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Abstract: We study an n-player averaging process with dynamics subject to controls and
adversarial disturbances. The model arises in two distinct application domains: i) coalitional
games with transferable utilities (TU) and ii) opinion propagation. We study conditions under
which the average allocations achieve robust consensus to some predefined target set.
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1. INTRODUCTION

We consider an n-player averaging process in which each
player is described by a dynamic system with controlled
and uncontrolled inputs, the latter being adversarial dis-
turbances. Motivations for the dynamics can be found
in two distinct application domains. Within the realm of
allocation problems in coalitional games with Transferable
Utilities (TU games) (Nedić and Bauso, 2013), the process
describes a two-step distributed allocation process where,
at each discrete time step, players first renegotiate their
past allocations and second generate a new revenue and
allocate it. On the other hand, the dynamics also arise
naturally in opinion propagation, where the players adjust
their opinions based on the inputs received from neighbors,
and under the influence of persuaders.

The goal of our study is to provide a detailed analysis of
the consensus dynamics under the umbrella of contrac-
tivity and invariance theory. In particular, we consider
a predefined set and study convergence of the consensus
value to such a set under a distributed receding horizon
control law. This set can be thought of as (but it is not
limited to) the core of the game for the allocation process.
This is the set of imputations under which no coalition
has a value greater than the sum of its members’ payoffs.
Therefore, no coalition has incentive to leave the grand
coalition and receive a larger payoff. A similar problem
is addressed by Bauso and Notarstefano (2012), which
considers the case of allocations evolving according to
doubly averaging dynamics (over time as well as space).

The main contribution of this paper is to introduce a
distributed multi-stage receding horizon control strategy
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and to show that it ensures the existence of invariant and
contractive sets for the collective dynamics (Theorem 1).

Related literature. Coalitional games with transfer-
able utilities (TU) were first introduced by von Neumann
and Morgenstern (1944). In this work a central issue is
to determine whether the core is an “approachable” set,
and which allocation processes can drive the “complaint
vector” to that set. Approachability theory was devel-
oped by Blackwell (1956), and is captured in the well
known Blackwell’s Theorem. The geometric (approacha-
bility) principle that lies behind Blackwell’s Theorem is
among the fundamentals in allocation processes in coali-
tional games (Lehrer, 2002). The discrete-time dynamics
analyzed in this paper follow the rules of typical consensus
dynamics (see e.g. Nedić, Ozdaglar, and Parrilo, 2010,
and references therein). Consensus dynamics also arise
in the literature on agreement among multiple agents.
An underlying communication graph for the agents and
balancing weights are used to reach an agreement on a
common decision variable in Nedić et al. (2010) and Ram
et al. (2009) for distributed multi-agent optimization, and
related problems of aggregation in multi-agent systems are
studied in Shi and Hong (2009) and Liu et al. (2012).

The paper is organized as follows. In Section 2 we formu-
late the problem while Section 3 gives the main results.
Section 4 provides numerical illustrations. Finally, in Sec-
tion 5, provides concluding remarks and future directions.

Notation. We let x′ denote the transpose of a vector x,
and ‖x‖ denote its Euclidean norm. An n × n matrix A
is row-stochastic if the matrix has nonnegative entries aij
and

∑n
j=1 a

i
j = 1 for all i = 1, . . . , n. For a matrix A,

we use aij or [A]ij to denote its ijth entry. A matrix A is
doubly stochastic if both A and its transpose A′ are row-
stochastic. We use |S| for the cardinality of a given finite
set S. We write PX [x] to denote the projection of a vector x
on a set X, and we write |x|X for the distance from x to X,
i.e., PX [x] = arg miny∈X ‖x− y‖ and |x|X = ‖x− PX [x]‖,
respectively.
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2. DISTRIBUTED REWARD ALLOCATION

Every player in a set N = {1, . . . , n} is characterized
by an average allocation vector xi(t) ∈ Rn. At every
time he renegotiates with neighbors all past allocations
and generates a new allocation vector ui(t). Then, the
cumulative (over time) allocation xi(t) to player i evolves
as follows

xi(t+ 1) =

n∑
j=1

aij(t)xj(t) + ui(t), t = 0, 1, . . . (1)

where ai = (ai1, . . . , a
i
n)′ is a vector of nonnegative weights

consistent with the sparsity of the communication graph
G(t) = (N, E(t)). A link (j, i) ∈ E(t) exists (and hence
aij(t) 6= 0) if player j is a neighbor of player i at time t, i.e.
if player i renegotiates allocations with player j at time t.
Figure 1 displays a possible communication graph.

aij(t)

i

j

Fig. 1. Communication graph.

