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Abstract: Improving the efficiency of the agricultural irrigation systems substantially con-
tributes to sustainable water management. This improvement can be achieved through an
automated irrigation system that includes a real time control strategy based on the water, soil
and crop relationship. This paper presents a model predictive control applied to an irrigation
system, in order to make an efficient use of water for large territories, i.e. apply the correct
amount of water in the correct place at the right moment. The proposed model uses the soil
moisture control and the climatic factors, to determine optimal amount of water required by
the crop. This predictive model is evaluated against a traditional irrigation system based on the
empirical definition of time periods, and against a basic soil moisture control system. Preliminary
results indicate that the use of a model predictive control in an irrigation system, may achieve
a higher efficiency and significantly reduce the water consumption.

Keywords: Modeling and control of agriculture; Optimal control in agriculture; Real time
control of environmental systems.

1. INTRODUCTION

The agricultural sector represents the major water con-
sumer globally, this sector requires most of the available
water (85% approximately) mainly due irrigation activ-
ities, additionally, it is estimated that worldwide about
50% to 60% of the water used for agricultural irrigation is
wasted due the inappropriate management of this natural
resource, see Water Report [2012]. A deficient water
management causes not only the waste of this vital liquid,
but also a significatively reduction on crop productivity.

Irrigation is necessary when crops cannot satisfy their wa-
ter needs through natural precipitation. Currently, most of
the commercial automated irrigation system offered by the
market, are programmed to irrigate at time intervals for
predefined periods of time. The irrigation schedule is de-
fined off-line, and it is usually based on the user empirical
knowledge on crop needs, soil characteristic and climatic
factors. Therefore, water efficiency can be improved if soil,
water and crop parameters are incorporated on-line in the
automated system. In recent years, the control community
has increased its attention to the analysis and implementa-
tion of real-time and closed-loop irrigation control systems
based on on-line soil moisture monitor, see Ooi et al.
[2008], Kim et al. [2009], Li et al. [2011], Constantinos
et al. [2011], Pfitscher et al. [2012] as some of the most
relevant works on closed-loop irrigation.

Water efficiency in agriculture has been extensively re-
searched for many years. Roughly two major research
trends can be observed in this area. The first one refers to
the analysis of water productivity related to the soil char-

acteristics and the crop yield, as presented by Kijne et al.
[2013], Renault et al. [2000], Kulkarni [2011], however the
implementation aspects are barely mentioned. The second
one focuses on the integration of data communication,
sensor technology and information systems for automatic
irrigation, see Kim et al. [2008], Yuan et al. [2009], Zho
et al. [2007], but in general there is an absence in the
formal definition of the control model. The work presented
in this paper proposes the use of a model predictive control
strategy for a closed-loop irrigation control system in order
to reduce the water consumption while maintaining an
adequate crop efficiency.

Model predictive control (MPC) is an optimal control
strategy based on numerical optimization over a finite
horizon, as denoted by Maciejowski [2000]. In general,
MPC requires a heavy computational load to achieve
optimization. Future control inputs and future process
responses are predicted using a mathematical model and
optimized according to a cost function. Model predictive
control has been successfully implemented to control pro-
cesses in industries such as petrochemical, food, refining
and polymer among others. Model predictive control has
been proposed as a suitable technique for large water
distribution systems. In Puig et al. [2012], MPC is used to
generate flow control strategies from the sources of water
to the consumer to meet operational goals. In Overloop
[2006], MPC is configured for an application of water
quantity control on open water systems, like canals and
large drainage systems.

The content of this paper includes two major aspects:
(1)the identification of a process model based on the
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Fig. 1. Components of hydrological balance for an irriga-
tion system

relationship between water, soil and crop through the use
of concepts like evapotranspiration and hydraulic balance;
(2)the proposal of a predictive control design strategy
applied to irrigation systems in order to optimize the use
of water based on climatic factors while controlling the soil
moisture level.

