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Abstract: Reinforcement learning (RL) is an active research area with applications in many
fields. RL can be used to learn control strategies for nonlinear dynamic systems, without a
mathematical model of the system being required. An essential element in RL is the reward
function, which shows resemblance to the cost function in optimal control. Analogous to linear
quadratic (LQ) control, a quadratic reward function has been applied in RL. However, there is no
analysis or motivation in the literature, other than the parallel to LQ control. This paper shows
that the use of a quadratic reward function in on-line RL may lead to counter-intuitive results in
terms of a large steady-state error. Although the RL controller learns well, the final performance
is not acceptable from a control-theoretic point of view. The reasons for this discrepancy are
analyzed and the results are compared with non-quadratic functions (absolute value and square
root) using a model learning actor-critic with local linear regression. One of the conclusions is
that the absolute-value reward function reduces the steady-state error considerably, while the
learning time is slightly longer than with the quadratic reward.

Keywords: reinforcement learning, reward function, linear quadratic control, control
performance measure, steady-state error

1. INTRODUCTION

Reinforcement learning (RL) is an active research area
in artificial intelligence, machine learning and optimal
control. It has applications to real-world problems ranging
from robotics to economics and medicine, as shown by
(Peters et al., 2003; Godfrey and Powell, 2002; Ernst et al.,
2006). In control, RL can be used to learn optimal control
laws for nonlinear dynamic systems, without relying on a
mathematical model of the system to be controlled. One
of the primary elements in RL is the reward function.
The reward function assigns a scalar reward to each state
transition and the learning agent selects control actions so
that the total cumulative reward over time is maximized.
In this way, the reward function conveys information to
the agent about the goal to be achieved.

The reward function plays a role similar to the cost func-
tion in control theory. In analogy to the linear quadratic
regulator (LQR), a quadratic function of the state has
been used as a reward function in RL (Abbeel et al., 2007;
Grondman et al., 2012). While the use of the quadratic
cost function in LQR is justified mainly by the fact that an
analytic solution can be found for linear systems, no such
reason exists in RL which relies on numerical solutions.

Classical RL literature (Sutton and Barto, 1998) recom-
mends that the reward function should focus on the goal
to be achieved, rather than on some specific behavior
leading to the goal. Information concerning the desired
behavior of the system which is available in advance can
be implemented via an initial policy. Later, several authors

(Mataric, 1994; Ng et al., 1999; Buşoniu et al., 2010)
argued that learning can be accelerated by providing more
information to the agent via the reward function. Methods
of deriving reward functions that speed up reinforcement
learning have been developed, see for example (Marthi,
2007; Singh and Barto, 2009). However, literature linking
the reward function to the final control performance of the
closed-loop system is lacking.

In this paper, insights in the closed-loop system behav-
ior are provided for an RL agent trained on-line with a
quadratic reward function. It is shown that the quadratic
reward function provides incentives that are both desirable
and undesirable. The influence of the discount factor is
discussed as it is used in RL, but not in LQR. Finally,
the performance of non-quadratic rewards is evaluated
experimentally, including the absolute-value and square-
root functions. The paper is organized as follows: Sec-
tion 2 introduces the necessary preliminaries of the RL
framework. In Section 3 the quadratic reward function is
defined and its behavior is shown in an example, followed
by a detailed analysis in Section 4. Non-quadratic rewards
are proposed and evaluated in Section 5. Finally, Section 6
concludes the paper.

2. REINFORCEMENT LEARNING PRELIMINARIES

The RL problem can be described as a Markov decision
process (MDP). For the ease of notation, the deterministic
MDP is introduced, defined by the tuple (X,U, f, ρ) with
X ∈ Rn the state space, U ∈ Rm the action space, f : X×
U → X the state transition function and ρ : X × U ×
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X → R the reward function. The system to be controlled is
described by the state transition function f : X×U → X,
which returns the state xk+1 that the system reaches from
state xk after applying action uk. After each transition,
the controller receives a scalar reward rk+1 ∈ R, which is
given by the reward function rk+1 = ρ(xk, uk, xk+1). The
actions are chosen according to the policy π : X → U .
The goal in RL is then to find a policy, such that the
expected discounted sum of future rewards is maximized.
This sum, also called the return, is stored in a value
function V π : X → R and defined as:

V π(x) = E
{ ∞∑
i=0

γiρ(xi, π(xi), xi+1)
∣∣∣x0 = x, π

}
(1)

where γ ∈ [0, 1) is the discount factor.