For each player i ∈ N , the input ui(·) is the payoff of a
repeated two-player game between player i (Player i1) and
an (external) adversary (Player i2). Let S1 and S2 be the
finite set of actions of players i1 and i2 respectively and let
us denote the set of mixed action pairs by ∆(S1)×∆(S2)
(set of probability distributions on S1 and S2). For any
pair of mixed strategies (p(t), q(t)) ∈ ∆(S1) × ∆(S2) for
player i1 and i2 at time t, the expected payoff is

ui(t) =
∑

j∈S1,k∈S2

pj(t)φ(j, k)qk(t),∑
j∈S1

pj(t) = 1,
∑
k∈S2

qk(t) = 1, pj , qk ≥ 0.
(2)

Essentially, in the above game φ(j, k) ∈ Rn is the vector
payoff when players i1 and i2 play pure strategies j ∈ S1

and k ∈ S2 respectively. Figure 2 illustrates the continuous
action sets for the two players.

p(t) ∈ ∆(S1)

R|S1|

q(t) ∈ ∆(S2)

R|S2|

Fig. 2. Spaces of mixed strategies for the two players.

Let X ⊂ Rn be a closed convex target set (or a convex
subset of a nonconvex target set), and consider the case
where player i1 seeks to drive the state xi(t) towards X,
while player i2 tries to push the state far from it. The
resulting strategy can be formulated as the solution of a

robust optimization problem, with one player minimizing
and the other maximizing the distance of the state from X.

In compact form the problem with finite horizon [0, T ] to
be solved by player i takes the form:

min
p(0)

max
q(0)

· · · min
p(T−1)

max
q(T−1)

T∑
t=0

|xi(t)|2X

p(t) ∈ ∆(S1), q(t) ∈ ∆(S2),

xi(t+ 1) = wi(t) + ui(t),

ui(t) =
∑

j∈S1,k∈S2

pj(t)φ(j, k)qk(t)

 t = 0, . . . , T − 1

(3)

where wi(t) is the space average defined as

wi(t) =

n∑
j=1

aij(t)xj(t). (4)

Let ξ(t) =
(
x1(t), . . . , xn(t)

)
denote the collective state

of all players in N at time t. We introduce a value
function Vi,τ (ξ(t), t) representing the optimal cost over τ
steps starting at xi(t), where τ = T − t for t ∈ [0, T ].
Using dynamic programming and the Bellman principle,
the value function must satisfy the following recursion

Vi,τ (ξ(t), t) = min
p(t)∈∆(S1)

max
q(t)∈∆(S2)

{
|xi(t)|2X

+ Vi,τ−1(ξ(t+ 1), t+ 1)
}

= |xi(t)|2X + min
p(t)∈∆(S1)

max
q(t)∈∆(S2)

Vi,τ−1(ξ(t+ 1), t+ 1)

with final value Vi,0(ξ(T ), T ) = |xi(T )|2X . The space
average in (1) implies that the distance from X of the
state xi at any time more than one step into the future
will depend on the current and future actions of players in
N other than player i. To realise a distributed allocation
strategy in which ui(t) is determined without collaboration
or knowledge of the current or future actions of other
players, we therefore incorporate maximization over uj(t),
j ∈ N , j 6= i when computing the worst case cost-to-go in
the above problem formulation.

