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Abstract: In this paper, a six-dimensional (6D) Simultaneous Localization and Mapping (SLAM) based 

on novel Linear Regression Kalman Filter (LRKF), called Smart Sampling Kalman Filter (S2KF), is 

proposed. While the conventional feature based SLAM methods use point features as landmarks, only a 

few take the advantage of geometric information like corners, edges, and planes. A feature based SLAM 

method using planar landmarks extracted from 3D Light Detection and Ranging (LiDAR) outdoor data is 

proposed. The method uses the LFKF with n-dimensional approximated Gaussians by addressing the data 

association problem based on semantic data of plane-features. Experimental results show the 

appropriateness of the approach, and the filter performance is compared with the traditional filters, such 

as Unscented Kalman Filters and Cubature Kalman Filters. 
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

1. INTRODUCTION 

Simultaneous Localization and Mapping (SLAM) is a 

fundamental problem of the autonomous systems in GPS 

(Global Navigation System) denied environments. The 

LiDAR optical sensor technology is primarily used in many 

SLAM applications. The data, given by range and bearing, 

obtained by the LiDAR measurement system is used in two 

different ways. While some SLAM methods use these raw 

data with a scan matching algorithm to obtain rigid body 

transformations (Borrmann et al.), the others use feature 

extraction algorithms from point clouds (Castellanos et al.). 

Weingarten and Siegward proposed an indoor 3D feature 

extraction method based on plane detection for EKF based 

3D SLAM (Weingarten and Siegwart).  

Feature based SLAM methods have a powerful theoretical 

background and applied to indoor and 2D case successfully in 

the last decade (S. Thrun). Neito et al. used artificial 

landmarks and natural features like tree for 2D SLAM using 

particle filters (Nieto et al.). Another method for feature 

extraction is to convert 3D point cloud into 2D range images 

and apply computer vision techniques (Yangming and 

Olson). Planes are mostly preferred geometric shapes in 3D 

environment modeling, and a plane extraction method for 

scan matching purpose is introduced for indoor and 

structured environment by Pathak (Pathak et al.).  

The feature extraction from LiDAR data obtained in 3D 

outdoor is a difficult problem due to the complexity and 

unstructured nature of the environment. In addition, the 

distribution of the point cloud is directly related to the 

hardware setup, and it is mostly not homogenous as in 

camera (Wulf and Wagner); moreover, the vehicle and 

measurement models are mostly nonlinear. For this reason, 

the extended versions of the filters are used for linearization 

purposes like Extended Kalman Filters (EKF). The 

Unscented Kalman Filters (UKF) is another filtering 

technique using unscented transform rather than linearization 

(Martinez-Cantin and Castellanos). This provides better 

results than EKF if the nonlinear functions are in aggressive 

fashion. The filters EKF and UKF are known as Gaussian 

filters since they provide optimum solution under the 

Gaussian noise. Martinez and Castellanos experimentally 

validated the usage of UKF for large-scale outdoor 

environments in (Martinez-Cantin and Castellanos).  

Filters based on statistical linearization are known as Linear 

Regression Kalman Filters (LRKFs). Approximation of 

Gaussians plays an important role for nonlinear system to 

improve state estimation. The Cubature Rule for 

approximation of Gaussians, which is also called Cubature 

Kalman Filters (CKF), is proposed (Arasaratnam and 

Haykin). In their paper, it is shown that CKF provides more 

accurate filtering results than the existing Gaussian filters and 

solves large spectrum of nonlinear problems. UKF has 

several limitations, which does not exist in CKF, such as 

numerical inaccuracy, unavailability of a square-root 

solution, and filter instability. A CKF-SLAM method based 

on point features is introduced by Pakki et al. in (Pakki et al.). 

A new version LRKF called Smart Sampling Kalman Filter 

(S2KF) is proposed by Steinbring (Steinbring and Hanebeck). 

S2KF is considered as generalization of all sample-based 

LRKFs like UKF and CKF since it covers the state space 

with an arbitrary number of samples. To be able to compute 

the samples based on the state mean and state covariance, 
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Localized Cumulative Distribution (LCD)-generated Dirac 

Mixture approximations are used (Hanebeck et al.).   

