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Abstract: Frequency control is traditionally done on the generation side. Recently we
have formulated an optimal load control (OLC) problem and derived a load-side primary
frequency control as a primal-dual solution to OLC. The load-side control rebalances power
and resynchronize frequencies after a disturbance but cannot restore the nominal frequency.
In this paper we modify OLC and derive from it a frequency-preserving load-side control that
rebalances power and restores the nominal frequency after a disturbance. Unlike the generation-
side secondary frequency control that is centralized, our load-side control only requires each bus
to communicate a Lagrange multiplier with its neighbors. We prove that such a distributed load-
side control is globally asymptotically stable and illustrate its convergence with simulation.

Keywords: Smart grids, Load frequency control, Optimal operation and control of power
systems, Power systems stability.

1. INTRODUCTION

Frequency control maintains the frequency of a power
network at its nominal value when demand or supply fluc-
tuates. It is traditionally implemented on the generation
side and consists of three mechanisms that work in concert
(Wood and Wollenberg, 1996; Bergen and Vittal, 2000;
Machowski et al., 2008). The primary frequency control,
called the droop control and completely decentralized,
operates on a timescale up to low tens of seconds and uses
a governor to adjust, around a setpoint, the mechanical
power input to a generator based on the local frequency
deviation. The primary control can rebalance power and
stabilize the frequency but does not restore the nominal
frequency. The secondary frequency control (called auto-
matic generation control) operates on a timescale up to a
minute or so and adjusts the setpoints of governors in a
control area in a centralized fashion to drive the frequency
back to its nominal value and the inter-area power flows
to their scheduled values. Economic dispatch operates on
a timescale of several minutes or up and schedules the
output levels of generators that are online and the inter-
area power flows. See (Ilic, 2007; Kiani and Annaswamy,
2012) for a recent hierarchical model of power systems and
their stability analysis.

Load-side participation in frequency control offers many
advantages, including faster response, lower fuel consump-
tion and emission, and better localization of disturbances.
The idea of using frequency adaptive loads dates back to
(Schweppe et al., 1980) that advocates their large scale
deployment to “assist or even replace turbine-governed
systems and spinning reserve.” They also proposed to
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use spot prices to incentivize the users to adapt their
consumption to the true cost of generation at the time
of consumption. Remarkably it was emphasized back then
that such frequency adaptive loads will “allow the system
to accept more readily a stochastically fluctuating energy
source, such as wind or solar generation” (Schweppe et al.,
1980). This is echoed recently in, e.g., (Trudnowski et al.,
2006; Lu and Hammerstrom, 2006; Short et al., 2007;
Donnelly et al., 2010; Brooks et al., 2010; Callaway and
Hiskens, 2011; Molina-Garcia et al., 2011) that argue for
“grid-friendly” appliances, such as refrigerators, water or
space heaters, ventilation systems, and air conditioners,
as well as plug-in electric vehicles to help manage energy
imbalance. Simulations in all these studies have consis-
tently shown significant improvement in performance and
reduction in the need for spinning reserves. A small scale
project by the Pacific Northwest National Lab in 2006–
2007 demonstrated the use of 200 residential appliances in
primary frequency control that automatically reduce their
consumption when the frequency of the household dropped
below a threshold (59.95Hz) (Hammerstrom et al., 2007).

Despite these simulation studies and field trials, there is
not much analytic study of how large-scale deployment of
distributed load-side frequency control will behave, with
(Kiani and Annaswamy, 2012) as a notable exception.
Recently another model is presented in (Zhao et al.,
2013) that formulates an optimal load control (OLC)
problem where the objective is to minimize the aggregate
disutility of tracking an operating point subject to power
balance over the network. The main conclusion is that
frequency-based load control, coupled with the power
network dynamics, serves as a primal-dual algorithm to
solve (the Lagrangian dual of) OLC. It establishes the
stability of completely decentralized load participation
in primary frequency control. Like the droop control on
the generation side, the scheme in (Zhao et al., 2013)

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 5411



rebalances power and resynchronizes frequencies after a
disturbance, but does not drive the new system frequency
to its nominal value. The goal of this paper is to extend
the scheme of (Zhao et al., 2013) to restore the nominal
frequency after a disturbance.

In (Zhao et al., 2013) an optimization problem (OLC)
is first designed and the load control is then derived
as a primal-dual algorithm to solve its Lagrangian dual
problem. We follow the same model here and modify
OLC such that its optimal solution restores the nominal
frequency (Section 3). We then derive our load control
scheme as the primal-dual algorithm for the modified OLC
(Section 4). Unlike the control in (Zhao et al., 2013) that
is completely decentralized, our scheme requires each bus
to communicate a Lagrange multiplier with its neighbors.
This is not surprising considering AGC that coordinates
the generators within each control area is centralized. We
prove that our design is globally asymptotically stable and
converges to an optimal solution of the modified OLC
(Section 5). Finally we present preliminary simulations to
illustrate these results (Section 6).

