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Abstract:
In this paper, we deal with the stabilizability of a scalar plant through a noisy discrete channel.
Our scheme can be regarded as a variation of the controllers based on dynamic quantizers
introduced in [3] and [4], but our analysis based on Lyapunov function allows us to take
into consideration more general discrete memoryless channels. Given a plant and a discrete
memoryless channel we will provide, using control Lyapunov function ideas, a condition for the
existence of an encoder/controller pair with a priori fixed memory that achieves stability. A
construction procedure is also provided.

1. INTRODUCTION

In the last decade, substantial research has been devoted to
the investigation of the interplay between communication
and control when the communication between the plant
and controller is not ideal.

As stressed in [1], for this framework the most fundamental
question is: what is the minimal performance level of the
communication link that allows the controller to somehow
stabilize the plant? The answer to this question depends
heavily on the figure-of-merit for the communication link
and on the desired stability notion.

The earliest works in this field involved the assumption
of a finite quantizer as a model for the communication
link. In [7], the authors showed that a quantized control
scheme for a noiseless scalar plant with parameter |λ| > 1
can achieve practical stability if and only if the rate of
the quantizer (Shannon capacity) exceeds log2 |λ|, while [2]
constructively shows that the coarsest quantizer to achieve
the same stability is logarithmic. By adding memory
to the encoder/decoder scheme, it is possible to design
a quantized-based control scheme capable of achieving
asymptotic stability, as seen in [3].

When the communication link is noisy, the stabilization
problem becomes much more complicated. Although the
inequality C > H, with C as the Shannon capacity of the
channel and H =

∑
|λi|>1 log2 |λi| the intrinsic entropy

rate of the plant, remains necessary and sufficient for
almost sure asymptotic stability of a deterministic plant
[5] [6], it does not hold true for other stability objectives. If
the object is to achieve some moment stability, as naturally
arises in situations when the plant is intrinsically noisy,
then [8] shows that the Anytime and not the Shannon
capacity is the correct figure-of-merit.

In this paper we will focus on almost sure asymptotic
stabilization of a deterministic first order plant through
a (noisy) discrete memoryless channel. In this context,

? This was supported by AFOSR, grant # FA9550-09-1-0420.

the work in [6] focused more on the fundamental limit
to achieve stability. The answer was that almost sure
asymptotic stability for a general multidimensional plant
is achievable via a discrete memoryless channel if and
only if 1 C > H and a construction of a finite memory
controller was provided. One of the features of the analysis
in [6] is that, in proving the sufficiency part, the proposed
control scheme relies on codewords that are in general
difficult to construct and requires an amount of memory
that grows as the difference C − H tends to zero thus
complicating any practical implementation. Our approach,
on the other end, aims at achieving almost sure asymp-
totic stability with an encoder/controller pair possessing
a fixed a priori memory size. This restriction ensures that,
once the scheme parameters have been determined, its
implementation on any modern digital platform can be
done easily. Moreover, in contrast to the usual analysis
of dynamic quantizers algorithms [3] [4] where Lyapunov
functions are only partially exploited to prove stability,
our analysis fully relies on a standard Lyapunov approach
that can potentially be used to assess the performances
of a given controller. Based on this analysis, rather than
focusing on the fundamental capacity limit to achieve
stability, we will provide a sufficient condition under which
the parameters defining our model can be designed and
provide an algorithm to compute them that exhibits linear
complexity in |λ|.
The outline of the paper is as follows: in section 2, we define
the structure of the control scheme and communication
link, we state precisely our design goal and we show
how the analysis can be performed on a simpler two
dimensional system. In section 3, we show how our scheme
always achieves stability when the communication link is
supposed to be ideal while in section 4 we extend the same
analysis technique to the finite quantizer case. In section
5, we address the fully noisy case and present the main
result of the paper in theorem 9. Finally, conclusions and
ideas for further extensions are presented in section 6.

1 The necessary part holds with equality
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Fig. 1. The proposed control scheme.