The receding horizon implementation of the optimal strat-
egy for player i defines p(t), and hence ui(t) in (2), as the
minimizing argument for the T -stage problem with opti-
mal value function Vi,T (ξ(·), ·). The stability of a receding
horizon control law can be ensured (Mayne et al., 2000) by
imposing a terminal constraint such as xi(T ) ∈ X ∀i ∈ N .
However this would require collaboration or knowledge of
the actions of other players in N , and instead we therefore
impose the local constraint |xi(t + 1)|X ≤ |wi(t)|X . Since
this constraint involves only ui(t) and wi(t), it does not
depend on bounds on the allocations of other players
which could lead to conservative terminal constraints. We
show that it nonetheless results in a global contractivity
property. The modified problem formulation can now be
restated as
Vi,τ (ξ(t), t) = |xi(t)|2X

+ min
p(t)∈∆(S1)

max
q(t)∈∆(S2)

uj(t),j 6=i,j∈N

Vi,τ−1(ξ(t+ 1), t+ 1)

subject to |xi(t+ 1)|X ≤ |wi(t)|X .
(5)

Our goal is to study contractivity and invariance of sets for
the collective dynamics (1)-(2). In particular, we consider
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the collective value function
∑n
i=1 Vi,T (ξ(t), t) assuming

each player i ∈ N employs a T -stage receding horizon
strategy with the optimal cost Vi,T (ξ(·), ·) defined in (5).

2.1 Motivations

Coalitional games. The set X introduced above can
be thought of as the core of a coalitional game with
Transferable Utilities (TU game).

A coalitional TU game is defined by a pair 〈N, η〉, where
N = {1, . . . , n} is a set of players and η : 2N → R a
function defined for each coalition S ⊆ N (S ∈ 2N ).
The function η determines the value η(S) assigned to each
coalition S ⊂ N , with η(∅) = 0. We let ηS be the value
η(S) of the characteristic function η associated with a
nonempty coalition S ⊆ N . Given a TU game 〈N, η〉, let
C(η) be the core of the game,

C(η) =

x ∈ Rn
∣∣∣ ∑
j∈N

[x]j = ηN ,

∑
j∈S

[x]j ≥ ηS for all nonempty S ⊂ N

 .

Essentially, the core of the game is the set of all allocations
that make the grand coalition stable with respect to all
subcoalitions. Condition

∑
j∈N [x]j = ηN is also called

an efficiency condition. Condition
∑
j∈S [x]j ≥ ηS for all

nonempty S ⊂ N is referred to as “stability with respect to
subcoalitions”, since it guarantees that the total amount
given to the members of a coalition exceeds the value of
the coalition itself. Also, the averaging process in (4) can
be justified as inequity aversion on the part of the players.

Social networks. Opinion dynamics has attracted the
attention of many scientists over the the past few years.
The propagation of the opinions describe the time evo-
lution of the beliefs of a large population of agents as a
result of repeated interactions among the agents, in many
cases over a social network (see e.g. Castellano et al.,
2009, Sect. III, and Acemoğlu and Ozdaglar, 2011). In
continuous opinion dynamics models, beliefs or opinions
are represented by scalars or vectors, evolving according to
some averaging process. The latter consists in each opinion
moving towards a convex combination of (a subset of)
other agents’ current beliefs, thus modeling the attractive
nature of social influence. There are many models that,
under the assumption that the underlying social network
is connected, prove that the agents’ opinions reach con-
sensus asymptotically. Some exceptions can be found in
the models by Krause (2000) where the authors intro-
duce homophily in the form of “bounded confidence”, by
that meaning that the agents are not influenced by far
beliefs. A similar behavior can be found also in models
with competing stubborn agents (Acemoğlu et al., 2013),
the latter being agents that do not change their opinions
but try to influence the others’ opinions. Such stubborn
agents might represent leaders, political parties or media
sources. For instance, Como and Fagnani (2011) provide
scaling limits showing that if the agents’ population is
homogeneous, then, as the population size grows large, the
empirical belief distribution converges towards the solution

of a certain deterministic mean-field differential equation
in the space of probability measures. Such results are in
the spirit of the propagation of chaos (Sznitman, 1991) in
interacting particle systems.

2.2 Main assumptions

Following (Nedić et al., 2010) (see also Nedić and Bauso,
2013) we make the following assumptions on the informa-
tion structure. Let A(t) be the weight matrix with entries
aij(t).