2. PRELIMINARIES

Let R be the set of real numbers and N the set of natural
numbers. Given a finite set S ⊂ N we use |S| to denote its
cardinality. For a set of scalar numbers ai ∈ R, i ∈ S we
denote aS as the column vector of the ai components, i.e.
aS := (ai, ∈ S) ∈ R|S|; we usually drop the subscript S
when set is known from the context. Similarly, for two
vectors a ∈ R|S| and b ∈ R|S

′| we define the column
vector x = (a, b) ∈ R|S|+|S′|. Given any matrix A, we
denote its transpose as AT . The diagonal matrix of a
vector a is represented by diag(ai) and for a set of matrices
{Ai, i ∈ S} we let blockdiag(Ai) denote the block diagonal
matrix. Finally, we use 1 (0) to denote the vector of all ones
(zeros).

2.1 Network Model

We consider a power network described by the graph
G(N , E) where N = {1, ..., |N |} is the set of buses and
E ⊂ N × N is the set of transmission lines denoted by
either e or ij such that if ij ∈ E , then ji 6∈ E . We partition
the buses N = G ∪L and use G and L to denote the set of
generator and load buses respectively.

The evolution of the transmission network is described by

Miω̇i = Pmi − (di + d̂i)−
∑
e∈E

CiePe i ∈ G (1a)

0 = Pmi − (di + d̂i)−
∑
e∈E

CiePe i ∈ L (1b)

Ṗij = Bij(ωi − ωj) ij ∈ E (1c)

where di denotes an aggregate controllable load, d̂i :=
Diωi denotes an aggregate uncontrollable but frequency-
sensitive load as well as damping loss at generator i, Mi

is the generator’s inertia, Pmi is the mechanical power
injected by a generator i ∈ G, −Pmi is the aggregate
power consumed by constant loads for i ∈ L, and Pij
is the line real power flow from i to j. Finally, Cie are
the elements of the incidence matrix C ∈ R|N |×|E| of the

graph G such that Cie = −1 if e = ji ∈ E , Cie = 1 if
e = ij ∈ E and Cie = 0 otherwise. Equation (1) assumes
purely inductive lines as well as the standard decoupling
approximation Kundur (1994). However, the analysis can
be extended to networks with constant R/X ratio Moon
et al. (1999).

Suppose the system (1) is in equilibrium, i.e., ω̇i = 0 for

all i and Ṗij = 0 for all ij. We further assume that the
equilibrium frequencies ω∗i are synchronized at the nominal
value and the equilibrium branch power flows P ∗ij are equal
to their scheduled values. We consider the system locally
around this equilibrium point (ω∗, P ∗) and henceforth
all variables in (1) denote perturbations around (ω∗, P ∗).
Suppose at time 0, there is a disturbance represented by
the vector (perturbations) Pm := (Pmi , i ∈ G ∪ L) that
produces a power imbalance.

Then, we are interested in designing a distributed control
mechanism that rebalances the system while preserving
the frequency in its nominal value. Furthermore, we would
like this mechanism to be fair among all the users (or loads)
that are willing adapt.

2.2 Optimal Load Control

In (Zhao et al., 2013) it was shown that given load cost

function ci(di) for the controllable loads and
d̂2i
2Di

for the
frequency sensitive loads, then setting

di(ωi) = c
′−1
i (ωi) (2)

makes (1) converge to the optimal value of following
optimal load control (OLC) problem

OLC:

minimize
d,d̂

∑
i∈N

ci(di) +
d̂2i

2Di
(3a)

subject to ∑
i∈N

(di + d̂i) =
∑
i∈N

Pmi . (3b)

The key insight of (Zhao et al., 2013) is that one can
define a distributed dual problem of OLC such that the

Lagrange multipliers νi satisfy d̂∗i = Diν
∗
i for the optimal

solution. Therefore, since d̂i := Diωi, once can think of
the frequency deviation ωi, for i ∈ N , as the Lagrange
multiplier νi of a (slightly modified) version of OLC.

However, the system (1)-(2) suffers from the disadvantage
that once a perturbation is included on Pm, the resulting
equilibrium point has ω∗i = ω∗ 6= 0. This is because the
optimal solution of OLC is achieved with ω∗ 6= 0. Thus, in
order to achieve distributed load control without shifting
the frequency one needs to modify the OLC in order to
impose the constraint ωi = 0.