The rest of this paper is structured as follows. Section 2
introduces the hydrological balance, the evapotranspira-
tion and the soil moisture concepts. Then, in section 3
the formal definition of the process model is presented.
Section 4 defines the controller design strategy. Section 5
describes the equipments and sensors used for process
measurements. Section 6 presents the model parameter
estimation based on direct measurements soil moisture and
climatic conditions. Section 7 presents the results where
the predictive model is evaluated against a traditional
irrigation system based on the empirical definition of time
periods, and against a basic soil moisture control system.
Finally, section 8 concludes the paper.

2. PRELIMINARIES

2.1 Hydrological Balance

The process dynamics of any agricultural irrigation system
can be best described by using the hydrological balance
model, depicted in Fig 1. This model establishes that a
change in water storage during a time period in a specific
location is the result of water inflows (irrigation, rainfall,
capillary rise) minus the water outflows (evaporation,
plant transpiration, water runoff and deep percolation),
see Allen et al. [1998].

Using soil moisture θ in order to measure field water
storage, then the hydrological balance dynamics can be
defined as

θ̇(t) = ir(t) + rf(t) + cr(t)− etc(t)− dp(t)− ro(t), (1)

where soil moisture variations in the root zone θ̇(t) de-
pends on effective irrigation ir(t), rainfall rf(t), capillary
rise cr(t), crop evapotranspiration etc(t), deep percolation
dp(t) and water outflow due run-off ro(t).

If a dry and plain land area for irrigation is considered,
then rf(t) (assuming no rainfall), cr(t) (assuming no deep

water available for capillary rise) and ro(t) (assuming no
runoff due plain land) terms can be removed from water
balance, and a simplified dynamics can be expressed as

θ̇(t) = ir(t)− etc(t)− dp(t), (2)

where soil moisture variations θ̇(t) depends just on the
effective irrigation, crop evapotranspiration and deep per-
colation.

2.2 Evapotranspiration

Crop evapotranspiration is a critical element in the hy-
drological balance for an irrigation system. Evapotran-
spiration represents the water lost caused by soil surface
evaporation and crop transpiration. Evaporation and tran-
spiration occur simultaneously and there is no easy way of
distinguishing between the two processes.

The evapotranspiration rate is normally expressed in mil-
limeters (mm) per unit of time (usually days). The rate
expresses the amount of water lost from the cropped
surface in units of water depth. An evapotranspiration of
1mm/day is equivalent to a loss of 10, 000liters per hectare
per day.

Crop evapotranspiration etc depends on both, weather
factors (soil radiation, temperature, humidity, wind veloc-
ity) and crop-soil characteristics (crop type, development
stage, soil type, land fertility). Therefore, the water de-
mand of any crop can be computed by multiplying the
climatic factors of the evapotranspiration with a coeffi-
cient that depends on the crop specific characteristics, as
denoted by

etc(t) = Kceto(t), (3)

where eto(t) is the reference evapotranspiration that de-
pends only on climatic parameters, and Kc is a constant
that is known as the crop coefficient.

To determine the crop coefficient Kc value, it is necessary,
for to know the crop type, the total length of the growing
season and the lengths of the various growth stages. This
enables the transfer of standard values for Kc between
locations and between climates. This has been a primary
reason for the global acceptance and usefulness of the crop
coefficient approach. The reference evapotranspiration eto
is defined as the rate of evapotranspiration from a large
area, covered by green grass, 8 to 15 cm tall, which grows
actively, completely shades the ground and which is not
short of water, further details can be found on Allen et al.
[1998].

As stated by Soundar rajan et al. [2010], the eto estimation
methods can be roughly classified as: temperature methods
and radiation methods.

• The temperature methods assume that air temper-
ature is directly proportional to the reference evap-
otranspiration; therefore in most of the cases the
only measured variable is the temperature. Examples
of these methods are: Blaney-Criddle, FAO Blaney-
Criddle and Thornwaite.

• The radiation methods consider that reference evap-
otranspiration depends mostly on solar radiation, al-
though most of these methods also consider other
variables (temperature included) for measurement.
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Fig. 2. Monthly ETo for Chihuahua, México based on 2012
climatological data

Examples of these methods are: Hargreaves and FAO
Penman-Monteith.

