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Abstract:
A significant part of the vehicle control software is based on Look-Up-Tables (LUTs) that define
the mappings from different combinations of multiple independent (input) variables to the values of
one dependent (output). LUTs are used as feedforward controllers or as gain-scheduling parameters
for feedback controllers. The LUT feedforward controllers can be viewed as inverse vehicle models
capturing the strong nonlinearity and multimodal behaviors that can be (in many cases) formalized only
by experimentally measured data under different operating conditions. The paper proposes a Feedback
Error Learning (FEL) based method for adaptation of the LUT feedforward controllers in order to match
the desired and actual vehicle performance. The FEL is an on-line learning strategy acquiring an inverse
model of a plant through feedback control actions. In this paper we consider the driver demand LUTs
as a feedforward controller defining the relationship between the accelerator pedal position, the engine
speed, and corresponding brake torque and the driver as a feedback controller. The FEL scheme have
been implemented through Piecewise Bilinear (PB) models which can be expressed as LUTs and are
very convenient with regard to nonlinear modeling, control objective and on-line learning capability.

1. INTRODUCTION

Look-up tables (LUTs) are used in automotive engineering
applications as feedforward controllers or as gain-scheduling
parameters for feedback controllers. In a broad sense they
represent ”pseudo-equations to make up for a lack of real
equations or perhaps to replace complicated equations with
simpler ones” (Bernstein [2005]). For example, the engine
control systems employ from 5, 500 to 6, 000 LUTs that contain
calibration parameters or define engine control actions under
different operating conditions (C. Bohn and Magnor [2006]).
The most common LUTs are the two-dimensional (2D) tables
that define the values of one dependent (output) variable for
different combinations of two independent (input) variables.
Some of the reasons for the wide acceptance of the LUTs
in the automotive industry are the strong nonlinearity and
multimodal behaviors that can be (in many cases) formalized
only by experimentally measured data under different operating
conditions. The LUT feedforward controllers can be viewed as
inverse vehicle models capturing the entire vehicle operation
under different operating conditions. Such control is designed
to fit normal driver and environment and have to compromise
performance otherwise.

The typical approach to addressing the problem of adaptation of
the LUT based feedforward controllers is to use the difference
between the desired and the actual vehicle performance to
⋆ This work was partially supported by the Spanish Ministry of Science and
Innovation (grant TIN2011-29827-C02-01). This work was also supported by
a URP grant from Ford Motor Company.

realize an adaptation of the LUTs so as to match the two
performances. Because all the LUTs are built for nominal
conditions if the vehicle operates under such conditions, the
vehicle performance with inputs defined by the LUTs outputs
(actuators) usually match the desired performance which is
the input to the LUTs. Any difference of the performance
indicates the deviation from the nominal conditions (driver
and/or environment). It is then possible to consider an algorithm
for the modification of the LUTs to improve performance
matching the desired performance.

This conventional approach of adaptation is not always appli-
cable to the vehicle feedforward LUT controllers because the
driver is not an independent controller but a part of a human-
in-the-loop system. Fig. 1 shows a general view of the driver-
vehicle interaction (Q. Zhao and Filev [2013]). The drivers con-
trol actions that are communicated to the vehicle subsystems
through the Human Machine Interaction (HMI), steering (S),
accelerator (A), and brake (B) pedals are a result of a complex
process driven by two main information flows - a cognitive flow
including the quantitative information readily available to the
driver through various sensors, control and advisory systems
(solid lines) and a subjective flow including visual, perceptual,
emotional, and experiential factors that are processed in the
driver’s mind (broken line). While the quantitative information
flow is available to both the driver and the vehicle systems,
the subjective information flow is generally inaccessible to the
electronic control systems. In addition, the drivers objectives
(target speed, acceleration, torque, etc.) are in general not ex-
plicitly available to the vehicle control systems. Because of
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Fig. 1. Driver-Vehicle Interaction.

Fig. 2. Feedback error learning architecture.

these reasons it is not always easy or even possible to apply
the conventional approach of developing an adaptive strategy
that would adjust the feedforward LUT controllers to the actual
vehicle performance.

