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Abstract: Dual switching linear systems are systems with piecewise linear dynamics governed by two
distinct external switching signals. In this paper one switching signal is stochastic and modeled as a
time-homogeneous Markov chain, and the second one is assumed to be a control signal taking values in
a finite set. This situation arises, for instance, in multi-loop networked control systems (NCS) with
limited transmission capacity and lossy communication channels, where the control variable is the
scheduling signal and the stochastic switching accounts for packet dropout. The aim of this paper is
to derive suitable switching strategies for dual switching linear systems, ensuring mean-square stability
and attaining guaranteed bounds on .73 and 7, performance indices. The relevant sufficient conditions
are expressed in terms of feasibility of sets of coupled matrix inequalities. The application to a scheduling

design problem in NCS’s is also discussed.
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1. INTRODUCTION

Switched linear systems are piecewise linear systems evolving
according to a finite number of operating modes, subject to
an external switching signal that selects, at any time instant,
which mode is currently active. These models are very useful
to describe systems affected by sudden faults, configuration
changes or switching control laws. The switching signal can
be modeled as either a deterministic or a random signal taking
values in a finite set. The former case has been widely studied
and an extensive literature is now available on stabilization and
control of deterministic switched linear systems, see e.g. the
books Liberzon (2003), Sun and Ge (2011), the survey papers
Colaneri (2009), Lin and Antsaklis (2009) and the references
therein. On the other hand, the models where the switching sig-
nal is described as a stochastic Markov chain are referred to as
Markov Jump Linear Systems (MJLS) and their properties have
been deeply investigated, as well (see again Colaneri (2009) and
the recent book Costa et al. (2013)).

In various applications (such as networked control, fault toler-
ant systems, communication networks) problems are encoun-
tered where the system is jointly affected by two independent
external sources, for instance a manipulated switching signal
and stochastic jumps. These systems are referred to in the lit-
erature as dual switching systems, Bolzern et al. (2010, 2013);
Bolzern and Colaneri (2013). They exhibit a complex dynamic
behavior due to the interplay between the two switching signals.
A typical instance of dual switching systems might be a net-
worked control system (NCS) with deterministically switching
control laws and stochastic jumps between levels of network
congestion, see e.g. Hespanha et al. (2007).

Some results on the stochastic stability of switching MJLS,
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i.e. systems with random Markovian jumps and a deterministic
switching rule with dwell-time constraints, were discussed in
Bolzern et al. (2010) and Bolzern et al. (2013). In Bolzern and
Colaneri (2013), dual switching discrete-time systems with a
deterministic periodic signal and uncontrolled switches were
studied in terms of stability and performance. In all these pa-
pers the deterministic switching signal was not considered as a
decision variable.The problem addressed in the present paper,
on the other hand, concerns the design of the deterministic
switching signal for switched MJLS. The design requirements
are stochastic stability of the dual (deterministic/stochastic)
switching system and guaranteed bounds on its 7 and J72,
performances. The relevant sufficient conditions are expressed
in terms of feasibility of coupled matrix inequalities. An appli-
cation of the theory to a scheduling design problem in NCS’s
with multiple plants, packet dropout and capacity limitation
in the communication channel between the regulator and the
actuators, see e.g. Hristu-Varsakelis (2005), is also discussed.
The paper is organized as follows. After introducing a general
setting for dual switching systems in Section 2, a specific moti-
vating problem of scheduling design in networked control sys-
tems is presented in Section 3. The main results of the paper are
derived in Section 4, where the design of switching strategies
ensuring stability and guaranteed % and JZ., performances
is worked out. In Section 5, these design tools are applied
to the networked control example. The paper ends with some
concluding remarks reported in Section 6.

The notation adopted in the paper is fairly standard. In particu-
lar, the set of all signals with finite 2-norm is denoted by %5 and
6(t) is the unitary Dirac delta function. Moreover, Jy is the set
of zero row-sum Metzler matrices of size N, i.e. square N x N
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real matrices with nonnegative off-diagonal entries and whose
diagonal terms are such that each row sums up to zero. For a
stochastic variable x, the notation E[x| represents its expected
value. The symbol .£V (x,s) is used to denote the infinitesimal
generator of the stochastic function V (x,s), see e.g. Kushner
(1967). For symmetric matrices, the symbol * stands for each
of its symmetric blocks.