In this study, it is shown that planar features can be integrated 

into SLAM state vector and their infinite parameters can be 

estimated. Initially, the planar features are extracted from 3D 

LiDAR data, and then the extracted plane features are used in 

the SLAM problem. The SLAM state vector only holds the 

infinite plane parameters; however, the other extracted plane 

parameters such as convex-hull points, covariance matrix of 

the plane inlier points, and the others supported by the feature 

extraction method are kept in a feature table and updated 

after the measurement update step.  The data association of 

the SLAM method is based on the semantic data since the 

infinite plane parameters cannot be used for correspondence. 

The performance of the S2KF-SLAM shows that it 

outperforms the UKF-SLAM and CKF-SLAM, respectively. 

In the next section, the planar landmark extraction 

algorithm is explained. In Section III, a summary of S2KF 

theory is given, and the plane-feature based LRKF-SLAM is 

elucidated. In Section IV, the experimental results are 

presented. The conclusion is drawn in Section V. 

2. PLANAR LANDMARK EXTRACTION 

In this section, the steps of the planar landmark extraction 

algorithm are explained. Plane feature extraction from the 

point cloud for scan matching or environment modelling is 

not a new concept (Ulas and Temeltas), but in this study, it is 

shown that the planes can be used in a feature-based SLAM 

method. The planar feature properties are integrated into 

SLAM state vector and estimated recursively as in the point 

feature based SLAM.  

The method starts with point cloud discretization by dividing 

the point cloud into regular cells and assigning each point to 

these cells. The well-known and simple discretization method 

is to use fixed cells; therefore, we used fixed cell sizes for the 

sake of simplicity. The other steps are presented in the 

following subsections.  

1.1 Probabilistic Plane Fitting 

After the discretization process, the planar segments are 

detected by first finding the inliers of a plane via RANSAC 

algorithm. Then if the number of inliers in a cell exceeds a 

threshold value, the least mean square plane fitting is applied 

to these inliers to obtain its parametric representation. 

A general plane equation can be written by 

0T d nx                        (1) 

where n  and d  are infinite plane parameters that represents 

the normal vector and the plane minimum distance to origin, 

respectively.  

1.2 Projection and Convex Hull Computation 

After finding the infinite plane parameters of each cell, their 

convex hull is found. Convex hull computation is carried out 

in 2D space; therefore the 3D plane points are primarily 

projected to 2D space. Hence, the rotation matrix (R) and the 

translation vector (T) are computed by using the principal 

component analysis. First, the plane points are translated to 

the first element position by the subtraction of Γ ΓoB   , 

where Γo is the first point of the point cloud, and it is 

considered as the translation vector, T. The covariance 

matrix, C, of the plane points is computed. Then the singular 

value decomposition to the covariance matrix is applied as 

.TC UEV                          (2) 

The rotation matrix, R, is obtained from the first two columns 

of the normalized eigenvector matrix, 
1 2 3[ ]V  v v v ,  

which are the principal axes of the plane points. 

 2R 
1
v v              (3)

The translated plane points, B, are projected to principal axis 

plane by using this rotation matrix (R).  

XY RB                            (4) 

The 3D plane points are represented in 2D space as 2  RXY  . 

Then the convex hull of the projected plane points is found. 

After that, the convex hull points 
pH  are translated back to 

3D space with (5) and represented as 3    RXYZ  .  

  T

XYZ pH R   + 
0Γ                           (5) 

Finally, the merging step is applied to the plane patches.  

1.3 Merging Step 

After finding the convex hull points of the planes, the 

horizontal planes are discarded and the plane merging 

method is applied.  To be able to merge two planes, they 

must satisfy the three conditions.  These conditions are given 

as follows; 

Orientation test:   1 T

i j On .n tcos   

Translation test: T

i T| n ( ) | ti jc c   

Closeness test:  1

P( ) Σ ( ) tT

i j p i jc c c c    

where ic  is the center of the gravity of a plane, Σ p is the 

pooled covariance matrix as defined by 

k
 Σ Σ Σ

k k
.

k k

ji

p i j

i j i j

k
 

 
 (6) 

where k i is the number of inliers in a plane, and Σi  is the 

covariance matrix of the plane points. 

The first two conditions are obvious and applied to indoor 

case (Weingarten et al., 2004) by Weingarten; however, the 

closeness test is a must for the outdoor case. The plane 

segments may satisfy the first two tests, but they might be 

actually far away from each other and belong to different 

surfaces. For that reason, the usage of the Mahalanobis 

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10195



 

 

     

 

distance with pooled covariance matrix Σ p
(6) is proposed in 

the third constraint to measure closeness.  

