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Abstract: This paper concerns the problem of networked control for vehicle lateral dynamic
stability. Based on the Takagi-Sugeno (T-S) fuzzy representation of the vehicle, the state
feedback and observer-based control designs are addressed. These controllers should guarantee
the global stability of the resulting closed-loop fuzzy system with a prescribed H∞ disturbance
attenuation level. Digital communication network conditions, such as network-induced delays,
data packet dropouts and limited communication capacity due to signal quantization are taken
into consideration. Using fuzzy Lyapunov-Krasovski functional, we derive a less conservative
delay-dependent criterion for stability analysis and control synthesis of networked control
systems with a quantizer. Simulation results illustrate the effectiveness of the proposed approach.
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1. INTRODUCTION

In order to cope with some critical driving situations,
the general tendency in automotive vehicle field is to
improve passengers safety by integrating various active
control systems (such as ABS, ESP, TCS, ASR, DYC
...) Madauand et al. (1993).These systems are generally
based on the distributed assistant systems which work
through the communication networks such as Controller
Area Network (CAN) Froberg et al. (2004). The main
characteristic of a Networked control system (NCS) is
that its components (sensors, controller, and actuators)
are connected to a feedback controller via a shared commu-
nication network. These embedded distributed control sys-
tems, used in the vehicle electronic control systems, permit
an economic, flexible, remote monitoring and adjustment
of (NCS) components. However, the limited bandwidth
and the complex network resources due to the introduction
of communication network into the closed-loop control
can caused some unavoidable problems such as Network-
induced delays, random, time delay, data packet loss and
quantized measurements; that may lead to instability and
performance degradation. It is pointed out that the com-
munication delay, which has time-varying characteristics,
is one of the important issues to be considered in NCS
analysis and synthesis Peng et al. (2008); Jiang and Han
(2008). Also, the quantization effect is an important issue
to be addressed. In fact, due to the bandwidth limitation,
the real communication networks are not able to send data
with high level precision. Therefore, effective quantization

⋆ Sponsor and financial support acknowledgment goes here. Paper
titles should be written in uppercase and lowercase letters, not all
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of sensor and actuator signals can help to reduce the
sizes of data packets and the effect of signal quantization,
must be considered into control design problem Kchaou
and Toumi (2014). In another hand, it is noticed that
most existing yaw moment control strategies rely on the
measurement of both sideslip angle and yaw rate. How-
ever, if the yaw rate can be directly measurable by a
yaw rate sensor (gyroscope), the sideslip angle will have
to be estimated using an observer because the current
available sensors for sideslip angle measurement are all too
expensive to be acceptable by customers.

Our main objective is to develop an observer-based fuzzy
control scheme that uses a communication network to
exchange the sensor and actuator data transmission in
order to improve stability and performances of vehicle
lateral dynamics. In the analysis and design, the vehicle
lateral will be represented by a Takagi-Sugeno (T-S) fuzzy
model Takagi and Sugeno (1985). It is usually referred
to as the bicycle model Dahmani et al. (2013). The
structure of this paper is organized as follows : the second
section describes the (T-S) fuzzy model of nonlinear lateral
dynamics. In section 3, the proposed lateral dynamic
networked control structure based on the estimation on
sideslip angle is introduced and its design method is
described. In section 4, simulation results are carried out
to demonstrate the effectiveness of the proposed networked
active safety system in terms of improving the vehicle
stability. Finally, concluding remarks are made in section
5.

Notations:W +WT is denoted as Sym(W ).
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Symbol (*) within a matrix represents the symmetric
entries. l2 is the space of square integrable functions over
[0,∞), and ||.||2 denotes the l2-norm.