2. PROBLEM FORMULATION

Consider the class of dual switching linear systems described
by

x(0) = xo (1
2(t) =M x(1) ®)

o(t)

i(t) = AN x(0) + BI wi),

o(t) o

where x(t) € #Z" is the state, w(t) € Z™ is a deterministic
disturbance with w(-) € %, z(t) € #Z7” is the performance
output, ¥(¢) is a deterministic right-continuous switching signal
taking values in the finite set .# = {1,2,...,M}, and o(?) is
a right-continuous time homogeneous Markov process taking
values in the set 4" = {1,2,...,N}, with transition rate matrix
A. More precisely, the off-diagonal entry A;; > 0,i # j of A
represents the probabilistic transition rate from mode i at time ¢
to mode j at time ¢ + &, namely

Pr{o(t+h)=jlo(t) =i} =Ajh+o(h) , h>0
Moreover
N
A‘n:* Z A‘lj
J=1j#i

so that A is a zero row-sum Metzler matrix, i.e. A € Jy.
In the sequel, we assume that A is irreducible, so that the
Markov process admits a unique stationary (strictly positive)
distribution 7 satisfying 7’ A = 0, see e.g. Bremaud (1998).

In summary, the system is subject to both stochastic jumps
governed by the form process 6(¢) and deterministic switches
dictated by the control signal y(¢). Therefore, the state dy-
namics of the overall system is characterized by NM triplets
(AL,B;,C),ie N ,re /.

In accordance with standard notions of stochastic stability, for
a given deterministic switching signal y(z), system (1) is mean-
square stable (MS-stable) if, for w(z) = 0, it follows that

Tim E[[lx(t)[[2] = 0

for any initial condition xy and any initial probability distribu-
tion of o(0). Here and afterwards, the symbol E[-] will denote
the expectation with respect to the stationary distribution .

We will consider two performance indices inspired by the
standard % and J#. indices of deterministic LTI systems.
Precisely, let xo = 0, ¥(¢) be given, and define z¥)(¢) as the
impulse response generated by w(t) = 6(¢)eg, where ¢y, is the
k-th column of the m x m identity matrix. The 7% performance
is defined as the following expected quadratic cost

L(y)=E ]ﬁl/ow(zm(t))'z(k)(t)dt] 3)

As for J#.-type performance, we consider xo = 0 and the worst-
case index

)= s (| [7eoyztan] —p* [ wioywioar) @

Wecfz
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where p > 0 is the prescribed level of disturbance attenuation.
When Jo.(y) < 0 the JZ, requirement is guaranteed.

The design of an optimal switching signal y(¢) yielding the min-
imum of (3) is a formidable task which would require the use
of the Maximum Principle for optimal stochastic control. In the
following, we will consider the simpler problem of designing
a suboptimal feedback control (¢) so that the overall system
is mean-square stable and an upper bound J, of the optimal
cost is guaranteed. As for the JZ.-type performance, we will
work out a switching design procedure ensuring Jo.(y) < 0. In
both cases, sufficient conditions will be provided. Note that, in
our derivation, the switching signal y(¢) is allowed to switch at
infinitely high frequency, possibly giving rise to sliding mode
state trajectories.

Remark 1. In a full information context, the switching signal
v(¢) may exploit the knowledge of both x(¢) and o(¢), namely
v(t) = g(x(¢),0(¢)). This is the case that will be considered in
the paper. For what concerns the case of partial information,
two situations are possible, depending whether just o (¢) or x(¢)
is accessible.

In the former case, the system is described by

i(t) = ASOx(0) + B () )

2(1) = 49k (r) 6)

o)

and a possible control design strategy consists in constructing
the static decision map g : .4/~ — .#. Note that, for a given
map g, system (5), (6) is a standard MJLS, for which stability
analysis and performance assessment can be carried out by
means of well-established tools, Costa et al. (2013). In order to
find the optimal map, an exhaustive combinatorial search can
be rather easily implemented.

When just x(z) is available for feedback, a possible strategy
would consist in using present and past values of x(¢) to
reconstruct the current value of o(r), see e.g. Doucet et al.
(2001); Tugnait (1982). Then, relying on a kind of certainty
equivalence principle, one might select y(¢) as a function of
x(r) and the estimate 6(¢) along with the techniques developed
later in this paper. Proving stability and performance properties
of this heuristic approach is an interesting open issue.

