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Abstract: A recently proposed Bayesian tracking procedure for sensor networks approximates
the update equation, which involves non-linear measurements, with a simple equation using
the maximum likelihood (ML) estimate of the unknown state. This approach permits a
numerically efficient implementation of the tracking procedure, and is suitable for a distributed
implementation. In this paper we study the extent to which this approach approximates the
theoretical Bayesian solution. We provide conditions to guarantee that the approximation
becomes asymptotically exact, as the number of nodes becomes large. This result is relevant
in applications where each sensor obtains a measurement with limited information about the
state, but a large number of sensors is available. We apply our result to a case study, and present
numerical simulations, showing that the approximation error becomes negligible for a relatively
small number of nodes.
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1. INTRODUCTION

A sensor network consists of a large number of sensing
and computing devices, with limited computational and
communication capabilities, connected via a communi-
cation network [Dargie and Poellabauer, 2010]. Sensor
networks find applications in environmental, health-care
and weather monitoring, industrial process monitoring and
control, surveillance, smart grids, etc. They are classified
according to the architecture used for data fusion. In a
centralized architecture, a central node collects the data
from all sensor nodes to perform a given task. A variant of
this architecture is the hierarchical one, in which the set of
nodes is partitioned into clusters, forming hierarchical lev-
els, and each cluster behaves as a centralized network. On
the other hand, in a decentralized architecture, the desired
task is executed via a distributed algorithm carrying out
a cooperative strategy over all the nodes of the network.

The development of algorithms for Bayesian tracking in
sensor networks has recently attracted a great deal of at-
tention [Carli et al., 2008, Khan and Moura, 2008, Ribeiro
et al., 2010, Hlinka et al., 2012]. In this application, the
measurements from all nodes are combined to track the
evolution of a set of stochastic parameters (state vector)
for which a dynamic model is available. In a number of a
applications, the model describing the dynamic evolution
of the state vector (state equation) is not known, and it is
therefore approximated by a linear equation. On the other
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hand, the measurement model (measurement equation) of
each sensor node can be accurately described, and it leads
in general to a non-linear equation. This is particularly
true in sensors using coarse quantization, as often occurs
in practice. This yields a Wiener dynamical model, i.e., in
which the state evolution is linear but the measurements
are non-linear in the state. There is a number of methods
which can be used for addressing the Bayesian tracking
problem in general non-linear models [Chang et al., 2013,
Arasaratnam and Haykin, 2009, Arulampalam et al., 2002,
Kotecha and Djuric, 2003, Šimandl et al., 2006]. These
methods alternate between two steps called prediction,
which involves the state equation, and update, which in-
volves the measurement equation. A drawback of these
methods is that they are either computationally expensive,
or, in the case of the extended Kalman filter [Anderson
and Moore, 1979], inaccurate to the extent that they can
lead to instability. Motivated by this, the authors of [Wang
et al., 2012] proposed a Bayesian tracking technique which
is particularly suitable for Wiener dynamical models. In
this technique, the update step (resulting from the non-
linear measurement equation) is replaced by an alternative
step obtained using a maximum likelihood (ML) estima-
tion of the state, based on the sensor measurements. In this
way, the Bayesian tracking procedure can be executed in a
way similar to that of a Kalman filter, with the extra cost
of executing a ML estimation at each update step. In this
paper we refer to this Bayesian tracking strategy as theML
filter. The ML filter offers an efficient Bayesian tracking
method for sensor networks with either centralized and
decentralized architecture. The latter can be achieved by
complementing the ML filter with a distributed ML algo-
rithm [Hlinka et al., 2012].
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In this paper we provide conditions under which the ML
filter becomes asymptotically optimal, in the sense of
approaching the theoretical Bayesian tracking solution,
as the number of sensor nodes tends to infinity. This
theoretical result is particularly relevant in applications
where each sensor provides limited information about
the state vector to be estimated, but the number of
sensors is large. To illustrate the application of our result,
we show the asymptotic optimality of the ML filter for
tracking a parameter vector using nodes, each of which
obtaining its measurement from a quantizer. Numerical
simulations show that, even for a one-bit quantizer, the
difference between the ML filter and an approximation to
the theoretically optimal Bayesian tracker obtained using
particle filtering, becomes negligible for a relatively small
number of nodes.

The rest of the paper is organized as follows: In Section 2
we describe the ML filter, and the addressed problem. In
Section 3 we introduce our main result. In Section 4 we
use this result to show the asymptotic optimality of the
ML filter in a sensor network application described above,
and in Section 5 we provide the simulation results. We give
concluding remarks in Section 6. Due to the limited space,
the proof of our main result is omitted and will appear in
a journal version.