2. MODEL DEFINITION

Our goal is to stabilize a discrete–time first order linear
system where the measurements from the plant are ob-
tained through a discrete memoryless channel.

The dynamic of the plant is given by

z(t+ 1) = λz(t) + u(t),

where u, z ∈ R, and λ is a real parameter satisfying
|λ| > 1.

The channel is completely described by the input alphabet
S = {s1, . . . , sm}, the output alphabet V = {v1, . . . , vn},
and an n by m matrix W whose entries wij describe the
conditional probabilities according to:

P(v = vi|s = sj) = wij .

In reference to figure 1, we adopted a feedback control
scheme with an encoder and a controller. The encoder,
placed between the plant and the channel, measures the
state of the plant and codifies it into symbols drawn from
S.

Its dynamic is described by a first order linear equation
and a non–linear function taking values in S:{

η(t+ 1) = az(t)
s(t) = H (z(t), η(t))

, (1)

where η(t) ∈ R is the state of the encoder and a ∈ R is
a parameter to be determined. The coding function H is
completely arbitrary and one of the subjects of our design
procedure.

The controller receives the symbols from the channel and
drives the plant by shaping the signal u. Its dynamic is
described by two piecewise linear equations describing the
evolution of the internal state and the control signal:{

ξ(t+ 1) = ϕ(v(t))ξ(t)
u(t) = −ϕ(v(t))ξ(t)

, (2)

where ξ(t) ∈ R is the state of the controller and ϕ is a
function from V to R defined by:

ϕ(v1) = ϕ1 . . . ϕ(vn) = ϕn

with ϕi real parameters to be determined.

Remark 1. It is clear from the scheme in figure 1 that
a, ϕ1, . . . ϕn as well as the initial condition ξ(0) must be
all non zero, otherwise the lack of feedback from the plant
to the controller would prevent any reasonable concept
of stability to be guaranteed. We also point out that our
choice for the dynamic of the controller is inspired by the
one used in [3] and [4].

Now that the components of our system have been ac-
curately defined, we can precisely state what we mean
by stability. In this paper we will deal exclusively with
almost sure stability and, in particular, we aim to design
the parameters of the control scheme so that the following
is true:

P
[

lim
t→∞

(z, η, ξ)(t) = 0
]

= 1 ∀z(0) ∈ R. (3)

In the remainder of this section we will show how the
analysis can be reduced to the study of a suitable two
dimensional system. The intuition behind this feature is
that, since the plant is noiseless, the encoder can use
its extra memory to compute the input to the plant
and, ultimately, the state of the controller. With this
information available, the encoder then chooses the next
channel input to try to compensate for errors introduced
by the channel. The details of this reduction are contained
in the next proposition

Proposition 2. Assume there exist a map Q : R2 7→ S
and n + 1 real parameters b, h1 . . . hn such that the two
dimensional Markov process described by the equation[
x
y

]
(t+ 1)=

√
|λ| sgn(λ)

 hi 0
b

|hi|
1

|hi|

[x
y

]
(t) w.p. wi,Q(x,y)

(4)
satisfies P [limt→∞(x, y)(t) = 0] = 1 ∀(x0, y0) ∈ R2.

Then there exists an invertible transformation
T : R2 7→ R2 such that the map H = Q ◦ T−1 and the
sets of parameters a = λb, ϕi = sgn(λhi)|λ|h2

i guarantee
condition (3).

Proof. The dynamic of the scheme shown in figure 1 is
described by the equation[

z
η
ξ

]
(t+ 1)=

[
λ 0 −ϕi
a 0 0
0 0 ϕi

][
z
η
ξ

]
(t) = Ai

[
z
η
ξ

]
(t),

where the matrix Ai, with a slight abuse of notation, is
selected with probability P(vi|H(z, η)) = wi,H(z,η).