Assumption 1. The matrix A(t) is doubly stochastic with
positive diagonal. Furthermore, there exists a scalar α > 0
such that aij(t) ≥ α whenever aij(t) > 0.

At any time, the instantaneous graph G(t) need not
be connected. However, for the proper behavior of the
process, the union of the graphs G(t) over a period of time
is assumed to be connected.

Assumption 2. There exists an integer Q ≥ 1 such that

the graph
(
N,
⋃(t+1)Q−1
τ=tQ E(τ)

)
is strongly connected for

every t ≥ 0.

For simplicity the one-shot vector-payoff game (S1, S2, xi)
is denoted by G.

Let λ ∈ Rn. Denote by 〈λ,G〉 the zero-sum one-shot game
whose set of players and their action sets are as in the
game G, and the payoff that player i2 pays to player i1 is
λ′φ(j, k) for every (j, k) ∈ S1 × S2.

The resulting zero-sum game is described by the matrix

Φλ = [λ′φ(j, k)]j∈S1,k∈S2 .

As a zero-sum one-shot game, the game 〈λ,G〉 has a value
vλ, where

vλ := min
p∈∆(S1)

max
q∈∆(S2)

p′Φλq = max
q∈∆(S2)

min
p∈∆(S1)

p′Φλq.

Following Blackwell (1956), we assume next that the value
of the projected game is always negative.

Assumption 3. The payoff φ(j, k) is bounded, and
(a). vλ < 0, for all λ ∈ Rn;
(b). for all q ∈ ∆(S2) and ε > 0, there exists p ∈ ∆(S1)
such that

∥∥∑
j∈S1,k∈S2

pjφ(j, k)qj
∥∥ ≤ ε.

Condition (a) of Assumption 3 is among the foundations
of approachability theory as it guarantees that the average
vector payoff of a two-player repeated game converges
almost surely to X (see e.g. Blackwell, 1956, and also Cesa-
Bianchi and Lugosi, 2006, chapter 7). For future purposes
we introduce the maximal value of the projected game,
which is given by

ṽ := max
λ∈Rn,‖λ‖=1

vλ (6)

We show below that ṽ is related to the rate of convergence
to the target set. Condition (b) implies that the norm of
ui(t) in (2) can be made arbitrarily small, so that player i1
effectively has the right of veto over any strategy of their
opponent i2. This condition ensures that any target set X
is controlled invariant, as we show below.

3. MAIN RESULT

The main result of this paper establishes contractivity
and invariance for the collective dynamics (1-2) under the
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multi-stage receding horizon strategy defined in (5). Before
stating the theorem we introduce three lemmas. The first
of these establishes that the space averaging process in (1)
reduces the total distance (i.e. the sum of distances) of the
states from the set X.

Lemma 1. Let Assumption 1 hold. Then the total distance
from X decreases when replacing the states xi(t) by their
space averages wi(t), i.e.,

n∑
i=1

|wi(t)|2X ≤
n∑
i=1

|xi(t)|2X .

Proof. Given in the appendix.

As a preliminary step to the next result, observe that, from
the definition of | · |X and from (1) and (3), we can write

|xi(t+ 1)|2X = ‖xi(t+ 1)− PX [xi(t+ 1)]‖2

≤ ‖xi(t+ 1)− PX [wi(t)]‖2

= ‖wi(t) + ui(t)− PX [wi(t)]‖2

= ‖wi(t)− PX [wi(t)]‖2 + ‖ui(t)‖2

+ 2(wi(t)− PX [wi(t)])
′ui(t).

(7)

The following lemma states that, under the approacha-
bility assumption, there necessarily exists an input ui(t)
given by (2) that places the successor state xi(t+1) closer
to X than the space average wi(t).

Lemma 2. Let Assumption 3 hold. Then for each i ∈ N
there exists ui(t) satisfying (2) and{

|xi(t+ 1)|X < |wi(t)|X , if |wi(t)|X > 0

|xi(t+ 1)|X = 0, if |wi(t)|X = 0

Proof. Given in the appendix.