The RL method used in this paper is the model learning
actor-critic (MLAC) algorithm proposed by Grondman
et al. (2012). Figure 1 provides a schematic overview of
an RL agent based on an actor-critic method.

Actor Process

Critic Reward

Process 

Model

xu

r

disturbances

Fig. 1. Schematic representation of the model-learning
actor-critic method.

The actor-critic technique is characterized by learning
separate functions for the policy and the value function.
The critic takes the role of the value function and evaluates
the performance of the actor, as such assisting in the
estimation of the gradient used for the actor’s updates.
In addition to the critic and the actor, MLAC uses an
adaptive process model. The actor parameters are updated
using the policy gradient calculated with the help of
the process model. As both the state space and the
action space are continuous, function approximators based
on local linear regression (LLR) are applied. LLR is a
non-parametric memory-based method for approximating
nonlinear functions (Atkeson et al., 1997). Note that the
learning proceeds in a series of finite trials, each of them
consisting of Ns samples. After each trial, the system
is reset to an initial state and the learning continues.
Algorithm 1 gives the pseudo-code of the MLAC method.

3. QUADRATIC REWARD FUNCTION

The quadratic reward function in standard LQR is defined
as follows:

J =

∞∑
i=0

(xd − xi)TQ(xd − xi) + uTi Pui (2)

Algorithm 1 Pseudo-code for model-learning actor-critic
1: set parameters
2: initialize function approximators
3: repeat: for Nt trials
4: initialize state
5: reset eligibility traces
6: apply action
7: k ← 0
8: repeat: for Ns time steps
9: measure state

10: % actor
11: calculate action based on state
12: apply action including exploration
13: update actor

14: % process model
15: update process model

16: % critic
17: calculate reward and temporal difference
18: update eligibility traces
19: update critic
20: k ← k + 1
21: until k = Ns
22: until j = Nt

with xd a constant desired state and Q, P positive definite
weighting matrices of dimensions n × n and m × m,
respectively. These matrices are used to tune the relative
contributions of the components of the state and action
vectors to the cost. In analogy to (2), the reward function
in RL is defined as:

ρ(xk+1, uk) = −(xd − xk+1)TQ(xd − xk+1)− uTk Puk (3)

Note that contrary to (2), the future state xx+1 is used
in the reward. This is because the reward is given for
the transition to the next state, rather than for being in
the current state. The following expression for the return
results:

R =

∞∑
i=0

γiρ(xi+1, ui)

= −
∞∑
i=0

γi
[
(xd − xi+1)TQ(xd − xi+1) + uTi Pui

] (4)

As the convention in RL is to maximize the return, a
negative sign is used with the quadratic form.

The weight P , whose role is to penalize excessive control
actions, has to be used with care. If the desired state
xd corresponds to an equilibrium f(xd, ud) = xd with a
nonzero control action ud, (2) and also (4) will induce a
trade-off between the steady-state error and the control
action applied in xd. As the focus in the analysis is on the
(zero) steady-state error, P = 0 is used in the sequel.

There are two remarkable differences between the LQR
cost function (2) and the quadratic return (4):

(1) The discount factor γ ∈ [0, 1] is used in RL. While
its primary purpose is to keep the sum in (4) finite,
it also plays a role of a ‘control horizon’ and as such
it has a considerable influence on the learning speed.
Each application requires a different setting, which is
a compromise between a long enough horizon to cover
the expected response settling time (γ close to one)
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and an acceptable learning speed which is favored by
smaller values of γ.

(2) With finite learning trials, as in Algorithm 1, the
infinite return (4) is effectively approximated by a
finite sum:

RNs
=

Ns∑
i=0

γiρ(xi+1, ui) (5)

While this difference may seem unimportant (as long
as the trial length Ns is sufficient to cover the ex-
pected response settling time), it will be shown in
the remainder that it has a great influence on the
final performance of the control policy learned.