2. VEHICLE MODEL DESCRIPTION

The two-dimensional model with nonlinear tire character-
istics of the vehicle behavior can be described by differen-
tial equations. Catino et al. (2003); ElHajjaji et al. (2005,
2006) : 

β̇(t) =
2Ff + 2Fr

mU
− r(t)

ṙ(t) =
2afFf − 2arFr +MZ(t)

Iz

(1)

Where β(t) denotes the sideslip angle, r(t) is the yaw
rate, Ff is the cornering force of the two front tires, Fr

is the cornering force of the two rear tires. U is the vehicle
velocity, Iz is the yaw moment of inertia, m is the vehicle
mass and MZ(t) is the control input. (cf. Fig. 1). The
parameters of the vehicle are given in the following table :

Table 1. Vehicle parameters

Parameters Iz(Kg2m) m(Kg) af (m) ar(m) U(m/s)

Values 3000 1500 1.3 1.2 20

Fig. 1. Bicycle model

Based on the (T-S) fuzzy model representation and using
the some idea in Chadli and ElHajjaji (2006); Dahmani
et al. (2013), the front and rear lateral forces can be
modeled as follows{

Ff = h1(|αf |)Cf1αf + h2(|αf |)Cf2αf

Fr = h1(|αf |)Cr1αr + h2(|αf |)Cr2αr
(2)

Where αf and αr represent tyre slip-angles at the front
and rear of the vehicle respectively, Cfi and Cri are the
stiffness coefficients, and hj(j = 1, 2) is the jth bell curve
membership function of fuzzy set Mj . The membership
function parameters and consequence parameters of fuzzy
rules are obtained using an identification method that
combines RLS (Recursive Least Squares) and based on the
LM (Levenberg-Marquardt) algorithm Lee et al. (2003),
defined as h1(|αf |) =

w1(|αf |)
w1(|αf |) + w2(|αf |)

,

h2(|αf |) = 1− h1(|αf |)
(3)

With w1(|αf |) = (1 + | |αf |−c1
a1

|)−2b1 , w2(|αf |) = (1 +

| |αf |−c2
a2

|)−2b2 and a1 = 0.0908, b1 = 23.3421, c1 = 0.7237,
a2 = 204.0533, b2 = 0.0415, c2 = 23.4094.

According to (1)-(2) and considering that:

αf
∼= β(t) +

afr(t)

U
− δf (t)

αr
∼= β(t) +

arr(t)

U

(4)

we obtain the following TS fuzzy model
ẋ(t) =

2∑
i=1

hi(|αf |)[Aix(t) +Bfiδf (t) +BMZ(t)],

z(t) = C1x(t),

y(t) = C2x(t)

(5)

Where

Ai =

 −2Cfi + 2Cri

mU
−2afCfi − 2arCri

mU2
− 1

−2afCfi − 2arCri

Iz
−
2a2fCfi + 2a2rCri

IzU

 ,

Bfi =

 2Cfi

mU
2afCfi

Iz

 , B =

[
0
1

Iz

]
, and C1 = C2 = [0 1] .

With x(t) =
[
βT (t) rT (t)

]T
is the state vector, δf (t) is the

external disturbance input, y(t) is the measured output
and z(t) is the controlled output.

3. MAIN RESULTS

In this section, networked fuzzy state feedback control
design for vehicle lateral dynamics is developed.

Fig. 2. Framework of networked control system

A typical NCS model with network-induced delays is
shown in Fig. 2, where τsc is sensor-to-controller delay and
τca is the controller-to-actuator delay. It is assumed that
the controller computational delay can be absorbed into
either τsc or τca.

The following assumptions, which are common for NCSs
research in the open literature , are also made in this work:

(1) The sensors are clock driven, the controller and actu-
ators are event driven.

(2) Data, either from measurement or for control, are
transmitted with a single packet.

(3) The real input MZ(t), realized through a zero-order
hold, is a piecewise constant function.

The measurement output signals will be quantized before
they are transmitted to next nodes. The logarithmic quan-
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tizer is considered here. It is called logarithmic if the set
of quantized levels is characterized by

u = {ui, ui = ρiu0, i = 0± 1± 2, ...} ∪ {0}, u0 > 0

where the parameter 0 < ρ < 1 is called the quantization
density, and the logarithmic quantizer q(ν) is

q(ν) =


ui if

1

1 + δ
ρiu0 < ν ≤ 1

1− δ
ρiu0

0 if ν = 0

− q(−ν) if ν < 0

(6)

where δ = 1−ρ
1+ρ .