In order to address the problem of adaptation of the vehicle
feedforward LUT controllers in this paper we focus our at-
tention on a different adaptation mechanism called the Feed-
back Error Learning (FEL) scheme, proposed by Kawato et al.
[1987], that was originally inspired on biological control sys-
tems which usually are systems with time delays and strong
nonlinearities. Fast and coordinated limb movements cannot
be executed solely under feedback control, since biological
feedback loops are slow and have small gains. Thus, the brain
uses inverse dynamical models in order to calculate necessary
feed-forward commands from desired trajectory information,
see Kawato [1999]. FEL and the inverse model identification
scheme represent an important role for the quick and smooth
motions of the limbs in human motor control. The FEL has the
feature that the learning and control can be performed simulta-
neously.

In most cases, human control actions are based on feedforward
motions as seen in playing tennis or baseball. In fact, it is
well-known that the brain has capability to acquire feedforward
motions by learning through feedback motions. In particular,
driver’s actions for vehicle control are feedforward. Therefore,
it is very effective to introduce feedforward controllers as
a brain-style man-machine interface to assist driver’s control
actions.

A typical schematic of the FEL control system is shown in Fig.
2. It consists of the combination of a feedback controller that
ensures the stability of the system and an adaptive feedforward
controller that improves control performance. An inverse model
as a feedforward controller is learned by FEL so as to minimize
the square error between uff , the output of a feedforward con-
troller and u0, the ideal feedforward control based on an inverse
model. Using a conventional steepest descent method for the
minimization, the parameters of a feedforward controller can

Fig. 3. Nominal vs. actual performance: (a) Aggressive vs.
typical driver, or (b) same LUT controller in different
vehicle conditions.

be sequentially updated in proportion to (uff − u0). However
since the ideal u0 is unknown, this error signal is approximated
with ufb called feedback error in FEL. As it is shown in Fig.
2, u (the control input to a plant) is equal to uff + ufb, and
uff − u0 is replaced with uff − u = ufb. After learning is
complete, i.e., y(t) = r(t), then ufb tends to zero and feedback
control is replaced by feedforward control. Thus, u = uff the
feedforward controller should be serving as the inverse of the
original plant.

In this paper, we have taken the approach to implement FEL
based on Piecewise Bilinear (PB) models recently proposed
in Eciolaza et al. [2013]. In this work we concluded the PB
model represents the most convenient model to implement FEL
with regard to nonlinear modeling, control objective and on-line
learning capability.

FEL scheme has been successfully applied to a variety of con-
trol tasks in the past, as in Jung and Kim [2008], Ruan and Chen
[2011], Nakamura et al. [2011]. However the inverse model
identification was normally implemented via neural networks
(NN), which are not convenient for control purpose. On the
other hand, the successes of FEL attracted attention in control
system community, so Miyamura and Kimura [2002], Miya-
mura Ideta [2006] and AlAli et al. [2006], proved FEL’s stabil-
ity for SISO linear systems with a null relative degree, systems
with time delay and MIMO plants respectively. However, these
analysis were only made for linear systems.

The PB model, proposed in Sugeno [1999], is very effective
for modeling and control of nonlinear systems. It is a fully
parametric model to represent Linear/Nonlinear systems. PB
model has a big number of parameters to tune, but Eciolaza
and Sugeno [2012] showed that the global tuning of PB models
can be made in a very simple and efficient way. PB models are
very convenient for control purpose as they are interpretable
(for instance as LUT), easy to compute and simple to handle.

An example of the potential of using FEL in automotive control
is for learning the driver pattern during vehicle launch or tip-
in, and adjusting vehicle control look-up tables to match the
driver’s demand. Fig. 3 shows the pedal profiles of an aggres-
sive driver, dashed line named Actual performance, compared
to a typical driver, line named Nominal performance, during
vehicle launch.