For illustrative purposes, a specific motion-control exam-
ple will be used throughout the remainder of the paper.
A simple yet representative nonlinear control problem is
chosen, which allows for easy reproduction of the results
by an interested reader.

Example: Consider a 1-DOF robot arm, shown in Fig. 2,
controlled to a specific angular position, under the influ-
ence of an unknown force due to gravity acting on the
payload M .

motor

M
φ

l

Fig. 2. 1-DOF robot arm with an unknown payload.

The dynamics of the system (not available to the RL
agent) are given by

Jω̇ = Mgl sin(φ)− (b+ K2

R )ω + K
R u (6)

and the associated model parameters are presented in
Table 1.

Table 1. Robot arm and learning parameters

Model parameter Symbol Value Unit

Arm and payload inertia J 1.91 · 10−4 kgm2

Payload mass M 5.50 · 10−2 kg
Acceleration due to gravity g 9.81 m/s2

Robot arm length l 4.20 · 10−2 m
Damping b 3 · 10−6 Nms
Torque constant K 5.36 · 10−2 Nm/A
Rotor resistance R 9.50 Ω
Sampling period Ts 0.02 s
Trial duration Tt 2 s
Samples per trial Ns 100 −
Trials per experiment Nt 200 −
Number of experiments Ne 50 −

The state of the underlying Markov decision process is
fully described by the angular position φ and the angular
velocity ω

x =

[
φ
ω

]
(7)

and the action u is the motor voltage ranging from −10 V
to +10 V. The goal of the RL agent is to learn to bring the

payload from the pointing down position (x0 = [π, 0]T ) to
a desired position (xd = [π/2, 0]T ) with a fast transient
and no steady-state error. The input weighting matrix in
the reward function (3) is therefore set to P = 0 and the
associated Q-matrix is

Q =

[
qφ 0
0 qω

]
=

[
5 0
0 0.1

]
The weights qφ = 5 and qω = 0.1 were chosen to scale
the angle and angular velocity to approximately the same
range. The MLAC algorithm, Algorithm 1, is applied on-
line and a step response of the system after learning is
plotted in Fig. 3. Observe that the RL agent learned
to bring the arm quickly to the vicinity of the desired
position, but that a significant steady-state error remains.
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Fig. 3. A typical step response after learning with the
quadratic reward function.

As the input weight P = 0, the steady-state error comes
as a surprise. In the following section it is shown in detail
what causes this behavior.

4. ANALYSIS OF THE QUADRATIC REWARD
FUNCTION

The first important fact to keep in mind is that the
reward function not only induces the final performance
after learning, but it also has a significant influence on
the convergence of the learning process itself. In terms of
the final performance in a typical motion-control problem,
the reward function yields a trade-off between the quick
decrease of the position error and the velocity of the
motion. A relatively large weight on the velocity will make
the agent reduce the velocity, eventually leading to a slower
response. However, setting the velocity weight qω to very
low values, or even to zero, is not possible as this slows
down the learning. So, in selecting the weights, one has
to make a tradeoff between the desired final performance
and the speed of the learning. Interestingly, the existence
of a strong interaction between the target behavior and
the success of the reinforcement learning process is well
known in the area of human and animal training (Pryor,
2009).

Secondly, as the response is dynamic, the influence of
the individual components of the reward function on
the functional (4) is time dependent and nontrivial to
predict. The discounting has a significant influence, too.
In order to see these effects, the return is split into its
position and velocity components. To take into account
its finite approximation due to the finite trial duration, the
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cumulative reward computed up to sample k is expressed
as:

Rγ(k) =

k∑
i=0

−γi(xd − xi+1)TQ(xd − xi+1)

=

k∑
i=0

−γiqφ(φd − φi+1)2 − γiqω(ωd − ωi+1)2

= Rγφ(k) +Rγω(k)

(8)
with Rγφ(·) and Rγω(·) the cumulative rewards for the
individual components of the state vector. The superscript
γ is added to emphasize the discounted nature of this
performance measure. For the purpose of comparison, the
undiscounted variant is defined as well: 1

R(k) =

k∑
i=0

−(xd − xi+1)TQ(xd − xi+1)

=

k∑
i=0

−qφ(φd − φi+1)2 − qω(ωd − ωi+1)2

= Rφ(k) +Rω(k)

(9)

To illustrate the contribution of the position error and
velocity components over time,Rφ(·) andRω(·) are plotted
in Fig. 4 for two different closed-loop step responses
produced with two different policies π(·), here denoted as
Policy 1 and 2.