3. FREQUENCY PRESERVING OLC

We now proceed to describe our frequency-preserving
optimal load control problem. The crux of our solution
comes from designing an optimal load control problem in
which the optimal solutions satisfies

d̂∗i = Diν
∗
i , d̂∗i = 0, (4)
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while still preserving the flow constraints (3b). That is,
we want to formulate an Optimal Load Control problem
in which the frequency deviations still represent Lagrange

multipliers, yet the optimal solution has ω∗i = d̂∗i /Di =
0. Therefore, any distributed control derived from this
optimization problem will restore the frequency to its
nominal value after a disturbance.

We therefore propose the following Frequency-Preserving
Optimal Load Control (FP-OLC) problem

FP-OLC:

minimize
d,d̂,P,R

∑
i∈N

ci(di) +
d̂2i

2Di
(5a)

subject to

Pmi −(di + d̂i) =
∑
e∈E

CiePe, i ∈ N (5b)

Pmi −di =
∑
e∈E

CieRe, i ∈ N (5c)

where (5c) is an additional constraint that will be shown
to guarantee the second equality of (4).

Assumption 1. (Strict Convexity). The cost function ci(di)
is strictly convex and second order differentiable (ci ∈ C2)
in the interior of its domain Di := [di, di] ⊆ R, such that
ci(di)→ +∞ whenever di → ∂Di.
Assumption 2. (Slater Condition). The PF-OLC problem
(5) has a strictly feasible point such that di < di < di.

The remainder of this section is devoted to understand the
properties of the optimal solutions of FP-OLC, including
(4). In order to make presentation compact sometimes we
will use x = (P,R) ∈ R2|L| and σ = (ν, λ) ∈ R2|N |, as well
as σi = (νi, λi). Next, we consider the dual function D(σ)
of the FP-OLC problem.

D(σ) = inf
d,d̂,x

L(d, d̂, x, σ) (6)

where

L(d, d̂, x, σ) =
∑
i∈N

Ç
ci(di) +

d̂2i
2Di

+ νi(P
m
i − (di + d̂i)

−
∑
e∈E

CiePe) + λi(P
m
i − di −

∑
e∈E

CieRe)

)

=
∑
i∈N

Ç
ci(di)− νidi +

d̂2i
2Di

− νid̂i + (νi + λi)P
m
i

å
+
∑
ij∈E

((νj − νi)Pij + (λj − λi)Rij)

(7)

Since ci(di) and
d̂2i
2Di

are radially unbounded, the mini-

mization over d and d̂ in (6) is always finite for given x
and σ. However, whenever νi 6= νj or λi 6= λj for ij ∈ E ,
then one can modify Pij or Rij to arbitrarily decrease (6).
Thus, the infimum is attained if and only if

νi = νj and λi = λj , ∀i ∈ N . (8)

Moreover, the minimum value must satisfy

c′i(di) = νi + λi and
d̂i
Di

= νi, ∀i ∈ N . (9)

Using (8) and (9) we can compute the dual function

D(σ) =


∑
i∈N

Φi(σi) σ ∈ Ñ

−∞ otherwise,
(10)

where

Φi(σi) = ci(di(σi))+(νi+λi)(P
m
i −di(σi))−

Di

2
ν2i , (11)

with

di(σi) = c′i
−1

(νi + λi) (12)

and

Ñ := {(σ) ∈ R2|N | : νj = νi, λj = λi ∀ij ∈ E}.

One interesting property of (10) is that although D(σ)
does not seem to be decoupled among the buses due to
the terms involving Pij and Rij , the structure of Cie makes
them vanish and decouples the minimization in (6).

The dual problem of the FP-OLC (DFP-OLC) is then
given by

DFP-OLC:

maximize
ν,λ

D(σ) =
∑
i∈N

Φi(νi, λi) (13a)

subject to

νj − νi = 0, ij ∈ E (13b)

λj − λi = 0, ij ∈ E (13c)

Remark 1. When the multipliers λi and equation (13c)
are removed, DFP-OLC is exactly the distributed optimal
load control proposed in (Zhao et al., 2013). This implies
that the solution (1)-(2) can be interpreted as a partial
primal-dual algorithm that solves (5) with the constraint
(5c) removed. 1

Although D(σ) is only finite on Ñ , Φi(σi) is finite every-
where on R2. Thus sometimes we use the extended version
of the dual function

Φ(σ) =
∑
i∈N

Φi(σi) (14)

instead of D(σ), knowing that D(σ) = Φ(σ) for σ ∈ Ñ .

The following two lemmas describe several properties of
our optimization problem. Given any set S ⊂ N we define

ΦS(σ) :=
∑
i∈S

Φi(σi).

Lemma 2. (Strict concavity of ΦS(σ)). For any nonempty
set S, the function ΦS(σ) is the sum of strictly concave
functions Φi(σi) and it is therefore strictly concave. In
particular, the (extended) dual function Φ(σ) = ΦN (σ)
is strictly concave.