According to Guevara [2006] the FAO Penman-Monteith
is considered the most accepted method by the scientific
community, since it is physically based and explicitly incor-
porates both physiological and aerodynamics parameters.
Figure 2 shows the monthly reference evapotranspiration
(eto) for Chihuahua, México, based on climatological data
from year 2012, and calculated with different estimation
methods.

It can be denoted that for Chihuahua climatological con-
ditions, a simpler FAO Blaney-Criddle estimation can
be used instead of the accurate and more complex FAO
Penman-Monteith, if solar radiation data is not available.
Moreover, if air temperature is the only available variable
then Blaney-Criddle may even provide a good approxima-
tion.

2.3 Soil Moisture

Soil moisture refers to the amount of water in soil, which
is described as the volumetric water content. Volumetric
water content (θ) indicates the percentage of water volume
for a specific volume:

θ =
VW

VT
, (4)

where VW is the water content in volume units for a specific
sample and VT is the total volume sample (soil + water +
air).

In any crop, the soil moisture needs to be maintained above
permanent wilting point and stay below field capacity.
Permanent wilting point is the soil moisture level at which
plants cannot longer absorb water from the soil. Field
capacity is the quantity of water stored in a soil volume
after drainage of gravitational water. The available water
capacity of soil is the water that is available to the crop,
and it represents the range of soil moisture values that
lie above permanent wilting point and below the field
capacity. Field capacity and permanent wilting point are
heavily influenced by soil textural classes, Rowell [1994],
e.g. a silt loam type of soil (frequently used for agricultural
purposes) has a typical value of 0.3 volumetric water
content (VWC) for the field capacity, meanwhile the
permanent wilting point typically has a value of 0.15.

Fig. 3. Irrigation system input/output definition

In automated agriculture irrigation system, the most ac-
curate irrigation schedules use regional etc forecasts in
combination with soil moisture sensors to ensure that the
soil moisture values stay at a level that is best for the
crop health and yields. The evapotranspiration forecasts
help the irrigator to create a weekly irrigation schedule,
while soil moisture data takes into account microclimates
and soil conditions and fine tune the weekly schedule on a
daily basis.

3. PROCESS MODEL

Based on the hydrological balance (2), the process dynam-
ics for an irrigation system can be described by a block
diagram with two inputs (effective irrigation and reference
evapotranspiration) and one output (soil moisture), as
shown in Fig. 3.

Notice that reference evapotranspiration (eto) is used
instead of crop evapotranspiration (etc), due eto depends
only on external climatic parameters. By the other hand,
etc is the result of eto that multiplies the crop coefficient
(Kc) according to (3), so it is assumed that Kc belongs
to the internal process dynamics of the irrigation system.
Also notice that deep percolation dp(t) is not present in
the block, since it is assumed that water percolation in an
irrigation system is clearly proportional to soil moisture,
see Ooi et al. [2008], then (2) can be rewritten as

θ̇(t) = ir(t− τ)−Kceto(t− τ)− c1θ(t), (5)

where c1 is a constant value denoting the proportional
relation between soil moisture and deep percolation, and τ
represents the time-delay form the start of irrigation until
the sensor detects a change in the soil moisture.

Now, the process dynamics of any linear and continuous-
time system, can be described by using the standard
representation of a state-space model,

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t),

(6)

where x(t) is a vector of a state variables (state of the
process), u(t) is the control signal or process input, y(t)
is the process output; A,B,C are constant matrices that
describes the dynamics of the process.

Therefore (5) can be reformulated by using a first-order
state-space representation as

θ̇(t) = A [θ(t)] +B

[
ir(t− τ)
eto(t− τ)

]
y(t) = C [θ(t)] ,

(7)

soil moisture (θ) is the state variable; effective irrigation
ir and reference evapotranspiration eto are the process
inputs. Notice that an input time delay has been included
(τ) in order to model the period of time since the irrigation
starts until the sensor detects a change in the soil moisture.
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Fig. 4. Model predictive control loop

Constant Kc and c1, have been absorbed by matrices B
and A respectively. By using generic constant for A, B and
C matrices, then the complete state-space representation
is given by

θ̇(t) = [−c1] [θ(t)] + [c2 − c3]

[
ir(t− τ)
eto(t− τ)

]
y(t) = [1] [θ(t)] ,

(8)

where c1, c2 and c3 are constants that defines the dynamics
of the process and can be obtained from direct measure-
ments of the evapotranspiration, the soil moisture and the
effective irrigation.