Lemma 2 shows that the constraint incorporated in the
definition of the receding horizon strategy in (5) is feasible
for all collective states ξ(t). The next result provides
upper and lower bounds on the collective value function∑n
i=1 Vi,T in terms of the sum of the distances of each

invidual player’s state from X.

Lemma 3. The value functions Vi,T (ξ, ·), i ∈ N satisfy, for
all ξ = (x1, . . . , xn) ∈ Rn × · · · × Rn,

n∑
i=1

|xi|2X ≤
n∑
i=1

Vi,T (ξ, ·) ≤ (T + 1)

n∑
i=1

|xi|2X . (8)

Proof. Given in the appendix.

For r > 0, let Φ(r) denote the set

Φ(r) =
{

(x1, . . . , xn) ∈ Rn × · · · × Rn
∣∣∣ n∑
i=1

|xi|2X ≤ r2
}

and, for any positive integer T , define rT by

rT = max
{
r
∣∣∣ n∑
i=1

|x̂i(T )|2X = 0 for all ξ(0) ∈ Φ(r)
}

where x̂i(t) for t ∈ [0, T ] denotes the evolution of (1)-
(2) under the min-max strategy with value function
Vi,T−t

(
(x̂1(t), . . . , x̂n(t)), t

)
in (5) and with x̂i(0) = xi(0).

We are now ready to state the main result.

Theorem 1. (Contractivity and invariance) Let As-
sumptions 1-3 hold and let ξ(0) ∈ Φ(r) for some r > 0.

ν xmin xmax dt std(m0) T m0

103 0 100 0.01 {8,10,15} 40 50

Table 1. Simulation parameters.

Then under the receding horizon strategy with optimal
cost Vi,T (ξ(t), t) for all i ∈ N and all t = 0, 1, . . . we have

ξ(t) ∈ Φ(r) ∀t > 0, (9)

and if r ≤ rT , then ξ(t) converges exponentially to X:
n∑
i=1

|xi(t)|2X ≤
( T

T + 1

)t n∑
i=1

Vi,T (ξ(0), 0) ∀t > 0. (10)

Proof. Given in the appendix.

Discussion Theorem 1 demonstrates that there exist
both invariant and contractive sets for the collective dy-
namics. In particular, the receding horizon policy renders
the set Φ(r) invariant irrespective of the choice of the
horizon T . Essentially this is due to the imposition of the
constraint |xi(t + 1)|X ≤ |wi(t)|X in the definition of the
receding horizon policy, which, as a result of the space av-
eraging process in (1), enforces invariance globally without
requiring knowledge of other players’ current actions.

The convergence rate of the collective state to X in (10)
decreases as T increases. Essentially this is a result of
the looseness of the upper bound in Lemma 3, according
to which the rate of decrease of the accumulated cost
represents a smaller fraction of the bound on Vi,T (ξ(t), t)
as T increases. By increasing T however, it is possible
to reach the target set X in T steps from a larger set
of initial conditions ξ(0); increasing T thus increases the
applicability of the contractivity result in (10) by allowing
for larger values of rT .

4. SIMULATION EXAMPLE

We provide here numerical studies showing contractivity
and invariance in opinion propagation. The algorithm
used to perform the simulations is illustrated below. We
consider a number of players ν = 103 and a discretized
set of states X = {xmin, xmin + 1, . . . , xmax} where
xmin = 0 (minimum state) and xmax = 100 (maximum
state). The simulation parameters are listed in Table 1. We
assume that the step size for the simulation is dt = 0.01.
The horizon length, which corresponds to the number of
iterations, is chosen as T = 40. This length of horizon
is sufficient to highlight the convergence properties of the
population opinions.

For a specific choice of weights ai, i = 1, . . . , n, the
dynamics (1) have the form{

xi(t+ 1) = round (β(m̄(t)− xi(t)) + ui(t)) ,
x0 ∈ {xmin, xmin + 1, . . . , xmax}. (11)

where we have replaced
∑n
j=1 a

i
j(t)xj(t) by

m̄(t) :=
1

n

n∑
j=1

xj(t).

The above dynamics represents the case of a fully con-
nected network where every agent’s opinion is subject to
an attractive force from the average m̄(t).