Proof. From the derivation of Φi(σi) it is easy to show
that

Φi(σi) = min
di,d̂i

Li(di, d̂i, σi) (15)

where

Li(di, d̂i, σi) := ci(di) +
d̂2i

2Di
+ (νi + λi)(P

m
i − di)− νid̂i.

1 We say that the algorithm is a partial whenever some of either
primal or dual variables are statically set to its Lagrangian optimal
value, e.g. (2).
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Notice that Li(di, d̂i, σi) is linear in σi and strictly convex

in (di, d̂i).

Let di(σi) and d̂i(σi) be the unique minimizer of (15).
Then from (9) it follows that di(σi) = di(νi + λi) =

c′−1i (νi + λi) and d̂i(σi) = Diνi.

We will first show that, given σi,1 6= σi,2, then

(di(σi,1), d̂i(σi,1)) 6= (di(σi,2), d̂i(σi,2)). (16)

Suppose by contradiction that there is σi,1 6= σi,2 such
that

(di(σi,1), d̂i(σi,1)) = (di(σi,2), d̂i(σi,2)).

Then by (9), c′−1i (νi,1 + λi,1) = c′−1i (νi,2 + λi,2) and

Diνi,1 = Diνi,2. Thus, νi,1 = νi,2 = ν and c′−1i (ν +

λi,1) = c′−1i (ν + λi,2). But since ci(·) is strictly convex,
c′i and its inverse are strictly increasing which implies that
λi,1 = λi,2 = λ. Contradiction.

Finally, let θ ∈ [0, 1] and consider any two σi,1 6= σi,2.
Then,

Φi(θσi,1 + (1− θ)σi,2) = min
di,d̂i

Li(di, d̂i, θσi,1 + (1− θ)σi,2)

= min
di,d̂i

θLi(di, d̂i, σi,1) + (1− θ)Li(di, d̂i, σi,2)

> θmin
di,d̂i

Li(di, d̂i, σi,1) + (1− θ) min
di,d̂i

Li(di, d̂i, σi,2)

= θ Φi(σi,1) + (1− θ)Φi(σi,2)

where the strict inequality follows from (16). Thus, Φi(σi)
is strictly concave and by using the definition of strict
concavity we get ΦS(σ) is strictly concave ∀S ⊆ N . 2

Lemma 3. (FP-OLC Optimality). Given a connected graph
(N , E), then there exists scalars ν∗ and λ∗ such that

(d∗, d̂∗, x∗, σ∗) is a primal-dual optimal solution of FP-

OLC and DFP-OLC if and only if (d∗, d̂∗, x∗) is primal
feasible,

d̂∗i = Diν
∗
i , d∗i = c′−1i (ν∗i + λ∗i ), (17)

ν∗i = ν∗ and λ∗i = λ∗. (18)

Moreover, d∗, d̂∗ and σ∗ = (ν∗, λ∗) are unique and ν∗ = 0.

Proof. Assumptions 1 and 2 guarantee that the solution
to the primal (PF-OLC) is finite. Moreover, since by

Assumption 2 there is a feasible d ∈ intD = Π
|N |
i=1Di, then

the Slater condition is satisfied (Boyd and Vandenberghe,
2004) and there is zero duality gap.

Thus, since FP-OLC only has linear equality constraints,
we can use Karush-Kuhn-Tucker (KKT) conditions (Boyd
and Vandenberghe, 2004) to characterize the primal dual

optimal solution. Thus (d∗, d̂∗, x∗, σ∗) is primal dual opti-
mal if and only if:

(i) Primal feasibility: (5b)-(5c)
(ii) Dual feasibility: (13b)-(13c)
(iii) Stationarity:

∂

∂d
L(d, d̂, x, σ) = 0,

∂

∂d̂
L(d, d̂, x, σ) = 0

and
∂

∂x
L(d, d̂, x, σ) = 0

Primal feasibility (i) is satisfied by assumption. Dual
feasibility (ii) amounts to ν∗i = ν∗j and λ∗i = λ∗j ∀ij ∈ E ,

which since G is connected is obtained if and only ifs

ν∗i = ν∗ and λ∗i = λ∗ ∀i ∈ N .

Finally, using (7), Stationarity (iii) is equivalent to (ii) and

∂L

∂di
(d∗, d̂∗, x∗, σ∗) = c′i(d

∗
i )− (ν∗ + λ∗) = 0 (19a)

∂L

∂d̂i
L(d∗, d̂∗, x∗, σ∗) =

d̂∗i
Di
− ν∗ = 0 (19b)

which are the same as (17).