4. CONTROLLER DESIGN

A model predictive control (MPC) can be used in order
to minimize the control signal (effective irrigation) while
keeping soil moisture under specific thresholds (avoiding
water stress) and by considering external disturbances
(reference evapotranspiration) predict the process dynam-
ics. Figure 8 shows a feedback loop where the control
objective is to keep within certain thresholds the soil water
content in order to have a healthy and productive crop.
Thus the process variable y(t) is the soil moisture, r(t) is
the reference value (soil moisture set-point), and the error
value e(t) is obtained as a result of the difference between
the process value and the reference value.

The climatic factors affecting the irrigation systems are
modelled as an external disturbance, and the reference
evapotranspiration eto represents the disturbance signal
affecting the process. By knowing the disturbance model,
then the system may predict the disturbance effects and
react before these effects affect the process output.

The controller knows the process dynamics due the inter-
nal model. Within the controller, an numerical optimiza-
tion algorithm is executed based on the current error and
the disturbance measurements, this information is applied
to the internal model and an optimal solution is found
over a finite horizon TFH , which minimizes a cost function
based on the error e(t) and the control signal u(t),

minimize J =

∫ TFH

t=0

f(e(t), u(t))dt. (9)

Fig. 5. Equipment and sensors used for measurements

5. MEASURING EQUIPMENT

Soil measurements were conducted by using a Decagon 1

EC-5 volumetric water content sensor. The sensor was
located in a depth of 20cm in order to measured the
soil moisture at the grass root level. The grass grows
over a silt loam type of soil whose field capacity and
permanent wilting point are 0.30 VWC and 0.15 VWC
respectively, therefore 0.18 VWC is considered as an
adequate soil moisture set-point in order to avoid water
stress. A Decagon VP-3 air temperature sensor was used to
calculate hourly eto based on Blaney-Criddle method and
is located in-field near to the soil moisture sensor. Both
sensors are connected into a Decagon EM50R Wireless
Data Logger, then data is transmitted to a remote data
station (Decagon ECH20) that is connected via serial port
to a personal computer. Soil moisture and air temperature
data are stored and plotted in the computer using the
Decagon DataTrac software, as shown in Fig. 5.

6. MODEL SIMULATION

Process dynamics model defined by (8) has been simu-
lated using Matlab 2 . In order to validate the theoretical
model the simulation of the process dynamics has been
compared with data obtained directly from soil moisture,
effective irrigation and evapotranspiration measurements.
The process dynamics coefficients c1, c2 and c3 from (8)
were estimated from direct measurements using the Mat-
lab system identification toolbox.

For validation purposes hourly sampling periods are con-
sidered and a total of 48 hours (2 days) were simulated and
compared against direct measurements. Figure 6 shows the
process output comparison (soil moisture θ) during the
validation period, in general the model output provides an
adequate approximation according to the measured data.

The measurement and simulation conditions considered
were: one hectare of grass (eto = etc) irrigated once
every two days approximately, with a daily average evapo-
transpiration of 7.76 mm/day (typical value for the month
of May in Chihuahua, Mexico), each irrigation event has
a duration of 0.5 hours in order to keep the soil moisture
above of 18%, and finally a process input time-delay of 0.1
hours is considered.

Reference evapotranspiration has a periodical behavior i.e.
eto is low at night and is high during the day, reaching the
maximum value at noon and the minimum value at mid-
night and early morning. Effective irrigation takes place
1 Decagon Devices, http://www.decagon.com
2 Matlab is a product developed by Mathworks
http://www.mathworks.com
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Fig. 6. Model dynamics simulation data against measured
data

the first day in the morning and it is modelled as a short
pulse signal, since real irrigation last only few minutes but
provides great amount of water. As for the soil moisture
(process output), it increases suddenly after an irrigation
event, then it decreases slowly due evapotranspiration. Soil
moisture slope, represent the water depletion, and it is
higher during the day (high eto) and lower during the night
(low eto).