3. SCHEDULING DESIGN IN NETWORKED CONTROL
SYSTEMS

To illustrate a potential application of the dual switching frame-
work, consider a scheduling problem for a multi-loop net-
worked control system subject to packet dropout. To be precise,
assume that M linear (possibly unstable) plants have to be
controlled by a single regulator exchanging input-output data
through a shared network, as depicted in Figure 1. The regulator
is allowed to attend only one plant at a time according to the
scheduling signal y(¢) taking values in the set .# . Transmission
of sensor/actuator data over the network is subject to random
failures modeled by the Markov process o (t), taking values in
the set .4". For simplicity, we assume that full state informa-
tion is transmitted by each sensor without failures, so that the
regulator has full access to the state information of all plants.
As for the regulator-actuator channel, let 6(r) = 1 stand for the
no-fault mode, when all packets are correctly transmitted, and
o(t) = 2 stand for packet dropout mode, when no packet is
delivered. A Markov chain model with transition rate matrix A
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Fig. 1. The NCS considered in the application.

is assumed to describe the jumps between these two modes.
Of course, more complex models could fit within the given
framework, by increasing the number of logical states (e.g.
allowing for packet loss also in the sensor-regulator channel),
augmenting the state to account for time delay effects, and
introducing suitable state observers in the regulator when full-
state information is not available. Assume that the regulator is
equipped with M control laws tailored to the individual plants
and only the scheduling signal has to be designed so as to satisfy
stability and performance requirements. If the regulator has
access to the value of o (¢), the scheduling design problem can
be cast in the formulation of Section 2. Consider, for instance,
a NCS with two plants (M = 2) described by

X,‘(I) ZF}X,'(I)-FG,'M,'(I)-‘,-L[W,'(I), i=1,2 @)
The control law issued by the regulator is modeled as

. o Kix,-(t), if ’)/(t) =
fi(t) = { 0. if y(1) #i
and the true actuator signals, affected by random packet loss,

are given by
Mi(f) _ {ui(t)a lf G(t) =1

0, if o(r)=2
Letting x(r) = [x; ()’ x2(¢)'], the overall system can be writ-
ten as in (1), (2) with

[F1+G1K1 ] A2 — [F1 0 ]

0 i+ GK>
Fi 0 » L1 O _—
A A {0 FJ Bi_{O Lz]’ iir=1,2

Finally, it might be reasonable to take z(r) = Cx(r), indepen-
dently of o(¢) and y(¢), to represent the performance output.
The objective of the scheduling design is to guarantee simulta-
neous MS-stabilization of all plants, along with the fulfillment
of some global % or J#. performance specifications.

4. SWITCHING STRATEGIES DESIGN

The first result of this section deals with the design of a state-
feedback switching strategy ensuring MS-stability of system
(1) when the disturbance w(z) is absent.

Theorem 2. Consider system (1) with w(z) = 0. Assume that
there exist positive definite matrices P/, i € A, r € ./ and
a Metzler matrix @ = [@,] € Jy satisfying, Vi, r, the matrix
inequalities

N M
(A)VFl + PIA + 3 AiPf + X ouPE <0 (8)
j=1 k=1

Then, the feedback switching law

y* = g(x, G) =
makes the closed-loop system MS-stable.

: /
argmin,x PSx

Proof. Consider the stochastic Lyapunov function V(x,s) =
min, x'P/x and compute the corresponding infinitesimal gen-
erator at time ¢ with the positions x(f) = x, o(t) = s and
g = argmin,x’ P/ x. For brevity, the event o(r) = s and the joint
event (x(1),0(t)) = (x,s) will be indicated by & and & s, re-
spectively. It results that:

1
LV (x,5) = }llirr(l) 7 (EV(x(t+h),0(t+h)|Es] —V(x,s))
—
.1 ; . ipr
= ]113(1) A (E[mmx(t +h)'P, (+n X+ 1) Exs] — mrmx’PSx)
.1 ;
= }111_r>r(1) A (E[mmx (I+A8h)' P o (r-h) (I T ASh)x| &) —x’Png)

Notice now that the expected value of the minimum of a
function is not greater than the minimum of the expectation.