To show ν∗ = 0 we use (i). Adding (5b) over i ∈ N gives

0 =
∑
i∈N

(
Pmi − (d∗i + d̂∗i )−

∑
e∈E

CiePe

)
=
∑
i∈N

Ä
Pmi − (d∗i + d̂∗i )

ä
−

∑
e=ij∈E

(CiePe + CjePe)

=
∑
i∈N

Ä
Pmi − (d∗i + d̂∗i )

ä
(20)

and similarly (5c) gives

0 =
∑
i∈N

Pmi − d∗i (21)

Thus, subtracting (20) from (21) gives

0 =
∑
i∈N

d̂∗i =
∑
i∈N

Diν
∗ = ν∗

∑
i∈N

Di

and since Di > 0 ∀i ∈ N , it follows that ν∗ = 0. Finally,
since by Lemma 2, Φ(σ) is strictly concave, then σ∗ is

unique and using (19a)-(19b) it follows that d∗ and d̂∗ are
also unique since c′i(·) is strictly increasing. 2

4. DISTRIBUTED OPTIMAL LOAD CONTROL

In this section we show how we can leverage the power
network dynamics to solve the FP-OLC problem in a
distributed way. Our solution is based on the classical
primal dual optimization algorithm that has been of great
use to design congestion control mechanisms in communi-
cation networks (Kelly et al., 1998; Low and Lapsley, 1999;
Srikant, 2004; Palomar and Chiang, 2006).

Let

L(x, σ) = minimize
d,d̂

L(d, d̂, x, σ)

= L(d(σ), d̂(σ), x, σ)

= Φ(σ)− νTCP − λTCR (22)

where L(d, d̂, x, σ) is defined as in (7), d(σ) := (di(σi)) and

d̂(σ) := (d̂i(σi)) according to (17).

Similarly to (Zhao et al., 2013) we propose the following
partial primal-dual

ν̇i = ζi(P
m
i − (di(σi) +Diνi)−

∑
e∈E

CiePe), i ∈ G (23a)

0 = Pmi − (di(σi) +Diνi)−
∑
e∈E

CiePe, i ∈ L (23b)

λ̇i = γi(P
m
i − di(σi)−

∑
e∈E

CieRe), i ∈ N (23c)

Ṗij = βij(νi − νj), ij ∈ L (23d)

Ṙij = αij(λi − λj), ij ∈ L (23e)
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where its name comes from the fact that
∂

∂νi
L(x, σ) = Pmi − (di(σi) +Diνi)−

∑
e∈E

CiePe (24a)

∂

∂λi
L(x, σ) = Pmi − di(σi)−

∑
e∈E

CieRe (24b)

∂

∂Pij
L(x, σ) = −(νi − νj) (24c)

∂

∂Rij
L(x, σ) = −(λi − λj) (24d)

Equations (23a), (23b) and (23d) show that dynamics (1)
can be interpreted as a subset of the primal-dual dynamics
described in (23) for the special case when γi = M−1i and
βij = Bij . Therefore, we can interpret the frequency ωi as
the Lagrange multiplier νi.

This observation motivates us to propose a distributed
load control scheme that is naturally decomposed between
Power Network Dynamics:

ω̇i = M−1i (Pmi − (di + d̂i)−
∑
e∈E

CiePe) i ∈ G (25a)

0 = Pmi − (di + d̂i)−
∑
e∈E

CiePe i ∈ L (25b)

Ṗij = Bij(ωi − ωj) i ∼ j (25c)

d̂i = Diωi i ∈ N (25d)

and
Dynamic Load Control:

λ̇i = γi(P
m
i − di −

∑
e∈E

CieRe) i ∈ N (26a)

Ṙij = αij(λi − λj) ij ∈ E (26b)

di = c′i
−1

(ωi + λi) i ∈ N (26c)

Equations (25) and (26) show how the network dynamics
can be complemented with dynamic load control such that
the whole system amount to a distributed primal-dual
algorithm that tries to find a saddle point on L(x, σ).
The next section shows that this system does achieve
optimality as intended.

5. OPTIMALITY AND CONVERGENCE ANALYSIS

In this section we will show that the system (25)-(26) con-
verges globally to an optimal solution of the FP-OLC prob-
lem (5). We will achieve this objective in two steps. First,
we will show that every equilibrium point of (25)-(26) is an
optimal solution of (5), and second, we will show that ev-

ery trajectory (d(t), d̂i(t), P (t), R(t), ω(t), λ(t)) converges
to an equilibrium point of (25)-(26), or equivalently (23).

Theorem 4. (Optimality). Given a point p∗ = (d∗, d̂∗, x∗,
σ∗), then p∗ is an equilibrium point of (25)-(26) if and
only if is a primal dual optimal solution to the FP-OLC
problem.

Proof. The proof of this theorem is a direct application
of Lemma 3.

Let (d∗, d̂∗, x∗, σ∗) be an equilibrium point of (25)-(26).
Then, it follows from (25c) and (26b) that

ω∗i = ω∗ and λ∗i = λ∗

for some scalars ω∗ and λ∗, which implies that σ∗ is a dual
feasible point.