In this case, the vehicle controller (LUT) serves a feedforward
controller that is the inverted vehicle plant and delivers control
signals based on driver demands. The initial LUT is calibrated
for a normal driver, with a nominal pedal profile. Therefore,
the controller does not deliver the desired vehicle acceleration
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for an aggressive driver with a different pedal profile. It is then
desirable to have an adaptive mechanism to learn the driver’s
behavior and adjust the controller to match his/her behavior.
The difference between the nominal and actual pedal profile
will prompt the correction of the LUTs to deliver the response
the driver wants.

The algorithm adapts the fixed-parameter vehicle control sys-
tem to maintain desired performance when the vehicle is driven
at varying conditions such as, different driver, different environ-
ment, and different vehicle conditions. Such condition changes
will make vehicle performance deviating from nominal.

Sections II introduces the PB model-based FEL scheme, where
both PB models and FEL architecture are explained. Section III
describes the vehicle control application and the implementa-
tion of FEL within it. Section IV presents experimental results.
Section VI concludes the paper with some discussion and final
remarks of the results.

2. PB MODEL-BASED FEL

As is explained in the previous section, Fig. 2 illustrates the
feedback error learning architecture. It consists of an objec-
tive plant to be controlled with a feedback controller and, in
addition, a feedforward controller to be learned by FEL. The
objective of control is to minimize the error e between the
reference signal r and the plant output y.

If the mapping from the motor command u to the sensory
outcome y is given by p : u → y, for a given reference
input r , the ideal control command, which makes the tracking
perfect, is given by the inverse u(t) = p−1(r(t)). However, the
direct inverse modeling, using I/O data, does not necessarily
guarantee achieving a particular target trajectory even when the
training period is sufficiently long Kawato [1990].

In the FEL approach, the feedback controller action is converted
into motor command error and used to learn the feedforward
controller. By FEL, eventually the feedback control is replaced
by feedforward control. The learning algorithm used in FEL
is the same independent of models: NN model, linear model
and our PB model. FEL includes the features of simultaneous
learning and control, making it an adaptive controller.

2.1 PB models

The PB model is a fully parametric model to represent Lin-
ear/Nonlinear systems. It is designed to be easily applicable for
control purpose. In the model, bilinear functions are used to
regionally approximate any given function. The obtained model
is built on piecewise rectangular regions, and each region is
defined by four vertices partitioning the state space. A bilinear
function is a nonlinear function of the form y = a+bx1+cx2+
dx1x2, where any four points in the three dimensional space
are spanned with a bi-affine plane. PB system has a continuous
crossing over the piecewise regions and it is a very good general
approximator for nonlinear functions. A PB model can be ex-
pressed as a LUT which is widely used to realize controllers in
industrial applications, due to its interpretability, visibility and
simplicity. A local error does not trigger a global error and its
interpolation nature generates robust outputs.

If a general case of an affine two-dimensional nonlinear control
system is considered,

Fig. 4. Piecewise region Rστ and interpolation of fi(x).{
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) + g(x1, x2) · r
y = h(x1, x2)

(1)

where r is the input (control, reference or both). For the PB
representation of a state-space equation, a coordinate vector
d(σ, τ) of the state space and a rectangle ℜij must be defined
as,

d(i, j) ≡ (d1(i), d2(j))
T (2)

Rij ≡ [d1(i), d1(i+ 1)]× [d2(j), d2(j + 1)] (3)
where i ∈ (1, . . . , n1) and j ∈ (1, . . . , n2) are integers, and
d1(i) < d1(i + 1), d2(j) < d2(j + 1). The PB models
are formed by matrices of size (n1 × n2), where n1 and n2

represent the number of partitions of dimension x1 and x2

respectively. Each value in the matrix is referred to as a vertex
in the PB model. The operational region of the system is divided
into (n1 − 1 × n2 − 1) piecewise regions that are analyzed
independently.

The PB model was originally derived from a set of fuzzy if-then
rules with singleton consequents Sugeno [1999] such that

if x is W στ , then ẋ is f(σ, τ) (4)
which in a two-dimensional case, x ∈ ℜ2 is a state vector,
Wστ = (wσ

1 (x1), w
τ
2 (x2))

T is a membership function vector,
f(σ, τ) = (f1(σ, τ), f2(σ, τ))

T ∈ ℜ is a singleton consequent
vector, and σ, τ ∈ Z are integers (1 ≤ σ ≤ n1, 1 ≤ τ ≤ n2)
defined by,

σ(x1) = d1(max(i)) where d1(i) ≤ x1, (5)
τ(x2) = d2(max(j)) where d2(j) ≤ x2. (6)

The superscript T denotes transpose operation.