Note that Policy 1 incurs a large steady-state error,
whereas Policy 2 results in a negligible steady-state error.
Yet, throughout almost the entire trial, the undiscounted
cumulative reward for Policy 1 is higher than that of
Policy 2, see the bottom left plot of Fig. 4. The reason for
this discrepancy is the relatively large difference in Rω(·),
due to the earlier decrease of the velocity with Policy 1 –
noticeable only after a close inspection, see the downward
peaks in the bottom right plot of Fig. 4. The contribution
of the steady-state error to the cumulative reward slowly
grows with time (as the constant error is integrated in the
cumulative reward). So if the trial is sufficiently long, the
steady-state error will eventually prevail. In the example,
this will be beyond k = 100, see the bottom left plot
of Fig. 4. This is, however, not true for the discounted
cumulative reward shown in Fig. 5. The exponential dis-
counting prevails over the approximately linear growth of
the position error component and the cumulative reward
becomes asymptotically constant. Therefore, the initial
contribution due to the larger velocity obtained with Pol-
icy 1 can never be compensated by the error component
of the position, even if the trial length would be extended.
Recall that the RL agent uses the discounted cumulative
reward as the learning criterion and it therefore may fa-
vor slower responses with a steady-state error to faster
responses without the error, which is highly undesirable.
Note that this is not the case with the LQR reward (2),
which is undiscounted and in addition integrates the error
over infinite time.

1 Although the undiscounted cumulative reward does not corre-
spond to the value function (1) which governs the learning, the
undiscounted total reward per trial R(Ns) is commonly used in the
literature as a performance indicator for the speed of the learning
process.
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Fig. 4. Closed-loop step responses for two different poli-
cies and the corresponding undiscounted cumulative
rewards.
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Fig. 5. The discounted cumulative rewards for the step
responses shown in the top panel of Fig. 4.
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One way to alleviate the above problem is to adjust the
diagonal components of the Q matrix. This approach,
however, has two main drawbacks: (i) it is impossible
to set the weights correctly in advance, (ii) too low a
weight on the velocity has a negative influence on the
learning convergence. In addition, the weights scale the
individual cumulative reward components linearly, while
the components themselves grow quadratically with the
state variables. As a result, the quadratic reward penalizes
large velocities much more than small steady-state errors.
A better solution is to modify the function itself, rather
than the weights, as discussed in the following section.

5. NON-QUADRATIC REWARD FUNCTIONS

Instead of the quadratic function, rewards based on the
absolute-value (10) and square-root (11) functions are
suggested and evaluated in this section.

ρ||(x) = −
(
qφ|φd − φ|+ qω|ωd − ω|

)
(10)

ρ√(x) = −
(
qφ

√
|φd − φ|+ qω

√
|ωd − ω|

)
(11)

They both reduce the relative importance of the large tran-
sient error and increase the importance of the small steady-
state error. Figure 6 shows these cumulative rewards com-
puted for the step response of Fig. 3 and normalized to
the range [0, 1]. These plots show that for the quadratic
reward, the large initial error (approximately during the
first 10 time steps, see Fig. 3), contributes to more than
90% of the final cumulative reward. The absolute-value
and square-root reward reduce this contribution to about
60% and 40%, respectively. As a result, the contribution
of the steady-state error to the overall cumulative reward
increases.
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Fig. 6. Normalized discounted cumulative reward for the
three different reward functions considered.

To see whether adjusting the reward function is beneficial
in terms of both the learning speed and the final closed-
loop behavior, the undiscounted return and the time re-
sponse after learning are compared for the various reward
functions.