Moreover, since ω̇i = 0 and λ̇i = 0, then (25a)-(25b) and

(26a) imply that (d∗, d̂∗, P ∗, R∗) is a primal feasible point.
Finally, by definition of (25)-(26) condition (17) is always
satisfied. Thus we are under the conditions of Lemma (3)

and therefore p∗ = (d∗, d̂∗, x∗, σ∗) is primal-dual optimal
which also implies by (17) that ω∗ = 0.

Conversely, by the proof of Lemma 2 every optimal solu-

tion p∗ = (d∗, d̂∗, x∗, σ∗) must satisfy the Karush Kuhn
Tucker conditions which implies by (23) that p∗ is an
equilibrium point. 2

Theorem 4 implies that every equilibrium solution of (25)-
(26) is optimal with respect to FP-OLC. The rest of
this section is devoted to showing that in fact for every
initial condition (P (0), R(0), ω(0), λ(0)), the system (25)-
(26) converges to one of such optimal solution.

Since we showed in Section 4 that (25)-(26) are just a
special case of (23), we will provide our convergence result
for (23). Our global convergence proof leverages the results
of (Feijer and Paganini, 2010) on global convergence in
network flow control. Unfortunately, the results presented
there cannot be readily applied as (23) is not a full primal-
dual gradient law due to constraint (23b). However, the
next lemma shows that (23) amounts to a primal-dual
gradient law with respect to a different Lagrangian.

Lemma 5. (Primal-dual Gradient Law). Let σ−νL = (νG ,
λ) and consider the reduced Lagrangian

L(x, σ−νL) = maximize
νL

L(x, σ). (27)

Then under Assumption 1, L(x, σ−νL) is strictly concave
in σ−νL , convex in x and the dynamics (23) amount to

σ̇−νL = Z
∂

∂σ−νL
L(x, σ−νL) and ẋ = −X ∂

∂x
L(x, σ−νL)

(28)

where Z = blockdiag(diag(ζi)i∈G ,diag(γi)i∈N ) and X =
blockdiag(diag(βij)ij∈E ,diag(αij)ij∈E).

Proof. By Lemma 2 and (22), L(x, σ) is strictly concave
in σ. Therefore, it follows that there exists a unique min-
imizer ν∗L(x, σ−νL) of (27). Moreover, ν∗L(x, σ−νL) must
satisfy

∂L

∂νL
(x, σ−νL , ν

∗
L(x, σ−νL)) = (29a)

=
∂ΦL
∂νL

(σ−νL , ν
∗
L(x, σ−νL))− (CLP )T = 0 (29b)

which is equivalent to (23b).

Therefore, we can apply the Envelope Theorem (Mas-
Collel et al., 1995) on (27) to compute the partial deriva-
tives of L(x, σ−νL) with respect to νG , λ, P and R. Thus if
we partition the incidence matrix between generator and
load buses

C =

ï
CG
CL

ò
and let Φ(σ) = ΦG(σG) + ΦL(σL)

where ΦG(σG) =
∑
i∈G Φi(σi) and ΦL(σL) =

∑
i∈LΦi(σi),

we get

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5415



∂L

∂νG
(x, σ−νL) =

∂L

νG
(x, σ)

∣∣∣∣
ν∗L(x,σ−νL )

=
∂ΦG
∂σG

(σG)− (CGP )T (30a)

∂L

∂λG
(x, σ−νL) =

∂ΦG
∂λG

(σG)− (CGR)T (30b)

∂L

∂λL
(x, σ−νL) =

∂ΦL
∂λL

(σL)

∣∣∣∣
ν∗L(x,σ−νL )

− (CLR)T (30c)

∂L

∂P
(x, σ−νL) = νTGCL + ν∗L(x, σ−νL)TCL (30d)

∂L

∂R
(x, σ−νL) = λTC (30e)

Therefore the only apparent differences between (24) and
(30) are in (30c) and (30d) where the evaluation of νL =
ν∗L(x, σ−νL) may affect the partial derivative. However,
since ν∗L(x, σ−νL) satisfy (29), it follows that (23) and (28)
are equivalent. 2

We now present our main convergence results. Let E be
the set of equilibrium points of (23)

E :=

ß
(x, σ) :

∂L

∂x
(x, σ) = 0,

∂L

∂σ
(x, σ) = 0

™
,

which by Theorem 4 is the set of optimal solutions to FP-
OLC.

Theorem 6. (Global Convergence). The set E of equilib-
rium points of the partial primal dual algorithm (23) is
globally asymptotically stable. Furthermore, each individ-
ual trajectory converges to a unique point within E that
is optimal with respect to the FP-OLC problem.