Based on the validation results, it can be derived that an
irrigation system can be described by a process block with
two inputs (effective irrigation and reference evapotran-
spiration) and one output (soil moisture), where reference
evapotranspiration depends on climatic external factors
and effective irrigation can be considered as the control
signal, meanwhile process output (soil moisture) can be
measured by using adequate sensors.

7. MODEL EVALUATION

In order to identify the potential impact of the use of a
MPC in the process dynamics, simulations were conducted
to evaluate three different types of irrigation methods:

(1) Time-based irrigation, where an open-loop periodical
irrigation is implemented, the irrigation period and
the duration of each irrigation event is determined
empirically.

(2) Soil moisture control-based irrigation, a simple on-off
closed loop control system is implemented in order to
maintain soil moisture within pre-defined thresholds.

(3) Model predictive control-based irrigation, this schema
includes a closed loop control to maintain soil mois-
ture within predefined thresholds and a predictive
model based on the process dynamics and the dis-
turbance measurements.

The three irrigation methods are compared in terms of
accumulated error Jacum and control effort Jcontrol. The
accumulated error indicates how good the system is to
maintain the soil moisture levels close to the reference
value. The control effort indicates how efficient the system
is, in order to minimize the water consumption. In both
cases, the lower the value the better the performance.
These parameters are defined as

Fig. 7. Accumulated error evaluation

Jacum =

Tsim∫
0

|e(t)|,

Jcontrol =

Tsim∫
0

|u(t)|,

(10)

where Tsim is the simulation time, e(t) is the difference
between the soil moisture reference value and the process
output (current soil moisture), and u(t) is the control
signal (effective irrigation).

In Fig. 7 the accumulated error of the three irrigation
methods is shown, it can be observed that the MPC
controller has a better performance since the accumulated
error is the lowest. The on-off controller has the worst
behavior, since this simple schema does not account for
the input process time delay. By the other hand, the MPC
controller includes in its internal model the input time-
delay, therefore is more robust to timing variations.

In Fig. 8 the control effort of the three irrigation methods is
compared. These is a critical parameter since it represents
the system water consumption. It can be observed that
the highest water consumption is provided by the open-
loop system, since no feedback information is provided
to the controller, and then the control signal is sent
periodically even when the process does not require it. The
on-off control improves water consumption by keeping the
soil moisture within predefined levels. However the lowest
water consumption is provided by the MPC controller,
since an internal optimization algorithm allows to reduce
the control effort.

In general the MPC controller potentially offers the best
performance considering the reference error and the con-
trol effort parameters. The implementation MPC con-
troller requires an intensive computational load, however
the capability of new embedded devices makes feasible
the implementation of complex algorithm such as the
required in an MPC controller. Also the relatively slow
process dynamics for an irrigation system makes feasible
the implementation of this predictive control strategy.

8. CONCLUSIONS

This paper proposes the use of a predictive control strategy
for a closed-loop irrigation control model. Considering

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4433



Fig. 8. Control effort evaluation

that the process dynamics of an irrigation system can
be described with the hydrological balance model, where
evapotranspiration and soil moisture represents the model
main variables, then a model predictive control (MPC)
can be used in order to minimize the control signal
(effective irrigation) while keeping soil moisture under
specific thresholds (avoiding water stress) and considering
external disturbances (reference evapotranspiration) to
predict the process dynamics.

The proposed model has been simulated and compared
against direct measurements from an irrigation system for
validation purposes. Then the proposed control strategy
has been evaluated against more conventional irrigation
methods. Simulation results indicate that the use of a
model predictive control in an irrigation system, achieves
a higher control efficiency and significantly reduce the
control effort (water consumption).

Future work will focus on the implementation of the
proposed controller in an embedded device in order to
perform experimental evaluations with different control
algorithms and validate the feasibility of a predictive
control strategy in an irrigation system.
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