By the sector bound method, q(ν) can be expressed as in
Mahmoud and Al-Rayyah (2011) by

q(ν) = (I +∆(t))ν

where
∆(t) = diag{∆1(t),∆2(t), ...,∆n(t)},

∥∆j(t)∥ ≤ δ, j = 1, 2, ..., n
(7)

3.1 Networked fuzzy state feedback control design

Suppose that state of system (5) is measurable and will be
quantized before it will be transmitted to the controller
through a communication network. To determine the
state feedback control for system (5) subject to quantiza-
tion, following Parallel Distributed Compensation scheme
(PDC) is :

MZ(tk) =
2∑

i=1

hi(|αf (tk)|)K̄ix(tk − τk)

Where K̄i = Ki(I + ∆(t)) and tk are sampling instants.
From the ZOH, the input signal is

MZ(t) =
2∑

i=1

hi(|αf (tk)|)K̄ix(t− τk), tk ≤ t ≤ tk+1

(8)

Then, the closed-loop control networked system can be
written for tk ≤ t ≤ tk+1 as

ẋ(t) =

2∑
i=1

hi(|αf (tk)|)(Aix(t) +BK̄ix(t− τk) +Bfiδf (t))

z(t) = C1x(t)

y(t) = C2x(t)

• Measurement quantization : It is assumed that the
sampler and quantizer are clock driven, while the
zero-order hold (ZOH) is event driven. It is assumed
also that, the sampled measurements of y(t) are first
quantized via a quantizer, and then transmitted with
a single packet.

• Network-induced delay (τk): Network-induced delays
always exist when the data transmits through a
network, and obviously, it has both lower and upper
bounds. A natural assumption on τk can be made as

0 < τm ≤ τk ≤ τM (9)

• Packet dropouts : The effect of one packet dropout
in the transmission is just a case that one sampling
period delay is induced in the updating interval of
ZOH.Rahmani and Markazi (2013)

tk+1 − tk = (σk+1 + 1)Te + τk+1 − τk

where Te denotes the sampling period and σk+1 is
the number of accumulated packet dropouts in this
period.

Let consider η(t) = t− tk + τk, tk ≤ t ≤ tk+1, then

τm ≤ τk ≤ η(t) ≤ (σ̄ + 1)Te + τk+1 (10)

where σ̄ denotes the maximum number of packet dropouts
in updating periods, η1 = τm and η2 = (σ̄ + 1)Te + τM .
Thus, we get

η1 ≤ η(t) ≤ η2 and η̇(t) ≤ ηd (11)

Where ηd is constant parameter. Since
∑∞

k=0[tk, tk+1) =
[0,∞), we have

ẋ(t) =

2∑
i=1

hi(Aix(t) +BK̄ix(t− η(t)) +Bfiδf (t))

z(t) = C1x(t)

y(t) = C2x(t)

x(t) = ϕ(t), t ∈ [t0 − η2, t0]
(12)

Where ϕ(t) can be viewed as initial condition sequence.

Defining

A(t) =
2∑

i=1

hiAi, Bf (t) =
2∑

i=1

hiBfi,

H(t) =

2∑
i=1

hiHi, Hi = BKi(I +∆(t))

(13)

then closed-loop system (12) can be described by
ẋ(t) = A(t)x(t) +H(t)x(t− η(t)) +Bf (t)δf (t)

z(t) = C1x(t)

y(t) = C2x(t)

x(t) = ϕ(t), t ∈ [t0 − η2, t0]

(14)

The objective now is to determine controller (8) such that
the feedback closed-loop system is asymptotically stable
with H∞ performance. In order to obtain the main results
in this paper, the following lemmas are needed:

Lemma 3.1. Yu et al. (2012) For any scalars M > 0,
N > 0 , h(t) is a continuous function and satisfies hm <
h(t) < hM , then