For x ∈ ℜστ , the PB models that approximates (1) is expressed
as, 

f1(x1, x2) =

σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)f1(i, j),

f2(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)f2(i, j),

g(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)g(i, j),

h(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)h(i, j),

(7)

where 
wσ

1 (x1) = 1− α,
wσ+1

1 (x1) = α,
wτ

2 (x2) = 1− β,
wτ+1

2 (x2) = β,

(8)
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and

α =
x1 − d1(σ)

d1(σ + 1)− d1(σ)
(9)

β =
x2 − d2(τ)

d2(τ + 1)− d2(τ)
(10)

in which case wi
1, w

j
2 ∈ [0, 1].

In every region of the PB models, i.e.: f1(x1, x2), the values are
computed through bilinear interpolation of the corresponding
four vertexes as shown in Fig. 4. Note that the approximation
is made by only using the values of a nonlinear function at the
vertexes of Rij’s in (3).

2.2 FEL: On-line Sequential Learning Algorithm

Let us express a plant model for the sake of simplicity as
y = p(u) where y is output and u control input. We also denote
its inverse in a similar manner as u = p−1(y), assuming that a
plant is invertible. We note that an inverse model used in FEL
is usually written as uff = p−1(r). We consider a feedforward
controller expressed as uff = p−1(r, ṙ), where r is a desired
output yd and ṙ is ẏd.

In what follows, we deal with a feedforward controller with two
inputs r, ṙ and single output uff . This feedforward controller
in the FEL scheme is interpreted as a pseudo-inverse model of
an objective plant. Note that a plant is, in general, not invertible
unless its relative degree is 0. We will initially assume that an
objective plant is unknown and its feedback controller is given.
In a realistic nonlinear system control scenario, both plant
identification and controller design could also be performed
through PB models.

Let u0 be an ideal feedforward control based on a pseudo-
inverse model. We design a feedforward controller so that
uff = u0. That is, we learn uff , i.e., identify the feedforward
controller parameters, to minimize the performance index

I =
(uff − u0)

2

2
(11)

where the PB representation of the feedforward controller is,

uff = p−1(r, ṙ) =

σ+1∑
i=σ

τ+1∑
j=τ

wi
1(r)w

j
2(ṙ)V (i, j) (12)

I can be sequentially minimized using the derivative of (11)
∂I

∂V
=

∂uff

∂V
(uff − u0). (13)

However, the error (uff − u0) is not available since u0 is
unknown. Therefore Kawato Kawato et al. [1987] suggested to
use ufb for (uff −u0) since u = ufb+uff . This is why ufb is
called a feedback error playing a role as the error (uff − u0).
FEL is a learning scheme based on a signal ufb, a feedback
error signal.

Then we have
∂I

∂V
=

∂uff

∂V
ufb =

∂p−1(r, ṙ)

∂V
ufb (14)

The sequential learning of each vertex of a region is made using
the following algorithm:

Vnew(i,j) = Vold(i,j) − δ
∂uff

∂V (i, j)
ufb (15)

where δ is an adjustable parameter as a learning rate. This
is the conventional steepest descent algorithm to minimize a
performance index. If learning is successfully completed, i.e.,
Vnew = Vold, then ufb must become zero, and only uff works.