Figure 7 shows the learning curve; the evolution of the
undiscounted return per trial over the 200 trials that
constitute the learning experiment. In order to compare
the three norms, the return is normalized to the range
[0, 1]. Furthermore, for the sake of quantitative compari-
son, the settling time and rise time of the learning curve
are calculated for each reward function, see Appendix A.
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Fig. 7. Normalized average learning curve for the three
rewards considered (Ne = 50).

The results in Table 2 show that the learning curve settling
time for the quadratic reward is similar to the settling
time of the absolute-value reward, whereas the rise time
of the quadratic reward is significantly shorter compared
to the absolute-value reward. Observe that the quadratic
reward leads to slightly faster and more stable learning
in comparison with the absolute-value reward, while the
square-root reward results in unstable learning. Due to
the unstable learning of the square-root reward no settling
time and rise time are presented. The reasons for the
faster learning with the quadratic reward and the unstable
learning with the square-root reward will be investigated
in our future research.

Table 2. Learning curve characteristics for the
three rewards considered (Ne = 50).

Reward function Settling time Rise time
[seconds] [seconds]

Quadratic 136 20
Absolute 142 60
Square root n.a. n.a.

Figure 8 shows the typical closed-loop step response after
learning obtained with the three rewards. The absolute-
value reward yields a response with a negligible steady-
state error which is also faster than the one obtained with
the quadratic reward. The response for the square-root
reward also shows a fast transient, but the overall perfor-
mance is worse. Some experiments with the square-root
reward resulted in a negligible steady-state error, whereas
other experiments showed persistent oscillations or steady-
state errors. This is the subject of future research.

Table 3 shows the mean steady-state error per reward
function, based on the 25 last samples of each experiment.
The results endorse the findings previously discussed.

Table 3. Mean steady-state error for the three
reward functions (Ne = 50).

Reward function Mean steady-state error

Quadratic 0.1416
Absolute 0.0452
Square root 0.2492
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Fig. 8. Typical closed-loop step response after learning
with the three reward functions considered.

In summary, when considering both the speed of learn-
ing and the final closed-loop response after learning, the
absolute-value reward results in the best overall perfor-
mance.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper, the performance of the quadratic reward
function is analyzed in on-line reinforcement learning for
nonlinear motion control. It is shown that this reward
function provides insufficient incentives for the RL al-
gorithm to find policies that achieve both fast response
and zero steady-state error. This is due to the discounted
nature of the return (the cost function minimized by the
RL algorithm), as well as the amplification of large er-
rors by the quadratic function. A reward function based
on the absolute value of the state reduces the steady-
state error, while the learning curve characteristics are
similar to the quadratic reward. An exception to this is
the learning curve rise time, which is significantly smaller
for the quadratic reward. Furthermore, a reward function
based on the square root of the state resulted in unstable
learning. The reason for this behavior is unknown. Both
the larger rise time for the absolute-value reward and the
unstable learning for the square-root reward are subjects
of future research.

Appendix A. LEARNING CURVE SETTLING TIME
AND RISE TIME

To define the settling time and the rise time of the learning
curve, first introduce the undiscounted return of trial j
averaged over the number Ne of learning experiments:

R̄j =
1

Ne

Ne∑
l=1

Rj,lNs
(A.1)

where Rj,lNs
is the undiscounted counterpart of the re-

turn defined in (5), referring to the jth trial within the
lth learning experiment. For each reward, the sequence
R̄1, R̄2, . . . , R̄Nt

is normalized so that the maximum value
of this sequence is 1.

The performance R̄f at the end of learning is defined as
the average normalized undiscounted return over the last
c trials:

R̄f =
1

c

Nt∑
j=Nt−c+1

R̄j (A.2)

The settling time τs of the learning curve is then defined
as the time elapsed from the beginning of the learning

experiment till the moment at which the learning curve
enters and remains within a band ε of the final value R̄f :

τs = Tt · arg max
j

(|R̄f − R̄j | ≥ εR̄f ) (A.3)

In this paper c and ε are set to 25 and 0.05 respectively.

The rise time is defined as the time required to climb from
the 10% performance level to the 90% performance level:

τrise = τ90 − τ10 (A.4)

with τp defined as:

τp = Tt · arg max
j

(
R̄j − R̄1

R̄f − R̄1
≥ p

100

)
(A.5)

for p = 10% and 90%.
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