− hM − hm

h(t)− hm
M − hM − hm

hM − h(t)
N

≤ max(−(M + 3N),−(3M +N))

(15)

Lemma 3.2. Wang et al. (1992) Given matrices D,E, F (t)
with compatible dimensions and F(t) satisfying F (t)TF (t)
≤ I. Then, the following inequality holds for any ϵ > 0 :
DF (t)E + ETF (t)TDT ≤ ϵDDT + ϵ−1ETE

From Theorem 1 in Kchaou and Toumi (2014), the follow-
ing result summarizes how the fuzzy state feedback con-
troller can be designed by a solution of matrix inequalities
given as follows:

Theorem 3.1. For given scalars η1 > 0, η2 > 0 , µ1, µ2,
µ3, λ, ϵ > 0 and quantization density ρ > 0, closed-
loop system (14) is asymptotically stable with H∞ norm
bounded γ, if there exist positive matrices P̄ , Q̄1, Q̄2,
Q̄3, Z̄1, Z̄2 and matrices Ḡ and Yi with appropriate
dimensions, such that the following conditions hold
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Φ̄i +Φ1(Z̄2) Γ̄i ϵḠT ∆̄T

∗ ϵΞ̄1 0
∗ ∗ −ϵI

 < 0 (16)

Φ̄i +Φ2(Z̄2) Γ̄i ϵḠT ∆̄T

∗ ϵΞ̄1 0
∗ ∗ −ϵI

 < 0 (17)

where

Φ̄i =


Φ̄11i Φ̄12i Z̄1 0 Φ̄15i µ1Bfi Φ̄17

∗ Φ̄22i 0 0 Φ̄25i µ2Bfi 0
∗ ∗ −Q̄2 − Z̄1 0 0 0 0
∗ ∗ ∗ −Q̄3 0 0 0
∗ ∗ ∗ ∗ Φ̄55 µ3Bfi 0

∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

 (18)

Φ1(Z̄2) =



0 0 0 0 0 0 0
∗ −4Z̄2 3Z̄2 Z̄2 0 0 0
∗ ∗ −3Z̄2 0 0 0 0
∗ ∗ ∗ −Z̄2 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


(19)

Φ2(Z̄2) =



0 0 0 0 0 0 0
∗ −4Z̄2 Z̄2 3Z̄2 0 0 0
∗ ∗ −Z̄2 0 0 0 0
∗ ∗ ∗ −3Z̄2 0 0 0
∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0


(20)

Φ̄11i = Q̄1 + Q̄2 + Q̄3 + µ1sym(AiḠ)− Z̄1,

Φ̄12i = µ2Ḡ
TAT

i + µ1BYi,

Φ̄22i = µ2sym(BYi)− (1− ηd)Q̄1,

Φ̄15i = P̄ − µ1Ḡ+ µ3Ḡ
TAT

i ,

Φ̄25i = −µ2Ḡ+ µ3Y
T
i BT ,

Φ̄55 = η21Z̄1 + η2r Z̄2 − µ3sym(Ḡ),

Φ̄17 = ḠTCT
1 , dr = η2 − η1,

Γ̄i =
[
Φ̄T

18i Φ̄T
28i 0 0 Φ̄T

58i 0 0
]T

,

Ξ̄1 = λ2I − λSym(Ḡ), ∆̄ = [0 δI 0 0 0 0 0] ,

Φ̄18i = µ1BYi, Φ̄28i = µ2BYi, Φ̄58i = µ3BYi

Where Yi = KiḠ

3.2 Observer-based networked fuzzy state feedback design

Currently, the sideslip angle is unavailable for measure-
ment. This problem can be overcome by introducing the
fuzzy observer theory. The overall fuzzy observer is repre-
sented as follows:

˙̂x(t) =
2∑

i=1

hi(|αf (t)|)[Aix̂(t) +Bfiδf (t) +BMZ(t)

+ Li(y(t)− ŷ(t))]

ŷ(t) = C2x̂(t)
(21)

Where x̂T (t) =
[
βT
e (t) rTe (t)

]
is the estimated state, and

ŷ(t) is the estimated measured output, L1 and L2 are the
constant observer gains to be determined.