Moreover,
ElPg &) = h X AP +
J#s

Therefore, by neglecting the terms of order o(h), it follows

(1 4+ Agh) Pl + o(h)

1
LV (x,s) < lim — Y (minx’F,xfx/Png)

h—0 r
where

=h (27%,13’ (A%) P’+P’Ag> +P]

Now, since the function x'F,x evaluated in r = g is not less than
its minimum, i.e. X' Fx > min,x'F,.x, we obtain

2LV (x,5) < ((Ag) P3+P3Ag+Z)LSJP>
Then, thanks to (8), it results

M
7)(/ Z(pgkpsk X
k=1

Since x'Pkx > x'Pfx,Vk and T, @g = 0, it holds that

ZLV(x,5) <

LV (x,5) < <2 (png>x X Qe PSx <

k#g

—x <Z (pngSg> x— X Qg P8x =

k#g

M
== Qux'PSx=0
k=1

Since £V (x,s) < 0, MS-stability follows from standard results
on stochastic Lyapunov functions, see e.g. Kushner (1967). [

By slightly strengthening the conditions of Theorem 2, it is
possible to design a stabilizing switching strategy which yields
a guaranteed 7% performance.

Theorem 3. Consider system (1), (2) with xo = 0, By =
Bg,Vr € ., and the performance index (3). Assume that there
exist positive definite matrices P/, i € A", r € ./ and a Metzler
matrix ® = [@,] € I satisfying Vi, r the matrix inequalities
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N M
(ALYPI+PIAL+ Y AP+ Y @nPE + (C))'CH <0 (9)
j=1 s=1

Then, the feedback switching law

Y" = g(x,0) = argmin,x' P, x (10)
makes the closed-loop system MS-stable and guarantees that
D (7*) < J» = min, Etrace((Bs)' P5Bg ).

Proof. First observe that feasibility of inequalities (9) implies
feasibility of inequalities (8), so that the system is MS-stable.

Using again the stochastic Lyapunov function
V(x,s) = mrinx'Per

and applying the same arguments as in the proof of Theorem 2,
it can be shown that

M
LV (x,5) < —x' ((Cf)'CSg + 2 (pngsg> x=—x'(C8)'C8x
k=1

Consider now the trajectories of system (1), (2) when w(f) =
6(t)er and xo = 0. In view of the well-known Dynkin’s For-
mula, one obtains (recall that the expectation is taken with
respect to the stationary distribution of o (r))

BV (x(=).0)] - ElV(4(0"). ) < ~E | [0y 0]

Thanks to stability and noticing that
E[V(x(0T),0)] = E[mrine;(B'GPgBaek]

one can conclude that
n(r)=E| % [ @0y <r>dr]
L k=1

> mine;B;P{,Boek]
r
k=1

<E

m
D e;B’(,P{,BGek]
k=1

for any 7 € .# . Hence

Ly < min E [trace((Bs)' PyBs)] (11)

so that the result follows. O

In the theorem above we have assumed that the matrix B}
does not depend on the controlled switching signal y(¢). This
was done for simplicity. Indeed, when dealing with impulse
responses, the value of the input matrix is relevant only at time
0. If the input matrix did depend on 7, the value y(0) would
be an additional degree of freedom in minimizing the cost. To
be precise, the feedback switching law (10) would be valid for
t > 0 and (11) would become

Ly < min £ trace((Bz;(O))'Png;(O))

so that a minimization with respect to ¥(0) could be further
performed.

Observe that the performance bound (11) depends both on
® ¢ Iy and the matrices P! satisfying the bilinear matrix
inequalities (9). In order to strengthen this bound, an optimiza-
tion procedure can be worked out, e.g. by gridding the free
parameters of @ in a finite set and solving, for each selected
@, a convex optimization problem.

Finally, consider the 77, performance associated with the index
(4). We can prove the following result.

Theorem 4. Consider system (1), (2) with xy = 0 and the per-

formance index (4) with a given value of p > 0. Assume that

there exist positive definite matrices P/, i € A", r € .4 and

a Metzler matrix @ = [@,] € Jj satisfying Vi,r the matrix

inequalities

N M

(AP +PLAT+ 3 Py + S, 0Pl +(C)C
j=1 s=1

* — pzl
12)

FB | _,

Then, the feedback switching law

Y = g(x,0) = argmin,x’ Pyx
makes the closed-loop system MS-stable and guarantees that
Joo(7) 0.