In the case of a two dimensional PB model, if we develop (12),
with (8) (9) and (10), we have:

uff = (1− α)(1− β)V(σ,τ) + (1− α)βV(σ,τ+1)

+α(1− β)V(σ+1,τ) + αβV(σ+1,τ+1)
(16)

(Vnew, Vold) refer to the values of 4 vertexes of a region and
as the function is linear, the calculation of partial derivatives
(∇p−1) is straightforward. The equations of change for each
vertex of a region will be:

Vnew(σ,τ) = Vold(σ,τ) − δ(1− α)(1− β)ufb,
Vnew(σ,τ+1) = Vold(σ,τ+1) − δ(1− α)βufb,
Vnew(σ+1,τ) = Vold(σ+1,τ) − δα(1− β)ufb,

Vnew(σ+1,τ+1) = Vold(σ+1,τ+1) − δαβufb

(17)

How to choose the value of δ will be discussed in the experi-
mentation section.

3. DRIVER PATTERN LEARNING

In this paper we will demonstrate the proposed FEL scheme
for driving pattern learning. For that, a simulink model for
vehicle speed control has been used. The model simulates the
performance of a car for various given speed profiles (i.e.: city
profile, highway profile).

The model has a controller implemented in order to make the
vehicle follow the target speed at each point. The feedback
action of the controller is divided in both pedal and brake
actions, where pedal and brake actions are always positive and
within [0,100].

The full speed profile (Vtarget) is given for the simulations and
at every sample the speed error (Vtarget − Vactual) is known
and the controller tends to minimize the error.

3.1 FEL for Driver Pattern recognition:

In this application of the vehicle speed control system, the
implementation of the FEL algorithm changes with respect to
Eciolaza et al. [2013]. In this case, the FEL diagram is designed
so that both Pedal and Brake actions are learned. For that, an
unification of positive pedal input and negative brake input is
done. The input u to the car takes both positive and negative
values where positive value is realized by pedal and negative by
brake, mechanically. If uff is positive then activate pedal and if
negative then activate brake. Therefore we use pedal (ufbp) and
brake (ufbb ) actions, which are unified as ufb = ufbp − ufbb
theoretically.

Pedal-off is the engine brake and so there is no theoretical
border between pedal-on, pedal-off and braking. In such a way,
pedal action and brake action are continuous and we have
to reflect this fact in FEL for both learning and feedforward
controller. Fig. 5 shows the diagram of how FEL has been
implemented in the application.

The two inputs to the car, pedal and brake, control the acceler-
ation, positive or negative, of the car:

• Pushing pedal increases the acceleration: ++
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Fig. 5. FEL scheme implemented for driving pattern learning.

• Releasing (weakening) pedal relatively decreases the ac-
celeration: +

• Pedal-off is the so-called engine brake to decrease accel-
eration: −

• Brake is to make pedal-off more effective by creating
negative input: −−

So the vehicle input u for acceleration is considered as
u = Pedal −Brake, (18)

where either pedal or brake is used at each time instant and
pedal means positive u and brake means negative u.

Along this consideration, we should formulate as
Pedal = ufbp + uffp , (19)
Brake = ufbb + uffb , (20)
ufb = ufbp − ufbb (21)

Both ufbp and ufbb are used for FEL but ufbb does not con-
tribute in (19), and ufbp does not contribute in (19). And

uffp =

{
0 , if uff < 0

uff , if uff > 0
(22)

uffb =

{
−uff , if uff < 0
0 , if uff > 0

(23)

4. EXPERIMENTATION

The implementation of the FEL scheme in the application
has been done successfully and learned feedforward controller
representing the pseudo-inverse of the plant is stable. By FEL,
feedback control is replaced by feedforward control. The ufbp
and ufbb actions are minimized and when learning is complete
they tend to zero.

Between the different parameters that must be tuned, the ade-
quate number of vertexes and regions must be defined. In this
case these values have been selected depending on different
speed profiles available for the simulations.

On the other hand, the update rate (Kupdt) of the feedforward
controller must be defined. This value should depend on the
sample rate of the system and the number of vertexes of the
system. In this case, as the sample rate (sr) has been variable in
our simulation set-up, we chose Kupdt = 0.01× sr.

Finally, as the analyzed system has a time-delay, we have used a
pure time lag of τ = 1.4 seconds for the implementation of the
FEL scheme. Take into account that the delayed signal is only

Fig. 6. Simulation of maneuver with no FEL.

used for the learning of the feedforward controller. Correction
action ufb(t) corresponds to input references (r(t−τ), rdot(t−
τ)). The feedforward controller will anticipate the time delay
(τ ) of the system.