Let us start by noticing that, since

az+ − λη+ + aξ+ = a(λz − ϕiξ)− λaz + aϕiξ = 0 ∀ϕi,
after one step the state will always lie in the unique
attractive invariant subspace described by

az − λη + aξ = 0,

where the dynamic of ξ and η is given by[
ξ
η

]
(t+ 1)=

[
ϕi 0
−a λ

][
ξ
η

]
(t) w.p. wi,H(ξ,η). (5)

If we now perform the following nonlinear transformation:

T :

{
ξ = − sgn(x)x2

η = y|x| (6)
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and define b, h1, . . . , hn such that:

a = λb sgn(ϕi)
√
|ϕi| = sgn(λ)

√
|λ|hi,

the dynamic becomes:[
x
y

]
(t+1)=

√
|λ| sgn(λ)

 hi 0
b

|hi|
1

|hi|

[x
y

]
(t)

w.p.
wi,H◦T (x,y)

.

Since (x, y) → 0 implies (z, η, ξ) → 0, the proof is
complete as long as T is invertible. The invertibility of T
in (6) is guaranteed because, given the conditions stressed
in remark 1, we have x(0), hi 6= 0 ∀i thus ensuring that x
is never 0. Notice that, since the inverse transformation is
unbounded in any neighbourhood of the origin, this map
does not preserve stability.

Remark 3. The presence of the eigenvalue λ in equation
5 clearly shows that the original dynamic cannot be sta-
bilized in the canonical Lyapunov sense, thus making in-
conclusive every approach based on storage functions. The
transformation in (6) circumvents this technical difficulty
by transforming the system into one for which a standard
Lyapunov-function based approach has proven to be suc-
cessful.

While the main result regarding the almost sure stability
of our closed loop will be presented in section 5 (cfr.
theorem 9), each of the following sections will present
intermediate results valid under increasingly realistic as-
sumptions on the communication link. Regardless of the
particular model for the channel, we will always show
that it is possible to design the parameters of (7) so that
the dynamic is (stochastically) quadratically stable. In
particular, given ρ ∈ (0, |λ|) our aim is to design our
control scheme such that a quadratic Lyapunov function
V satisfying the condition

E[V (x+, y+)|(x, y)] ≤ ρV (x, y)

can be provided. To this end, it is convenient to define a
performance parameter γ as the ratio between the required
closed loop performances and the open loop instability
level,

γ =
ρ

|λ| ∈ (0, 1),

and scale the control signal hi via ri =
√
γhi, thus

obtaining the dynamic:[
x
y

]
(t+ 1)=

√
|λ| sgn(λ)


ri√
γ

0

b
√
γ

|ri|

√
γ

|ri|

[xy
]
(t) w.p. wi,Q(x,y).

(7)

Definition 4. Given γ = ρ
|λ| ∈ (0, 1), we will say that

the set of parameters b, h1 . . . hn and the map Q achieve
performance parameter γ for the dynamic in (7), if there
exists a quadratic Lyapunov function V such that

E[V (x+, y+)|(x, y)] ≤ ρV (x, y). (8)

3. IDEAL CHANNEL ANALYSIS

In this section we will show how any performance param-
eter γ can always be obtained for the system in (7) when
the channel is assumed to be noiseless and with infinite
capacity. Even though this model for the communication
link is far from the one we are interested in, by studying

this simple scenario, we will gain insight on how to tackle
more realistic formulations.

When the channel is assumed to be noiseless, the value ri
is a deterministic function of the (x, y) state. Moreover,
due to the infinite capacity assumption, it is no longer
quantized and can assume any value in R so that the
dynamic in (7) can be thought as[

x
y

]
(t+ 1)=

√
|λ| sgn(λ)


r√
γ

0

b
√
γ

|r|

√
γ

|r|

[xy
]
(t). (9)

where r can be arbitrarily designed as a real function of x
and y.

The main result for this section is contained in the next
proposition.

Proposition 5. For any fixed γ ∈ (0, 1), there exists b ∈ R
and a feedback control law r = Ψ(x, y) such that the
system in (9) achieves the performance parameter γ.

