (p and q for each k). This
implies that nonlinearity of the inputs such that each wave
number k of w(x) affects not only the same k as in the
Navier-Stokes case but all other k.

Based on (21) (for ω), solute concentration at different
locations is a linear combination of the states in (26).
A control law can then be easily designed to regulate
concentration at those locations by manipulating wall slip
velocity.

The extension of (26) to (27) has a threefold benefit: (1)
the slip velocity profile is included as the system design
parameter which can potentially optimize mass transfer
instead of using a predetermined w(x); (2) the system now
has more manipulated variables wp(t) instead of the single
variable V12(t). This implies that the model can be used
for system design by selecting the optimum waveform and
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the locations of actuators (e.g. electrodes); and (3) the
predetermined profile w(x) only allows a standing wave
in the channel while the time-varying wp(t) can include
moving waves.

3.5 Mass transfer enhancement analysis

In this paper, the mass transfer enhancement is defined
as the oscillation amplitude of solute concentration in the
boundary layer near the membrane surface (the lower
wall). This measure is selected because oscillations of
solute concentration in the boundary layer can poten-
tially reduce concentration polarization and fouling. The
proposed system analysis method is able to identify the
temporal frequency which will cause the maximum am-
plitude of oscillation for a given input voltage V12(t). For
the dissolving wall model, the steady-state solute concen-
tration profile for the developing boundary layer can be
described using an incomplete Gamma function (Doshi
et al. [1971]) such that:

∂Ỹ

∂y
(x, y, t) = −

(
9Pe

4x

) 1

3 e− (y+1)3Pe

12x

Γ(13 )
,

∂Ỹ

∂x
(x, y, t) =

(
Pe

12x4

) 1

3 (y + 1)e− (y+1)3Pe

12x

Γ(13 )
.

(28)

Based on the LTI system in equation (26), the perturba-
tion solute concentration at a specific location ω(xi, yj , t)
can be calculated since the slip velocity profile w(x), the
steady-state flow, and the steady-state solute concentra-
tion profile are known. In order to obtain the system rep-
resentation from V12(t) to ω(xi, yj , t), the system in (26)
is rewritten as follows:

˙̄b = A b̄+BV12(t)

ω(xi, yj , t) = C b̄
(29)

where

A =




A1 0 · · · 0
0 A2 · · · 0
..
.

..

.
. . .

..

.
0 0 · · · AM/2




B =
[
BT

1 BT
2 · · · BT

M/2

]T

C =
[
C1 C2 · · · CM/2

]

Ck =
[
0(1×j−1) 2 cos(αkxi) 0(1×N−2) −2 sin(αkxi) 0(1×N−1−j)

]

b̄ =

[
b̄R1

T
b̄I1

T
· · · b̄RM/2

T
b̄IM/2

T
]T

.

The system then becomes single-input-single-output such
that the temporal frequency response can be readily
calculated.

4. CONCLUSION

This paper presents a reduced-order model which allows
the analysis of the effect of wall slip velocity on mass
transfer enhancement explicitly rather than the generic
mixing enhancement. The model has shown a good agree-
ment with CFD simulation results for bulk flows with
low Re in 2D channels with slow time varying forced
wall slip velocity. The proposed model is represented as
a linear time invariant (LTI) system of different spatial

wave numbers, which can be used for simulation, system
analysis, and control design purposes.

The extended system in equation (27) assumes that the
electrode configuration is arbitrary and the analysis will
be able to identify not only the temporal frequency for
maximum oscillation but also the spatial frequency (or
the combinations of spatial frequencies). This means for
a distributed parameter system, the system and control
design in terms of actuator distributions and signal time
variation of the controller outputs can be explicitly ana-
lyzed. However, studying the extended system will involve
a 2D spatio-temporal frequency response analysis, which
will be challenging due to the system’s non-spatial invari-
ant property.
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