Note that the origin (Vtarget = 0, ACCtarget = 0) vertex has
been set to zero.

The performance of the implemented FEL scheme is repre-
sented in figures (Fig. 6, Fig. 7, Fig. 8) where the following
parameters are shown:

(a) Vehicle Speed where the desired speed (Vtarget) in blue
and the real vehicle speed (Vactual) in red.

(b) Pedal feedback action (ufbp) in blue and the Brake feed-
back action (ufbb ) in red.

(c) Feedforward controller action (uff ) in blue, the total
Pedal action (Pedal = ufbp +uffp) in green and the total
Brake action (Brake = ufbb + uffb ) in red.

Fig. 6 shows an example of two consecutive acceleration ma-
neuvers of the vehicle with no FEL scheme implementation.
When Vactual does not meet the Vtarget, then pedal is pushed
to accelerate the car. The car has its inertia and pedal is released
when car is accelerating. The error between desired and actual
vehicle speeds is not big, and the total pedal and brake actions
are determined by the feedback controller.

Fig. 7 shows an example of the same two consecutive ac-
celerations maneuvers of the vehicle working with the FEL
scheme. The feedfoward model is initialized as a null matrix
and it can be observed, while learning, how the total pedal and
brake actions eventually are shifting to be determined by the
feedforward controller.

Fig. 8 shows the vehicle working with the FEL scheme. In this
case the feedfoward model is already learned. The total pedal
and brake actions are mainly determined by the feedforward
controller, and the feedback actions are minimized.

Table I shows the feedforward controller learned in the simula-
tion presented in Fig. 8.

5. CONCLUSION

In this paper we have investigated the application of PB model
based FEL for intelligent vehicle systems environment. A
method to make an on-line sequential learning of a feedforward
controller as a PB model has been used. The FEL scheme
controls a system by adapting the pseudo-inverse piecewise
bilinear model based on an output of a feedback controller, and
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Fig. 7. Simulation of maneuver with FEL. Initialized to null and
while learning.

Fig. 8. Simulation of maneuver with FEL. Inverse model is
learned already.

Table 1. Learned feedforward controller.

ẏd \ yd d1=0 d1=10 20 30 40 50 60
d2= -4 -6.3 -14.6 -10.2 -2.4 0 0 0
d2= -3 -18.7 -19.4 -13.3 -15.7 -0.1 0 0
d2= -2 -0.2 1.4 -2.9 -9.8 -3.9 -0.3 0.1
d2= -1 -0.1 1.2 -6.4 -7 -6 -2.3 -0.7
d2= -0.5 -0.01 4.1 -5.6 -1.5 0.3 -1.8 1.3
d2= 0 0 14.4 4.7 8.5 8.8 13.6 8.1
d2= 0.5 13.4 16.2 11.1 15.7 7.5 44.6 9.1
d2= 1 26.8 11.5 11.9 11.4 26 10.6 3.3
d2= 2 18.6 2.5 19.1 25.7 25 1.6 0
d2= 3 0.9 17.7 22.2 23.2 1.9 0 0
d2= 4 -8.8 1.3 5.9 0.01 -0.1 0 0

adjusting operation of an actuator in response to the learned
pseudo-inverse model. The lookup table provides a near exact
inverse model of the plant under control when output of the
feedback controller reaches zero. Consequently, an actuator or
plant command output from the lookup table may cause the
plant to follow a desired trajectory that was a basis for indexing
data in the lookup table.

In particular, the proposed FEL scheme has been used for
driving pattern learning, where learning of both the Pedal and
Brake actions has been the main goal. The FEL implementation
has been done successfully, and once the learning is completed
the feedback control is minimized and partially replaced by the
feedforward controller.

In future works, the proposed FEL method will potentially be
used to address some automotive control applications. On the
one hand, the target will be to improve the control performance
of traditional feedback loops. On the other hand, the adaptation
of the LUTs controlling the car will be made, in order to
match the desired vehicle performance and the real vehicle
performance.
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