Proof. Consider the quadratic Lyapunov function

V (x, y) = [x y ]P

[
x
y

]
P =

[
α 1
1 1

]
,

where α > 1 is a parameter to be designed. Using V as a
control Lyapunov function, the inequality in (8) yields:

|λ|

[x y ]


r√
γ

b
√
γ

|r|
0

√
γ

|r|

[α 1
1 1

]
r√
γ

0

b
√
γ

|r|

√
γ

|r|

[xy
]

[x y ]

[
α 1
1 1

] [
x
y

] ≤ ρ

m
α
γ r

2 + γ
r2 (b+ ν)2 + 2 sgn(r)(b+ ν)

α+ 2ν + ν2
≤ γ, (10)

where we defined ν as the ratio between y and x.

By using the value of r that minimizes the left hand side
of equation (10):

r∗ = − sgn(b+ ν)α−
1
4

√
γ|b+ ν|, (11)

the Lyapunov inequality becomes:

2(
√
α− 1)|b+ ν|

α+ 2ν + ν2
≤ γ. (12)

By replacing the left hand side of equation (12) with its
maximum value over ν we obtain the inequality√

α− 1√
b2 − 2b+ α− |b− 1|

≤ γ,

which can be further simplified if we optimize over the
parameter b via

b∗ = argminb∈R

√
α− 1√

b2 − 2b+ α− |b− 1|
= 1,

thus obtaining the final inequality:
√
α− 1√
α− 1

=

√√
α− 1√
α+ 1

≤ γ. (13)

Since the inequality in (13) can be satisfied ∀ γ by selecting

α ∈
(

1, (1+γ2)2

(1−γ2)2

]
, the proof is complete.
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4. FINITE QUANTIZER ANALYSIS

In this section we will assume that the communication link
between the plant and the controller is a noiseless finite
quantizer. Under this assumption, the original dynamic in
(7) does not contain any stochastic component and reduces
to:[
x
y

]
(t+ 1)=

√
|λ| sgn(λ)


ri√
γ

0

b
√
γ

|ri|

√
γ

|ri|

[xy
]
(t) ri = Q(x, y),

(14)
where Q assumes only a finite set of values. As in the
previous section, we will show that, for any performance
parameter γ, there exists b and a finite–valued function
Q(x, y) achieving performance γ.

The approach is an extension of the one presented in the
previous section. In particular we will select a particular
Lyapunov function and design the parameters of the
control scheme so that the Lyapunov inequality is satisfied.
Due to the increasing complexity, we will assume:

b = 1, V (x, y) = [x y ]P

[
x
y

]
P =

 1 + γ4

(1− γ2)2
1

1 1

 ,
(15)

instead of optimizing over the values of b and P as we did
in the previous section. The particular choices in (15) are
motivated by the fact that b = 1 has been proven optimal
in the ideal case and we expect it to be asymptotically
optimal when γ → 0, while P corresponds to a choice of α
in the middle 2 of the interval of values satisfying (13).

Based on the assumptions in (15), the Lyapunov inequality
in (10), which is obtained when the channel is ideal,
becomes:

Fγ(ν, r) =
1 + γ4

γ(1− γ2)2
r2 +

γ

r2
(1 + ν)2 + 2 sgn(r)(1 + ν)

− γ
(

1 + γ4

(1− γ2)2
+ 2ν + ν2

)
≤ 0. (16)

If we can show that the set

Sγ =
{

(ν, r) ∈ R2|Fγ(ν, r) ≤ 0
}

contains the graph of a function r = Ψ(ν) assuming only a
finite set of values, then the feedback loop ri = Q(x, y) =
Ψ(y/x) would guarantee the required performance for the
dynamic in (14). This is the basis for the next proposition.