The merged finite planes are accepted as landmarks if they 

contain sufficient number of points and their area is larger 

than a threshold value. As a result, if a cell contains a plane, 

then its normal vector ( )in , center of gravity ( )ic , convex 

hull points ( )iXYZ , covariance matrix ( )i , and the number 

of inliers (k )i is computed. Here, i denotes an non-empty cell 

identity number. Fig. 1 shows the extracted landmarks from 

the first scan of the data set (Wulf). This scan belongs to an 

outdoor environment and can be considered as semi-

structured.  

 

Fig. 1 Extracted landmarks from the first scan. There are 

totally 6 landmarks. Robot position is shown by star mark. 

In the next section, the plane-feature based localization and 

mapping method details are explained.  

 3. PLANE-FEATURE BASED S2KF-SLAM 

In this section, the plane-feature based S2KF-SLAM method 

is explained. Firstly, deterministic approximations of N-

dimensional standard normal distributions based on S2KF 

theory and its application to conventional SLAM problem is 

briefly described. Then the proposed modifications are 

discussed.    

3.1 Probabilistic Plane Fitting 

The key point of the S2KF theory (Steinbring and Hanebeck) 

is based on deterministic Dirac Mixtures which utilize 

Localized Cumulative Distribution (LCD) described in 

(Hanebeck et al.). The LCD approach solves the density 

approximation problem, by turning it to an optimization 

problem, and systematically minimizing a modified Cramer-

von Mises distance between the Dirac Mixture approximation 

and an arbitrary Gaussian distribution. Although the LCD 

approach can approximate any random Gaussian distribution, 

it is computationally expensive and not feasible for online 

usage.  Therefore, offline-generated Dirac Mixture 

approximations (DMA) stored in a Cache are used. DMA 

1

1
( ) ( ) ( , )

L

LCD i

i

f N I
L

    


                 (7) 

of a standard normal distribution with L equally weighted and 

optimally placed samples i , where L might be chosen 

randomly. Here, 
1ˆ 0iiL

    and unit sample covariance 

L

1 ˆ ˆ( )( )s T

i ii
P

L
       I          (8) 

 
Fig. 2 LCD sampling of a 3D standard normal distribution 

with 15 (left) and 25 (right) samples. 

where 
LI  denotes the L-dimensional identity matrix. Fig. 2 

shows generated Dirac Mixture approximations for two 

different numbers of samples in case of a 3D normal 

distribution. Given an random Gaussian distribution 
 

ˆ( ) ( , , )zh y N y y P           (9) 

the matrix  square root z
P  of  z

P  is computed by Cholesky 

decomposition. The transformed DMA, which are computed 

state samples, are obtained by the Mahalanobis transform 

(Härdle and Simar) as 
 

ˆ {1,..., }.z

i iy y i L   P          (10) 
 

The number of samples is not fixed as in UKF and CKF; 

thus, the estimation quality can be easily improved by simply 

increasing the number of employed samples. The DMA 

generation for any desired number of dimension and sample 

is carried out offline and can be considered as a core for state 

estimation. In fact, this issue is problematic in terms of 

SLAM problem since the state vector constantly augmented 

whenever a new feature observed. However, we solve this by 

limiting number of feature in the state vector. The SLAM 

state vector starts with 6D robot position and the state vector 

size increases up to 15 planar feature namely 66 dimensions 

(6 + 15*4). Then a dimension reduction is processed with 

eliminating the first 10 observed feature. This approach 

makes the SLAM method forgetful but the experimental 

studies show very satisfactory results.  

3.2 Feature Based SLAM with Nonlinear Filtering 

Feature based S2KF-SLAM algorithm uses the infinite plane 

parameters as features. However, other semantic data 

information of the planes found in landmark extraction is 

used when solving the data association problem. Thus, every 

plane feature is considered as an infinite plane in SLAM 

posterior; however, in fact they are plane patches in the 

correspondence decision. First, the vehicle, landmark, and the 

sensor models are elucidated as follows. Then S2KF-SLAM 

motion and measurement update steps are explained.  
 