We assume that the set of initial states are obtained from
an initial Gaussian distribution m0 with mean m0 equal to
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β [10−2] ṽ

Case I 0.0015 −0.08

Case II 15 −0.08

Table 2. Varying simulation parameters with
different regimes.

Algorithm

Input: Set of parameters as in Table 1
Output: Distribution function mt, mean mt and
standard deviation std(mt).

1 : Initialize. Generate xi(0) from Gaussian dis-
tribution with mean m̄0 and standard dev. std(m0),

2 : for time t = 0, 1, . . . , T − 1 do
3 : if t > 0, then compute mt, mt, and std(mt),
4 : end if
5 : for player i = 1, 2, . . . , n do
6 : compute xi(t+ 1) by solving (3),
7 : end for
8 : end for;
9 : STOP

50. For the three simulation examples we set the standard
deviation std(m0) equal to 8, 10, and 15, respectively.

For Case I, Figure 3 shows on the left the time plots of
the microscopic evolution of each agent’s opinion in the
three examples, std(m0) = 8 (top), std(m0) = 10 (middle),
std(m0) = 15 (bottom). Figure 3 (right) displays the time
plot m(t) (solid line and y-axis labeling on the left) and the
evolution of the standard deviation std(m(t)) (dashed line
and y-axis labeling on the right). Note that both the mean
distribution m(t) and the standard deviation std(mt)
converge to zero at approximately t = 30, which means
that all the agents’ opinions have reached ε-consensus
around zero.
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Fig. 3. Microscopic time plot (left) and time plot of mean
distribution and standard deviation (right) for Case I.

For Case II we increase β, which means that the attraction
force among the opinions is stronger. Figure 4 (left) from
top to bottom shows that the stream of opinions reach
consensus while the consensus value approaches zero. This
behavior reflects also in a rapid decrease of the standard
deviation std(mt) which reaches zero around t = 10.
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Fig. 4. Microscopic time plot (left) and time plot of
mean distribution and standard deviation (right) for
Case II.

5. CONCLUSIONS

We have analyzed convergence conditions of a distributed
allocation process arising in the context of TU games.
Future directions include the extension of our results
to population games with mean-field interactions, and
averaging algorithms driven by Brownian motions.
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APPENDIX

Proof of Lemma 1. By convexity of the distance function
| · |X and from (4) we have |wi(t)|X ≤

∑n
j=1 a

i
j(t)|xj(t)|X .

Hence convexity of (·)2 implies

|wi(t)|2X ≤
n∑
j=1

aij(t)|xj(t)|2X ,

Summing both sides over i = 1, . . . , n we obtain
n∑
i=1

|wi(t)|2X ≤
n∑
i=1

n∑
j=1

aij(t)|xj(t)|2X

=

n∑
j=1

( n∑
i=1

aij(t)
)
|xj(t)|2X =

n∑
j=1

|xj(t)|2X ,

where the last equality follows from the stochasticity of
A(t) in Assumption 1. 2

Proof of Lemma 2. Rearranging equation (7) we obtain

|xi(t+ 1)|2X − |wi(t)|2X
≤ ‖ui(t)‖2 + 2

(
wi(t)− PX [wi(t)]

)′
ui(t). (12)

Now Assumption 3 implies that for any wi(t) ∈ Rn, there
exists a mixed strategy p(t) ∈ ∆(S1) for Player i1 such
that, for any mixed strategy q(t) ∈ ∆(S2) of Player i2,
ui(t) =

∑
j∈S1

∑
k∈S2

pj(t)φ(j, k)qk(t) satisfies(
wi(t)− PX [wi(t)]

)′
ui(t) < ṽ |wi(t)|X < 0

whenever |wi(t)|X > 0. Furthermore by Assumption 3,
p(t) ∈ ∆(S1) can be chosen so that ‖ui(t)‖ is arbitrarily
small, and from the convexity of ∆(S1) it follows that(

wi(t)− PX [wi(t)]
)′
ui(t) < ṽ |wi(t)|X‖ui(t)‖/L < 0

for some L > 0. From (12) we therefore obtain

|xi(t+ 1)|2X − |wi(t)|2X < ‖ui(t)‖
(
‖ui(t)‖ − 2

|ṽ|
L
|wi(t)|X

)
.