Proposition 6. For any fixed γ ∈ (0, 1) the set Sγ is
symmetric around the point (−1, 0) and its restriction to
the region r ≥ 0 can be described as

Sγ ∩ {r ≥ 0} = {r(ν) ≤ r ≤ r̄(ν), ν ≤ νL ∨ ν ≥ νH} ,
(17)

where

r(ν) =

√
µ−

√
µ2 − γ2(1−γ2)2

1+γ4 (1 + ν)2,

r̄(ν) =

√
µ+

√
µ2 − γ2(1−γ2)2

1+γ4 (1 + ν)2,

µ = γ2

2 + γ(1−γ2)2

1+γ4

(
γ
2 ν

2 + (γ − 1)ν − 1
)
,

2 This choice also turns out to be optimal for γ → 0.

νL = −1 +

√
1+γ4+1−γ2

γ(1−γ2) −
√(√

1+γ4+1−γ2

γ(1−γ2)

)2

− 2γ2

(1−γ2)2 ,

νH = −1 +

√
1+γ4+1−γ2

γ(1−γ2) +

√(√
1+γ4+1−γ2

γ(1−γ2)

)2

− 2γ2

(1−γ2)2 .

Furthermore Sγ will always contain the graph of a finite-
valued function r = Ψ(ν), thus proving that a performance
level γ can always be achieved with a finite quantizer.

Proof. The symmetry around the point (−1, 0) is easily
proved since Fγ(−ν − 2,−r) = Fγ(ν, r). When restricted
to the positive r half plane, the Lyapunov inequality in
(16) becomes

1 + γ4

γ(1−γ2)2
r2+

γ

r2
(1+ν)2+2(1+ν)−γ

(
1 + γ4

(1−γ2)2
+2ν+ν2

)
≤0,

which is substantially a polynomial equation of degree two
in r whose roots are given by r(ν) ≤ r̄(ν) and whose
discriminant is non-negative only when ν ≤ νL ∨ ν ≥ νH .
This proves the form of S restricted to r ≥ 0.

Finally, a study of r(ν) and r̄(ν) aided by a sum of square
decomposition software reveals the key properties:

• limν→−∞ r(ν) = 1, limν→−∞ r̄(ν) = +∞,
• νL > −1,

• (r̄2 − r2)2 ≥ γ8

20(1+γ4)2 > 0 ∀ν ≤ −1,

from which we conclude the existence of a finite-valued
function r = Ψ(ν) whose graph is contained in S for
r <= −1 and the same holds true ∀r once the symmetry
of Sγ around (−1, 0) is exploited.

An example of the set Sγ together with the functions r
and r̄ is presented in figure 2.

Once the existence of a finite-valued function achieving
performance γ is established, the next question is how to
properly design it. Ideally one would like to provide the
map that utilizes the smallest possible number of levels
but this seems to be a substantially difficult problem.
Instead, we provide a greedy algorithm that iteratively
constructs a possible finite-valued function r = Ψ(ν)
achieving performance γ. The procedure is explained in
Algorithm 1 and its correctness relies on the fact that both
r and r̄ are monotone decreasing for ν ≤ −1, thus allowing
us to fill that region by starting at ν = −1 and creating
steps backward toward −∞. By virtue of the symmetry of
Sγ , the same procedure can also fill the region ν ≥ −1.

Algorithm 1 Design a finite partition {Ii} of R and a set
of values ri such that the map r = Ψ(ν) = ri if ν ∈ Ii
achieves performance γ ∈ (0, 1)

n⇐ 1; ν ⇐ −1; r ⇐ r̄(−1) =
√

2γ2√
1+γ4

= r0

while r < 1 do
ν+ ⇐ r−1(r)
I−n ⇐ (ν+, ν]; r−n ⇐ r
In ⇐ (−2− ν, −2− ν+]; rn ⇐ −r
r ⇐ r̄(ν+); ν ⇐ ν+; n⇐ n+ 1

end while
I−n ⇐ (−∞, ν]; r−n ⇐ 1
In ⇐ (−2− ν, +∞); rn ⇐ −1
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Fig. 2. The set Sγ , r, r̄ and the finite-valued function
r = Ψ(ν) constructed using the proposed algorithm
for γ = 0.75.

The number of levels generated by Algorithm 1 is given
by Ng = 2(N + 1) where N is the number of times
the algorithm executes the while cycle and its execution
always reaches the stopping condition because of the above
mentioned properties of r and r̄. An example of the
map r = Ψ(ν) obtained applying the proposed greedy
algorithm is shown in figure 2.