Proof. By Lemma 5, we know that partial primal-dual
dynamics (23) can be interpreted as a complete prima-dual
gradient law of the reduced Lagrangian (27). Therefore,
following (Feijer and Paganini, 2010) we consider the
candidate Lyapunov function

U(x, σ−νL) =
1

2
(x− x∗)TX−1(x− x∗)

+
1

2
(σ−νL − σ∗−νL)TZ−1(σ−νL − σ∗−νL)

where (x∗, σ∗−νL) is any equilibrium point of (23). Then it
follows from Lemma 5 that

U̇(x, σ−νL) =

=
∂L

∂x
(x, σ−νL)(x∗ − x) +

∂L

∂σ−νL
(x, σ−νL)(σ−νL − σ∗−νL)

(31)

≤ L(x∗, σ−νL)− L(x, σ−νL) + L(x, σ−νL)− L(x, σ∗−νL)

= L(x∗, σ−νL)− L(x, σ∗−νL)

= L(x∗, σ−νL)− L(x∗, σ∗−νL)︸ ︷︷ ︸
≤0

+ L(x∗, σ∗−νL)− L(x, σ∗−νL)︸ ︷︷ ︸
≤0

(32)

where the first step follows from (28), the second from
convexity (strict concavity) of L(x, σ−νL) with respect
to x (σ−νL) and the last step from the fact that x∗

(σ∗−νL) is a minimizer (maximizer) of L(x, σ−νL). There-
fore, since U(x, σ−νL) is radially unbounded, Lassale’s
Invariance Principle (Khalil, 2002) asserts that the trajec-
tories (x(t), σ−νL(t)) converge to the largest invariance set

within {U̇(x, σ−νL) ≡ 0}. This implies that the trajectories

(x(t), σ(t)) of (23) must converge to the largest invariant
set

M ⊆ {(x, σ) : νL = ν∗L(x, σ−νL), U̇(x, σ−νL) ≡ 0}.

We now characterize M . Notice that in order to have
U̇ ≡ 0, then both terms in (32) must be zero. In particular,
since

L(x∗, σ−νL(t))− L(x∗, σ∗−νL) ≡ 0.

and L(x, σ−νL) is strictly concave on σ−νL , we must have
σ−νL(t) ≡ σ∗−νL by uniqueness of the optimal solution, or
equivalently

νG(t) ≡ 0 and λ(t) ≡ 1λ∗. (33)

Then by taking the derivative of (33) with respect to time

we obtain ν̇G ≡ 0 and λ̇ ≡ 0.

We will now show that

ν∗L(x(t), σ−νL(t)) ≡ ν∗L = 0. (34)

Since σ−νL(t) ≡ σ∗−νL , we must have by (31)

0 =
∂L

∂x
(x, σ∗−νL)(x− x∗) (35a)

=
∂L

∂P
(x, σ∗−νL)(P − P ∗) +

∂L

∂R
(x, σ∗−νL)(R−R∗) (35b)

= [ν∗TG ν∗L(x, σ−νL)T ]C(P − P ∗) + λ∗TC(R−R∗)
(35c)

= ν∗L(x, σ−νL)TCL(P − P ∗) (35d)

=

Å
∂ΦL
∂νL

(σ−νL , ν
∗
L(x, σ−νL))− ∂ΦL

∂νL
(σ∗−νL , 0)

ã
× (ν∗L(x, σ−νL)− ν∗L(x∗, σ∗−νL)) (35e)

≤ 0. (35f)

Step (35b) follows from definition of x and L(x, σ−νL),
(35c) from (30d) and (30e), (35d) from (33) and the fact
that CT1 = 0, (35e) follows from (29) and the fact that
ν∗L(x∗, σ∗−νL) = 0, and (35f) follows from the monotonicity
of the gradient of concave functions.

Therefore, since ΦL(σL) =
∑
i∈LΦi(σi) is strictly concave,

equality only holds when equation (34) holds. It also
follows from (33)-(34) and (23d)-(23e) that ẋ ≡ 0. Thus,
we have that M ⊆ E.

Now consider any trajectory of the power flows P (t). Then
it follows that

P (t)− P (0) =

∫ t

0

Ṗ (s)ds =

∫ t

0

BCT ν(s)ds

= BCT
∫ t

0

ν(s)ds = BCT θ(t).

where θ(t) is defined to be
∫ t
0
ν(s)ds. Thus it follows that

P (t) is in an affine set characterized by the initial condition
and C, i.e. P (t) ∈ P (0) + span[BCT ], and therefore

(x, σ)(t) ∈ FP (0) := {(x, σ) : P = P (0)+BCT θ, θ ∈ R|N |}.

Finally since we also know that (x, σ)(t) → M , then we
must have

(x, σ)(t)→ FP (0) ∩M.