The overall networked PDC fuzzy controller is represented
as follows:

MZ(t) =

2∑
i=1

hi(|αf (tk)|)Ki(I +∆(t))x̂(t− τk) (22)

Where K1 and K2 are the constant feedback gains to be
determined.

Define

e(t) = x(t)− x̂(t) (23)

From systems (5), (21), (22), and (23), the augmented
system can be expressed as :{

˙̃x(t) = Ã(t)x̃(t) + H̃(t)(I + ∆̄(t))x̃(t− η(t)) + B̃f (t)δf (t),

z(t) = C̃1x̃(t)
(24)

Where

Ã(t) =
2∑

i=1

hiÃi, B̃f (t) =
2∑

i=1

hiB̃fi, H̃(t) =
2∑

i=1

hiH̃i.

(25)

Ãi =

[
Ai 0
0 Ai − LiC2

]
, H̃i =

[
BKi −BKi

0 0

]
, B̃fi =[

Bfi

0

]
, C̃1 = [C1 0] , ∆̄(t) =

[
∆(t) 0
0 ∆(t)

]
and x̃(t) =[

xT (t) eT (t)
]T

.

Next, we focus our attention on the fuzzy observer-based
control for system (5), which is summarized in the follow-
ing theorem.

Theorem 3.2. For given scalars η1 > 0, η2 > 0 , µ1, µ2, µ3,
ϵ > 0, λ1, and quantization density ρ > 0, the closed-loop
networked system (24) is asymptotically stable with H∞
norm bounded γ, if there exist positive matrices P̃ , Q̃1, Q̃2,
Q̃3, Z̃1, Z̃2 and matrices Ĝ, g, Yi and Fi with appropriate
dimensions, such that the following conditions holdΦ̃i +Φ1(Z̃2) Γ̃i ϵGT ∆̄T

∗ −ϵΞ̃1 0
∗ ∗ −ϵI

 < 0 (26)

Φ̃i +Φ2(Z̃2) Γ̃i ϵGT ∆̄T

∗ −ϵΞ̃1 0
∗ ∗ −ϵI

 < 0 (27)

where

Φ̃i =



Φ̃11i Φ̃12i Z̃1 0 Φ̃15i Φ̃16i Φ̃17

∗ Φ̃22i 0 0 Φ̃25i Φ̃26i 0

∗ ∗ −Q̃2 − Z̃1 0 0 0 0

∗ ∗ ∗ −Q̃3 0 0 0

∗ ∗ ∗ ∗ Φ̃55 Φ̃56i 0

∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −I

 (28)
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Φ̃11i = Q̃1 + Q̃2 + Q̃3 + sym(Ai)− Z̃1,

Φ̃12i = Ai +AT
ηi,

Φ̃22i = sym(Aηi)− (1− ηd)Q̃1,

Φ̃15i = P̃ −G+Ai,

Φ̃16i = µ1Bfi, Φ̃26i = µ2Bfi,

Φ̃56i = µ3Bfi, Φ̃25i = −GT +Aηi,

Φ̃55 = η22Z̃1 + η2r Z̃2 − sym(G), Φ̃17 = [C1g C1]
T
,

Γ̃i =
[
Φ̃T

18i Φ̃T
28i 0 0 Φ̃T

58i 0 0
]T

,

Φ̃18i = µ1Aηi, Φ̃28i = µ2Aηi, Φ̃58i = µ3Aηi,

Ξ̃1 = λ2
1I − λ1Sym(G),

Ai =

[
Aig Ai

0 ĜTAi − FiC2

]
, Aηi =

[
BYi 0
0 0

]
,

G̃ =

[
g G
0 G

]
, Bfi =

[
Bfi

0

]
, G =

[
g I

0 Ĝ

]
,

G =

[
g I
0 I

]
.