The complexity of our algorithm is clearly proportional to
the number of levels generated Ng. The next proposition
shows that this number can always be estimated and grows
at most linearly with 1/γ.

Proposition 7. The number of quantization levels Ng, gen-
erated by Algorithm 1 for a given performance parameter
γ, is bounded by the following function:

N̂=


4+2

⌈
atan2((1−2q−pq)

√
∆; p2q+qp+4q+p−2q2−1)

atan
√

∆
p+1

⌉
γ≤4

5

4 + 2

 log σ2

σ1

(σ1−k)(q−σ1)
(σ2−k)(q−σ2)

log σ2

σ1

 γ>
4

5

,

(18)

where p =
−γ2− 3

2γ+1√
γ4+1

, q =
√

2γ2√
γ4+1

, ∆ = 4q − (p− 1)2,

k =
√

2γ2

√
2γ2+
√

1+γ4

(
1−γ2√
1+γ4

+

√
2
√

2γ2√
1+γ4

− 2γ2(γ2+1)
γ4+1

)
, σ1 =

1−
√

1−4k
2 and σ2 = 1+

√
1−4k
2 .

Furthermore

lim
γ→0+

γN̂(γ)=
(128
√

2+72)
√

16
√

2−9

(
π−atan 1

3

√
16
√

2−9

)
431 ≈4.9,

(19)
thus proving that the required number of levels grows
linearly with γ−1.

Proof. See Appendix A.

Remark 8. We would like to mention that, while there
is no performance level γ that can be achieved using a
two level quantizer, a three level quantizer is capable of
achieving some performance level but requires an ad-hoc
design different from the procedure presented in Algorithm
1. Finally, the number of levels required can be sensibly
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Fig. 3. The minimum number of levels Ng required by
our proposed greedy algorithm and the analytic upper
bound N̂ as a function of the required performances.

lowered close to the theoretical bound of 1/γ if we use a
less conservative and more cumbersome analysis approach.
Some of these ideas and results will be presented in an
upcoming paper.

5. NOISY CHANNEL ANALYSIS

In this section we present the main result of our paper.
The channel is now assumed to be a discrete memoryless
channel with input alphabet S, output alphabet V and
conditional probability matrix W . We will characterize a
set of such channels for which the existence of a set of
parameters b, r1, . . . , rn and a map Q guaranteeing almost
sure asymptotic stability of (7) can be proved.

Theorem 9. Consider a discrete memoryless channel of
cardinality n = |S| = |V| ≥ 4 and conditional probability
matrix W . Define the maximum probability of error as

δe = max
i=1,...n

1− wii,

and

γ∗ = max

{
N̂−1(n),

(
3δe

1− δe

)1/4
}
,

where N̂−1(n)=inf{γ | N̂(γ)≤n} and N̂ is defined in (18).

If

γ∗(1− δe) +
1

(γ∗)3
δe <

1

|λ| ,

then the dynamic in (7), and hence our original feedback
loop, can be almost surely asymptotically stabilized by
the controller designed using Algorithm 1 with parameter
γ = γ∗.

Proof. The proof is based on the dynamic obtained when
the parameters are designed according to Algorithm 1 for
some performance level γ. Utilizing the same quadratic
Lyapunov function with matrix P as in (15), we would
like to prove the inequality 3

E[V (x+, y+)|(x, y)] ≤ ρ̄V (x, y), (20)

for a given ρ̄.

3 A function V satisfying (20) is called a super-martingale and it
guarantees almost sure stability as shown in [10]
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Independently of the current state, we know that when
the channel does not make a transmission error, the
parameters are designed so that

E[V (x+, y+)|(x, y), no error] ≤ ρV (x, y). (21)

When there is a communication error, since we cannot
predict which symbol will be received, we can upper bound
the ratio V +/V via the following:

V +

V
≤ max
|r|∈[r0, 1]

(x, y)∈R2

|λ|

[x y ]


r√
γ

√
γ

|r|
0

√
γ

|r|

P

r√
γ

0
√
γ

|r|

√
γ

|r|

[xy
]

[x y ]P

[
x
y

]
= |λ|1 + 3γ4 +

√
9γ8 − 16γ6 + 6γ4 + 1

4γ3

≤ |λ|
γ3
. (22)

Combining the inequalities (21) and (22) with the known
bound on the probability of a transmission error, we
obtain:

E[V (x+, y+)|(x, y)] ≤
[
(1− δe)ρ+ δe

|λ|
γ3

]
V (x, y).