Proof. First of all, feasibility of (12) implies feasibility of (8),
so that the switching law y* guarantees MS-stability.

Notice also that, by the Schur complement Lemma, inequalities
(12) can be equivalently rewritten as

N M
(A{)/Pir + PirA{ + 2 )LijP; + (PrstY
j=1 s=1

+(C))'Cl +p*PIBI(B])'F <0
Now, consider again the stochastic Lyapunov function V (x,s) =

min, x’'P/x, and compute the infinitesimal generator £V (x,s)
along the systems trajectories. It is easily obtained that

LV (x,5) < =2 (C5) Cox+ p?w'w — p?[lw— p~2(BS) Péx|?
< X (C8)'Céx+ p*w'w
Using again the Dynkin’s formula, and recalling that xy = 0, it
results that, for all w € %,

0<—E [/()Wz(t)’z(t)dt] +p2/0.

so that the thesis follows. O

oo

w(t) w(t)dt

5. APPLICATION TO THE SCHEDULING DESIGN
PROBLEM

The design techniques of Section 4 can be applied to the two-
plant NCS scheduling problem of Section 3. Precisely, assume
that both open-loop plants (7) are unstable first-order systems,
with F1 =1, b =2, Gi =G, =1, Ly =L, = 1, and the
controller gains are K; = K, = —10. Moreover, consider the
performance output z(z) = x(¢), so that C = I, irrespective of
o(t) and y(¢). Finally, let the transition rate matrix A of the
Markov process o () be given by

-5 5

A= [10 10}
Note that, for this Markov chain, the stationary probability
distribution is @ = [2/3 1/3], meaning that the stationary
probability of the packet dropout mode is 1 /3. Since both open-
loop plants are unstable and only a single plant can be attended
at any time-instant, the scheduling signal y(¢) must be suitably
calibrated so as to balance the control action between the two
loops, taking also into account the possible effect of packet
dropout.
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Consider the design of a switching strategy aimed at minimiz-
ing the bound on the .77 performance. With the given data, the
input matrix B} coincides with the identity matrix for all i and
r. Due to the diagonal structure of all the matrices, the problem
of minimizing the expected quadratic cost J,(y) of (3) is trivial.
As a matter of fact, when the impulse is applied to the first input
channel, the second plant remains indefinitely in the null state
and the optimal scheduling strategy consists in keeping the loop
1 under control, and viceversa. Therefore, in order to make the
problem more significant, by enforcing coupling between the
control loops, it is necessary to consider a nondiagonal input
matrix, for instance

B = E 11}, ir=1,2

In order to design a suboptimal switching strategy, the condition
(9) of Theorem 3 has to be satisfied with a given choice of the
Metzler parameter ®@. Once a feasible solution is obtained, the
guaranteed 7% cost is computed as
2
J> = minEtrace((Bs)' PyBs)| = min Y mtrace((B;) P/ B;)

r r i=1
By gridding the parameters @, and @, in the box [0, 2000] x
[0,2000], it is found that the best choice that minimizes such
an upper bound is @12 = 1800, ¢ = 1100, resulting in J, =
1.9008.

In order to compare the guaranteed performance bound with
the actual cost, 100 simulations were run with different signals
o (t), randomly generated according to the assumed stochastic
model. By averaging the results, a sample estimate J> of the
expected cost J, of eq. (3) was obtained. It turned out that
J> = 1.8090, which is very close to the guaranteed bound J>.

6. CONCLUDING REMARKS

The problem of designing a state-feedback switching law for
dual switching linear systems subject to Markov jumps has
been solved. Design requirements include mean-square stabil-
ity and the achievement of guaranteed .7 and 7%, costs. These
results may prove useful in several contexts, such as schedul-
ing problems for NCS’s with capacity limitations and random
faults. Further research will address the issue of mitigation of
chattering along possible sliding modes generated by the con-
trol strategies. Moreover, NCS’s with more complex structure
and/or dynamical behaviour will be considered.
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