Notation: The symbols N and R denote the sets of natural
and real numbers, respectively. Also, Cn

(
Rd
)
denotes the

space of functions with n-th order continuous derivatives,
and Lp

(
Rd
)
the set of functions whose p-th power is abso-

lutely integrable. For a vector x, ‖x‖ denotes its 2-norm,
and for a matrix A, ‖A‖ denotes its operator (induced)
norm. Convergence with probability one is denoted by
w.p.1. The multivariate normal probability density func-
tion of mean µ and covariance matrix Σ is denoted by gµ,Σ,
i.e.,

gµ,Σ(x) =
1√

(2π)
d |Σ|

exp

(
− (x− µ)

T
Σ−1 (x− µ)

2

)
.

Finally, ∇f(x) denotes the gradient of the function f(x)
and ∇2f(x) its Hessian.

2. PROBLEM DESCRIPTION

Consider the following state equation
x(t+ 1) = Ax(t) + w(t), (1)

where w(t) ∼ N (0, R) , for all t ∈ N, and x(0) ∼ N (0, P ),
with 0 < R,P ∈ Rd×d. There are N sensor nodes. At time
t ∈ N, for each n = 1, · · · , N , the measurement yn(t) of
Node n is a random vector given by

yn(t) = fn (x(t)) , (2)
with fn(·) being a stochastic function (i.e., for each x,
fn(x) is a random vector). Let YN (t) =

[
yT1 (t), · · · , yTN (t)

]T
and YN,t =

[
YN (1)T , · · · , YN (t)

]T .
A Bayesian tracking procedure for estimating x(t) is ob-
tained by iterating the following two steps [Arulampalam
et al., 2002]:

Bayesian tracker:

Update:

P (x(t)|YN,t) =
P (YN (t)|x(t))

P (YN (t)|YN,t−1)
P (x(t)|YN,t−1) . (3)

Prediction:
P (x(t+ 1)|YN,t) =

=

ˆ
P (x(t+ 1)|x(t))P (x(t)|YN,t) dx(t). (4)

The iterations above can be approximated by analytic
expressions, similar to those used in a Kalman filter,
if for any given value of YN (t), P (YN (t)|x(t)) can be
approximated by a Gaussian function of x(t), i.e.,
P (YN (t)|x(t)) '

' aN (t)e−
1
2 (x(t)−µN (t))TΣN (t)−1(x(t)−µN (t)), (5)

for some aN (t) > 0, µN (t) ∈ Rd and 0 < ΣN (t) ∈ Rd×d,
which depend on YN (notice that the value of aN (t) is
not required, because its value can be inferred from the
fact that the right-hand side of (3) has unit integral with
respect to x(t)). More precisely, If P (x(t)|YN,t−1) =
gµt|t−1,Σt|t−1

(x(t)), then, from [Petersen and Pedersen,
2006, Sec. 8.1.8], (3) becomes

P (x(t)|YN,t) ' gµt|t,Σt|t (x(t)) , (6)
where µt|t and Σt|t are given by (10) and (11), respectively.
Let

LN,t (x) = P (YN (t)|x(t) = x) (7)
be the likelihood function (LF) of x(t), given YN (t). Then,
a particular choice for the pair (µN (t),ΣN (t)) is

µN (t) = arg max
x∈Rd

LN,t (x) , (8)

ΣN (t) = −LN,t (µN (t))∇2LN,t (µN (t))
−1
. (9)

The ML filter is the Bayesian procedure obtained by
using (1) in (4) and (6) in place of (3).

Maximum likelihood filter:

Update: P (x(t)|YN,t) = gµt|t,Σt|t (x(t)), with

µt|t = Σt|t

(
Σ−1
t|t−1µt|t−1 + Σ−1

N (t)µN (t)
)
, (10)

Σt|t =
(

Σ−1
t|t−1 + Σ−1

N (t)
)−1

, (11)

and µN (t) and ΣN (t) given by (8) and (9), respectively.

Prediction: From [Anderson and Moore, 1979, p. 40],
P (x(t+ 1)|YN,t) = gµt+1|t,Σt+1|t (x(t+ 1)) , with

µt+1|t = Aµt|t, (12)
Σt+1|t = AΣt|tA

T +R. (13)

In this paper we provide conditions under which the
approximation (5) with (8)-(9) becomes asymptotically
exact, as the number N of measurements tends to infinity.