This bound is negative if ‖ui(t)‖ < 2 |ṽ|L |wi(t)|X , whereas
|xi(t+ 1)|X = 0 if |wi(t)|X = 0 and ui(t) = 0. 2

Proof of Lemma 3. The lower bound in (8) follows
directly from the fact that Vi,T−1(ξ, ·) ≥ 0 for any horizon
T ≥ 1 and all ξ ∈ Rn × · · · × Rn.

To prove the upper bound in (8), consider first the case
of T = 1. The definition of Vi,0(ξ, ·) = |xi(·)|2X and the
constraint |xi(t + 1)|X ≤ |wi(t)|X (which is necessarily
feasible by Lemma 2) imply, for all i ∈ N , that

Vi,1(ξ(t), t) = |xi(t)|2X + min
p∈∆(S1)

max
q∈∆(S2)

|xi(t+ 1)|2X

≤ |xi(t)|2X + |wi(t)|2X .
Summing over i ∈ N and using Lemma 1, we obtain

n∑
i=1

Vi,1(ξ(t), t) ≤ 2

n∑
i=1

|xi(t)|2X . (13)

Consider next the case of T > 1. If the upper bound in (8)
holds for a horizon of T − 1, then since the constraints
|xi(t+ 1)|X ≤ |wi(t)|X for all i ∈ N imply (by Lemma 1)
that

∑n
i=1 |xi(t+ 1)|2X ≤

∑n
i=1 |xi(t)|2X , we have

n∑
i=1

Vi,T (ξ(t), t) ≤
n∑
i=1

|xi(t)|2X

+

n∑
i=1

min
p(t)∈∆(S1)

max
q(t)∈∆(S2)

T |xi(t+ 1)|2X

≤ (T + 1)

n∑
i=1

|xi(t)|2X . (14)

The upper bound in (8) follows by induction using (13)
and (14). 2

Proof of Theorem 1. The positive invariance of Φ(r)
for any r > 0 in (9) is a consequence of the constraint
|xi(t + 1)|X ≤ |wi(t)|X that is imposed on the optimal
receding horizon policy in (5). Specifically, by Lemma 2
this constraint is necessarily feasible, and Lemma 1 implies

n∑
i=1

|xi(t+ 1)|2X ≤
n∑
i=1

|wi(t)|2X ≤
n∑
i=1

|xi(t)|2X .

The contractivity and exponential convergence in (10)
results from ξ(0) ∈ Φ(rT ), since, from the definition of rT ,
the terminal state of (1)-(2) under the min-max optimal
sequence {(p(0), q(0)), . . . , (p(T − 1), q(T − 1))} for (5)
satisfies |x̂i(T )|X = 0, from which it follows that

Vi,T−1

(
ξ(0), 0

)
= Vi,T

(
ξ(0), 0

)
.

Furthermore (9) implies ξ(t) ∈ Φ(rT ) ∀t ≥ 0, and therefore

Vi,T (ξ(t), t) = |xi(t)|2X
+ min
p(t)∈∆(S1)

max
q(t)∈∆(S2)

uj(t),j 6=i,j∈N

Vi,T−1(ξ(t+ 1), t+ 1)

≤ |xi(t)|2X + Vi,T−1(ξ(t+ 1), t+ 1)

= |xi(t)|2X + Vi,T (ξ(t+ 1), t+ 1)

for all t ≥ 0. Summing this inequality over i ∈ N and using
the upper bound of Lemma 3 gives

n∑
i=1

[
Vi,T (ξ(t+ 1), t+ 1)− Vi,T (ξ(t), t)

]
≤ −

n∑
i=1

|xi(t)|2X

≤ − 1

T + 1

n∑
i=1

Vi,T (ξ(t), t)),

and hence
∑n
i=1 Vi,T (ξ(t), t) ≤

(
T
T+1

)t∑n
i=1 Vi,T (ξ(0), 0).

Applying the lower bound of Lemma 3 therefore yields (10).
2
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