Vehicle Model     The vehicle model is given by  
 

1
1 1( , )

k k
v v k kf w


  x x u                        (11) 

where 1kw  denotes the zero mean Gaussian distribution noise 

vector with the covariance matrix Q, and the control signal or 

odometry data is provided as [ , , , , , ]x y z     u .  

The vehicle state vector is represented by [ ]
p ov v vx x x  

where [ , , ]
pv

x y zx  and [ , , ]
ov

  x denote the robot 
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position and the orientation, respectively. The vehicle model 

function given by f and can be disclosed as in (11) for the 

odometry data having the relative rigid body transformation 

parameters.  
 

,

1 1

1 1

1 1

1 1

1 1

1 1

( )
o k

k k k

k k v k

k k k

k k k

k k k

k k k

x x x

y y Rot x y

z z z







  

  

  

 

 

 

 

 

 

     
     

 
     
          

     
     

 
     
          

                           (12) 

 

where Rot  matrix represent the three successive rotations 

defined by the Euler angles in x, y, and z axes. 
 
 

Landmark Model     The planar landmarks are assumed as 

stationary
1k km m 

x x  and represented in world (W) frame. 

The SLAM map is augmented with the following state vector 

representation, 

  
k k k

W

m F F

Wd   x n
 

(13) 

1

6 4

1 .
k kk v

Na

m R





   x x x  (14) 

 

 

Measurement Model     Measurement model parameters,
kz  

are provided by the feature extraction method and stated as  

 
Fig. 3 Infinite Plane representation in local and world frame. 

,

,

1 1

1

( ) 

( )

( )

o k kk

k k p kk

k

T

k

WL
v FF

k W

k

kW

F vF

TL

F

z

x nn
z

d

h v

Ro
v

nd

t

x

 





 
 



 
  

 


   

x,u

 (15) 

where
 

L

Fn   
and L

Fd  are the plane normal and its minimum 

distance to origin in local frame, respectively. In the 

formulations superscripts, W and L, indicate the World frame 

and the Local frame, and T represents the matrix transpose. 

As shown in Fig. 3, the proposed feature extraction method 

provides the plane properties in local frame, and the plane 

parameters are transformed to the world frame by 

( )
o

W L

F v Fn Rot x n  (16) 

( )
p

W L W T

F F F vd d n x   (17) 

The other plane properties such as center of gravity of the 

planes
L

FG , the covariance matrix 
L

FC  of the plane points and 

convex hull points ,

L

XYZ F  given by (5)  are also transferred 

to the world frame by using the estimated robot position, 
pv
x , 

and orientation, 
ov
x . 

( )
o

W L

F v FC Rot x C  (18) 

( )
p

W L

F o F vG Rot x G x   (19) 

, ,( )
o p

W L

XYZ F v XYZ F vRot x x     (20) 

After the measurement update, two associated landmarks are 

merged again to increase the consistency, and in this case 

these values are again obtained through the projection and 

convex hull computation procedures. Motion and 

measurement updates processes are explained as the 

following. 

 

Motion Update     Motion update step is based on the vehicle 

model (11) and the state and covariance matrix is augmented 

as  

1 11

0
1

1
0

vk kk

k
k

Q


 




 
  

 
 
 

x x u

P
P

 

 

(21) 

where 
1k

x  is the state vector in the (k-1)
th
 time step. 

1k
u is 

the applied control signal at this time. 
1k

P denotes the state 

covariance matrix. Then DMA,  , is evaluated with (10), 

and the square root of the P matrix is obtained with Cholesky 

decomposition,  
T

P  chol . The time index (k) is reduced 

for convenience, and state sample points are evaluated by 
 

.i iy   x +            (22) 
 

Then these points are propagated through the vehicle model 

as ( , ).i if yX u  
 

The estimated state and corresponding state vector is 

obtained 

2

1

1

2

n

i

in





 x X  

2

1

1
( ) .

2

n
T T

i i

in

 



 P X X x )(x  

(23) 

Measurement update step is applied as follows. 