To enforce the inequality in (20), it is then sufficient that

(1− δe)ρ+ δe
|λ|
γ3 ≤ ρ̄, or, equivalently:

(1− δe)γ + δe
1

γ3
≤ γ̄. (23)

Since γ can be chosen arbitrarily given that Ng(γ) ≤
N̂(γ) ≤ n and the constrained minimum of the left hand
side of (23) is achieved for γ = γ∗, the thesis is proven.

Remark 10. When the proposed algorithm generate less
control signals ri than the actual number of symbols, the
result still holds provided that the remaining levels are
selected in the set [−1, −r0]∪ [r0, 1]. Along the same idea,
theorem 9 can be also applied to channels with |S| 6= |V|
provided that the extra levels are generated in the same
set.

Remark 11. Since theorem 9 relies on the noiseless de-
sign for the controller parameters, the result is over-
conservative. In particular we observe that the bottleneck
is given by the probability of error since achieving high
performance parameters (|λ| → ∞) requires that δe → 0.

Example 12. Consider a plant with parameter λ = −1.1
and a discrete memoryless channel described by the con-
ditional probability matrix:

W =

 0.98 0.01 0.04 0
0 0.95 0 0.03

0.01 0.03 0.96 0.02
0.01 0.01 0 0.95


In this case we have n = 4, δe = 0.05, N̂−1(4) ≈ 0.865 and
γ∗ = 0.865. Since

γ∗(1− δe) +
1

(γ∗)3
δe = 0.899 <

1

|λ| = 0.909,

it is possible to design, using our proposed algorithm, a
set of parameters such that the closed loop in figure 1
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Fig. 4. One possible trajectory obtained for the designed
closed loop with initial condition (z(0), η(0), ξ(0)) =
(2, 2, 1)

.

is almost surely asymptotically stable. In this case the pa-
rameters obtained are: a = −1.1, ϕ1 = −1.27, ϕ2 = −0.91,
ϕ3 = 0.91, ϕ4 = 1.27, while the map H is given by:

H = s1 if η
z−η ≤ −6.87; H = s2 if − 6.87 < η

z−η ≤ −1;

H = s3 if − 1 < η
z−η ≤ 4.87; H = s4 if η

z−η ≥ 4.87.

An example of a possible trajectory obtained with the
designed controller is shown in figure 4. We point out that
the initial overshoot is not due to a communication error
but to the fact that the system is not formally stable but
only convergent.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a new scheme to asymptotically
stabilize a one dimensional plant when the measurements
are collected via a discrete memoryless channel. The nov-
elty of our scheme lies in the a priori restriction on the
amount of memory required, which is kept independent
of the channel and the plant characteristics. Moreover
the analysis completely based on a Lyapunov function
has never be proposed for the type of controllers under
investigation. We characterized a set of channels for which
we can guarantee stabilizability through our scheme and
show how its parameters can be designed via an algorithm
of linear complexity in the level of instability of the plant.

We pointed out that the current design relies on the
noiseless solution even when the channel makes mistakes.
In this case, however, a better design technique capable of
capturing the effect of the noise needs to be investigated.

We are also currently trying to extend these results to
multidimensional SISO plants where observability issues
arise.
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Appendix A. PROOF OF THE BOUND ON NG

The number of levels required when using the proposed
greedy algorithm is given by 2(N + 1) where N is the
number of iterations the algorithm performs before reach-
ing the stopping condition.