Where Yi = Kig, Fi = ĜLi

Proof 3.1. Under the conditions of the Theorem 3.2, a
feasible solution satisfies the condition Φ̃55 < 0 which
implies that G̃ is nonsingular. Thus, g and G are also

nonsingular. Define Ĝ = G−1 and G̀ =

[
I 0

0 Ĝ

]
.

Note that Ai = G̀T ÃiG̃G̀, Aηi = G̀T ÃηiG̃G̀, G = G̀T G̃G̀

and G = G̃G̀.

Notting P̃ = GTPG, Q̃1 = GTQ1G, Q̃2 = GTQ2G, Q̃3 =
GTQ3G, Z̃1 = GTZ1G, and Z̃2 = GTZ2G.
Following the similar lines in the proof of Theorem 3.1, by
checking congruence transformations to (26)-(27) by

diag(G̀−1, G̀−1, G̀−1, G̀−1, G̀−1, I, I, G̀−1, I) and then by

diag(G̃−1, G̃−1, G̃−1, G̃−1, G̃−1, I, I, G̃−1, I), we conclude
that the fuzzy observer (21) exists and guaranties for
closed-loop system (24) to be asymptotically stable.

4. SIMULATION RESULTS

To show the effectiveness of the proposed networked active
safety system , we have carried the following simulation. In
the design, considered stiffness coefficients are: ElHajjaji
et al. (2006)

stiffness coefficients Cf1 Cf2 Cr1 Cr2

Values 60712 4812 60088 3455

The network-related parameters are assumed: Te = 5ms,
minimum delay η1 = 6ms, maximum delay η2 = 28ms
and maximum number of packet dropouts σ̄ = 3. With
quantizer parameter ρ = 0.85, ηd = 0.1, µ1 = 1 , µ2 = 0.1,
µ3 = 0.2, λ1 = 1.05, we find a minimum allowable γ is
15.563 and

K1 = 103 [−6.4610 −1.7955] , (29)

K2 = 103 [4.5565 −5.7045] ,

L1 =

[
−1.5833
−0.3077

]
, L2 =

[
−2.5108
3.4384

]

Ĝ =

[
−4.5944 −1.2072
−0.6470 −3.9235

]
, g =

[
−2.2324 −0.2287
−1.1440 −2.2044

]
The controller and observer gains for the case without
considering delay and packet dropout in design given by
Theorem in ElHajjaji et al. (2006) are given as follows

K3 = [−541.9428 575.1236] , (30)

K4 = 103 [4.3076 −3.5320] ,

L3 =

[
−0.4522
2.8041

]
, L4 =

[
4.4232
−1.5365

]
We will tested the vehicle behavior by considering the
steering angle shown in Fig 3. In the first, we considered
the case when we don’t consider the communication net-
work in control design (30), we remark that the behavior
of the vehicle is controllable but the sideslip and yaw rate
are very important as it will be shown in Fig 4 and Fig 5.

To overcome this problem, we have tested the proposed
method with considering communication network induced
time varying delay and packet dropouts in the control
design with (29), Fig 4 and Fig 5 show state variable
evolutions and Fig 6 shows the input control in the
two cases. We remark that our approach is efficient and
improve the stability and the performances of the vehicle
through communication.

For simulation, the initial condition is assumed to be
x0 = [0.1, 1]T . The state responses of the NCS with control
input are depicted in Fig 4 and 5 which we can see that the
estimated variables converge towards the measured state
variables. The simulation results are in accordance with
the analysis and support the effectiveness of the developed
design strategy.
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5. CONCLUSION

In this paper, we have presented new stabilization con-
ditions for networked controlled vehicle lateral dynamics
with unmeasurable sideslip angle. By considering net-
work induced delay, data packet dropout and quantized
measurements constraints as well as the unavailability of
the sideslip measurement, observer-based networked fuzzy
state feedback design for vehicle active safety is developed.
The optimal allowable delay bound and the controller and
the observer gains have been derived by solving a set of
LMIs based on the Lyapunov-Krasovski functional.
The obtained simulations show the improvements of the
vehicle stability with this proposed networked control
scheme.
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