Now take any (x, σ) ∈ M ∩ FP (0). Since, M ⊆ E,
Theorem 4 implies that (x, σ) must be a primal-dual
optimal solution to FP-OLC with ν = 0, λ = λ∗1 and

CP = Pm − d(λ∗1). (36)
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Moreover, by definition of FP (0), P = P (0) + BCT θ and
we obtain

C(P (0) +BCT θ) = Pm − d∗ ⇐⇒ (37)

CBCT θ = Pm − d∗ − CP (0). (38)

Notice that except for θ the terms of (38) are fixed. The
matrix CBCT is a Laplacian matrix with null space given
by ker (CBCT ) = span (1). Thus, given θ1 6= θ2 both
satisfying (38) we must have (θ1 − θ2) ∈ span(1).

Now let P 1 = P (0) + BCT θ1 and P 2 = P (0) + BCT θ2.
Then

P 1 − P 2 = (P (0) +BCT θ1)− (P (0) +BCT θ1)

= BCT (θ1 − θ2) = 0.

Therefore, there is a unique vector P such that (x, σ) ∈
M ∩ FP (0). A similar argument also shows that there is
also a unique R such that (x, σ) ∈M ∩ FP (0).

Therefore the set M∩FP (0) is a singleton to which (x, σ)(t)
converges.

2

Fig. 1. IEEE 39 bus system: New England

6. NUMERICAL ILLUSTRATIONS

We now illustrate the behavior of our control scheme and
compare it with the one previously proposed in (Zhao
et al., 2013). We consider the widely used IEEE 39 bus
system, shown in Figure 5, to test our schemes. The
network parameters as well as the stationary starting point
were obtained from the Power System Toolbox (Chow and
Cheung, 1992) data set.

Each bus is assumed to have a controllable load with
Di = [−dmax, dmax], with dmax = 1p.u. on a 100MVA base
and disutility function

ci(di) =

∫ di

0

tan

Å
π

2dmax
s

ã
ds

= −2dmax

π
ln

Å∣∣∣∣cos

Å
π

2dmax
di

ã∣∣∣∣ã .
Thus, di(σi) = c′i

−1
(ωi + λi) = 2dmax

π arctan(ωi + λi). See
Figure 2 for an illustration of both ci(di) and di(σi).

Throughout the simulations we assume that the aggregate
generator damping and load frequency sensitivity param-
eter Di = 0.1 ∀i ∈ N and use αij = 2 ∀ij ∈ E . The
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d
i
(ω

i
+

λ
i
)

Fig. 2. Disutility ci(di) and load function di(ωi + λi)

value of these parameters does not affect convergence, but
in general will affect the convergence rate. We simulate
the OLC-system proposed in (Zhao et al., 2013) as well as
the FP-OLC-system (25)-(26), after introducing a pertur-
bation at bus 1 of Pm1 = −.5p.u.. Figures 3 and 4 shows
the evolution of the bus frequencies for the OLC and FP-
OLC systems. It can be seen that while the OLC load
controllers fail to recover the nominal frequency, the FP-
OLC controllers can jointly rebalance the power as well as
recovering the nominal frequency.

0 5 10 15 20 25 30
59.75
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59.9

59.95

60

60.05

t

ω
i

Fig. 3. Frequency evolution using OLC controllers of (Zhao
et al., 2013)
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59.85

59.9

59.95

60

60.05

t

ω
i

Fig. 4. Frequency evolution using FP-OLC controllers

Finally, we evaluate the “social” cost that the loads must
incur in order to resynchronize the system. To compute
this cost we vary the perturbation Pm1 between −10 and
10 and compute for each point the cost difference

∆C(Pm1 ) :=
∑
i∈N

ci(d
∗,FP-OLC
i (Pm1 ))− ci(d∗,OLC

i (Pm1 ))

where d∗,OLC(Pm1 ) and d∗,FP-OLC(Pm1 ) are the optimal
solutions to OLC and FP-OLC respectively when the
size of the perturbation is Pm1 . Similarly, we can denote
ω∗i (Pm1 ) as the value of the optimal frequency when OLC
is used. Figure 5 the cost ∆C(Pm1 ) as a function of
ω∗(Pm1 ) and show how there is an additional “social” cost
associated with maintaining the frequency to its nominal
value.
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Fig. 5. Resynchronization cost

7. CONCLUDING REMARKS

This paper studies the problem of restoring the power
balance of a power network by dynamically adapting the
loads. We show that provided local communication is
allowed among different buses, it is possible to rebalance
the power mismatch without incurring in a frequency
error. We show that our distributed solution converges for
every initial condition and provide numerical simulations
that verify our findings.

As future work we are interested in adapting our scheme
to include the power scheduling constraints on inter area
tie lines as well as studying the compatibility of our
scheme with primary the primary control available on the
generation side.
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