From the description of the algorithm and the definitions
of r and r̄, it is straightforward to verify that the value
ri selected during a generic iteration is a function of the
value ri−1 selected the previous iteration via an update
map ri = fγ(ri−1) where fγ is given by:

fγ(r) =
r 1−γ2√

1+γ4
+
√
r4 − 2γ2(γ2+1)

γ4+1 r2 + 2γ4

γ4+1

1− r2
.

The total number of iterations can then be expressed as
the smallest integer N such that

f (N)
γ (r0) ≥ 1, r0 =

√
2γ2√
γ4 + 1

.

Since the iterations of fγ are prohibitive to handle, an
upper bound on N can be obtained by providing another
map gγ such that gγ ≤ fγ ∀r ∈ [0, 1] and then finding

the minimum N such that g
(N)
γ (r0) ≥ 1. We will bound fγ

with two different lower bounds depending on γ.

Let us first consider the case γ ∈
(
0, 4

5

]
and the map

gγ(r) =

−γ2− 3
2γ+1√

γ4+1
r +

√
2γ2√
γ4+1

1− r =
pr + q

1− r . (A.1)

After some basic algebraic manipulation, the irrational
inequality fγ ≥ gγ can be reduced to checking the non-
negativity of the polynomial

P (r, γ) = −
(

3γ2 +
γ

4
− 3
)
r3 − 4γ3 + 3

√
2γ2

+

√
2

4
(γ + 2)(3

√
2− 4γ)(1− 2γ)r2

+
2−
√

2

8
γ
(

48(1 +
√

2)γ−16γ2−50−33
√

2
)
r

in the region (r, γ) ∈ [0, 1]× [0, 4/5]. Since this condition
is easily verified, for example via sum of squares decom-
position, the proposed gγ is indeed a lower bound for
fγ ∀γ ∈ (0, 4/5].

The particularly easy form of gγ in (A.1) allows us to write
a closed form for its N-th iteration. In particular, keeping
in mind that ∆ = 4q − (p− 1)2 ≥ 0, we obtain

g
(N+1)
γ (r) =

[
p cosNθ+ p2−p−2q√

∆
sinNθ

]
r+q
[
cosNθ+ p+1√

∆
sinNθ

]
−
[
cosNθ+ p+1√

∆
sinNθ

]
r+
[
cosNθ+ 1−p−2q√

∆
sinNθ

] ,
where θ = atan

√
∆

p+1 .

Finally, after noticing that r0 = q, in this case the

inequality g
(N)
γ (r0) ≥ 1 leads to

(pq+2q−1)
√
∆ cos(N−1)θ+(q(p2+p+4)+p−2q2−1)sin(N−1)θ≥0,

which is satisfied when

(N−1)θ≥atan2
(
(1−2q−pq)

√
∆; q(p2+p+4)+p−2q2−1

)
,

thus proving the proposed bound when γ ∈ (0, 4/5].

In the case γ ∈ (4/5, 1), an easy lower bound valid for
r ∈ (r0, 1] can be obtained as follows:

fγ(r) =
r

r + 1

1−γ2√
1+γ4

+
√
r2 + 2γ4

r2(1+γ4) −
2γ2(γ2+1)
γ4+1

1− r

≥ r0

r0 + 1

1−γ2√
1+γ4

+

√
2
√

2γ2√
1+γ4

− 2γ2(γ2+1)
γ4+1

1− r
=

k

1− r = gγ(r).

Once again, the simple structure of gγ allows us to com-
pute its N-th iteration. After some basic calculations we
obtained:

g(N)
γ (r) =

k

σ1

(1− (σ2/σ1)N−1) r
σ1

+ ((σ2/σ1)N − 1)

(1− (σ2/σ1)N ) r
σ1

+ ((σ2/σ1)N+1 − 1)
,

and the inequality g
(N)
γ (r0) ≥ 1 can easily be reduced to

N ≥
log σ2

σ1

(σ1−k)(r0−σ1)
(σ2−k)(r0−σ2)

log σ2

σ1

,

thus proving the proposed bound for γ ∈ (4/5, 1).
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