 

Measurement Update     The measurement update step is 

based on the observation model (15). The DMA points are 

evaluated by the estimated state and covariance matrix as 

i iy   x + P , and then they are propagated through the 

observation model as 1 1( ) ,i i k kZ h y v

  ,u where 1kv   is the 

zero mean measurement Gaussian noise with R covariance 

matrix. The predicted measurement mean vector i


z  and 

related covariance matrices, zzP  and xzP  computed as 

 
2

1

1

2

n

i i

i

Z
n





 z               (24) 
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2

1

2

1

1
( )( )

2

1
( )( )

2

n
T T

zz i i i i

i

n
T T

xz i i i

i

Z Z R
n

X Z
n

 



 



  

 





P z z

P x z

                  (25) 

 

The Kalman Gain (G), updated state vector and covariance 

matrix are evaluated by 
1

( )

xz zz

T

zz

z z



 



  

 

G P P

x x G

P P GP G

              (26) 

 

If a new landmark is observed, it is added to the state vector 

with the state augmentation model. 

 

State Augmentation     The state augmentation is based on the 

landmark model definition (13) and the augmentation given 

by (14) and applied in two steps. Firstly, the state vector and 

covariance matrix is augmented with the new observations as 

follows. The augmented state model  a

mvg  x x  is 

constructed, and then the augmented state vector and 

covariance matrix are computed by following the same 

procedure in motion update step with (22) - (23). 

 

 

0

0

v z

R





 
  

x x

P
P

                        (27) 

 

Data Association     The data association is the fundamental 

and critical part of any SLAM method. The conventional data 

association methods for point features are based on statistical 

measurement methods. For the planar features, one cannot 

use the classical approaches since the features are represented 

by infinite plane parameters. Therefore, semantic information 

based on plane properties such as the convex hull points, 

number of plane points, and covariance matrix of the plane 

inlier points can be used to decide correspondence decision. 

In this work, the same criteria proposed in the merging step 

are used in the data association as well. First, the two 

conditions which are translations and orientations tests are 

investigated. Then if these tests are satisfied, the closeness 

test is checked.  In this data association approach, there is no 

need to store any neighboring cell structure or tree 

representation. 

4. EXPERIMENTAL RESULTS 

In the performance analysis of the proposed method, the 

experimental dataset provided by Oliver Wulf  is used 

(Wulf). This data set was recorded at the Leibniz University 

Campus where each scan has approximately 20,000 data 

points. The initial pose estimates are given by xv, yv as 

position, and θv  as orientation in 3D. The ground truth pose 

data is available in 6D, [ ]
p ov v vx x x . The error norm of 

the robot position in three dimensions is computed, where the 

process noise covariance matrix 
2 2 2 2 2 2( , , , , , )x zQ diag       is set by 10x y   cm 

0.1   , and 
310  . 
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Fig. 4 Error norm of the robot pos. for full-state SLAM 

representation. 

The S2KF does not use full state representation, but first, we 

would like to present the full state experimental results based 

on CKF and UKF. In Fig. 4, the error norm of the robot 

position in three dimensions shows that UKF and CKF 

provide almost the similar performance for full-state filter 

representation. Obviously, around the 70
th
 observation (just 

after loop closing) the filters become instable.  On the other 

hand, under the same conditions, the limited state filter 

representation provides superior results, especially for UKF 

and S2KF as shown in Fig. 5.   
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Fig. 5 Error norm of the robot pos. for limited-state SLAM 

representation. 
 

Moreover, an advanced limited filter representation, which 

keeps the first 5 features in the state vector constantly and the 

whole state vector for 10 features, is proposed. Namely, the 

filter dimension is reduced to 10 features whenever it reaches 

above 15 features.  The error norm of the robot positions are 

given in Fig. 6. The results show that the S2KF performs 

better than the other two filters. Besides the given results, in 

our studies, we observed that the S2KF is more stable than 

UKF and CKF. 

 

The estimated map of the environment is given in Fig. 7, 

where the planar features (patches), sparse point cloud 

(scatter points), true robot positions (dot), and the robot 

position error ellipsoids on its mean are shown. One has to 

note that the uncertainty ellipsoids are getting smaller when 

the loop is closed.  
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Fig. 6 Error norm of the robot pos. for second type limited-

state SLAM representation. 

 
Fig. 7 Estimated planar map of the environment.  

5. CONCLUSIONS 

In this study, a plane-landmark based S2KF-SLAM is 

proposed. The S2KF-SLAM performance is compared to the 

CKF and UKF-SLAM methods. The experimental results 

show that S2KF-SLAM performance is better than UKF and 

CKF and can be used in 3D outdoor SLAM successfully. 
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