3. MAIN RESULT

Notation. Since the study of the approximation (5) is
independent of the time index t, in this section we drop
this index to simplify the notation.
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Consider the LF LN of x, given in (7), as well as µN and
ΣN , given in (8) and (9), respectively. Notice that, since
LN (x) ≥ 0, for all x ∈ Rd, (??) implies that LN (µN ) > 0.
Hence the matrix ΣN is positive definite. In stating the
regularity conditions required by our main result, we use
the concept of strong uniform convergence [Davidson,
1994, Sec. 21.2]. Its definition is given below.
Definition 1. Let D ⊆ Rd. We say that a sequence of
stochastic functions fn : D → Rq, n ∈ N, is continuous
and strongly uniformly convergent (CSUC) to f : D → Rq,
if each fn is continuous, and

lim
N→∞

sup
x∈D
‖fn(x)− f(x)‖ w.p.1

= 0.

We now state our main result, whose proof is omitted and
will appear in a journal version.
Theorem 2. Let LN ∈ C2

(
Rd
)
, µN ∈ Rd, ΣN ∈ Rd×d,

N ∈ N, be defined as above. Let also

ΞN (x) =
1

N
logLN (x) , (14)

be the normalized logarithmic likelihood function and
Ξ (x) = lim

N→∞
E {ΞN (x)} ,

be its asymptotic expectation. If

(G1) arg maxx∈Rd Ξ (x) = {x?} (i.e., x? is the unique
maximizer for Ξ(x));

(G2) limN→∞ µN
w.p.1
= x?;

(G3) there exists a compact set D ⊂ Rd, with x? ∈
int (D) (i.e., the interior of D), such that ΞN : D → R
and ∇ΞN : D → Rd converge w.p.1 and ∇2ΞN : D →
Rd×d is CSUC;

(G4) We have, w.p.1.,

∇2L
1/N
N ∈ Ld×d2

(
Rd
)
, ∀N ∈ N, (15)

sup
N∈N,x∈R

∥∥∥∇2L
1/N
N (x)

∥∥∥<∞. (16)

then

lim
N→∞

1

LN (µN )
LN

(
Σ

1/2
N x+ µN

)
w.p.1
= exp

(
−x

Tx

2

)
.

(17)

Theorem 2 states that, for large N ,

P (YN |x)
w.p.1
' LN (µN ) e−

1
2 (x−µN )TΣ−1

N
(x−µN ), (18)

where µN is the ML estimate of x, and ΣN is obtained
from the Hessian ∇2LN (µN ) of LN (x) at µN ., using (??).
Hence, the theorem asserts that the approximation (5)-(9),
and therefore the ML filter, becomes asymptotically exact,
as the number N of measurements tends to infinity.
Remark 3. Conditions (G2) and (G1) together require
that the sequence µN converges to the maximum of
the limit logarithmic likelihood function Ξ. Also, (G3)
and (G4) are regularity conditions which are not difficult
to satisfy. Hence, from a practical point of view, the con-
ditions of Theorem 2 are rather general.

4. CASE STUDY: SENSOR NETWORK WITH
QUANTIZED MEASUREMENTS

To illustrate the use of Theorem 2, we consider a network
of sensors measuring quantized linear combinations of a

common random vector. Consider the system (1)-(2), with
fn (x(t)) = Q

[
cTnx(t) + vn

]
,

where cn ∈ Rd is a vector and vn ∼ N
(
0, σ2

)
. The map

Q : R→ {q1, · · · , qK} is a quantizer defined by Q−1 [qk] =
[bk−1, bk], with −∞ = b0 < b1 < · · · < bK = ∞. We
also let vn and vm be statistically independent whenever
n 6= m.

Using Theorem 2, we can show the following result, which
implies, via (18), that the ML filter becomes asymptoti-
cally exact, as the number N of measurements tends to
infinity.
Theorem 4. In the system described above, if supn∈N ‖cn‖ <
∞ and

lim
N→∞

1

N

N∑
n=1

cnc
T
n > 0, (19)

then (17) holds for each t ∈ N.

Before proving Theorem 4, we introduce the definition
of strong asymptotic equicontinuity [Davidson, 1994, eq.
(21.43)]. This is a technical condition which is used to
guarantee the CSUC property.
Definition 5. Let D ⊆ Rd. A sequence of stochastic func-
tions gn : D → Rq, n ∈ N, is strongly asymptotically
equicontinuous (SAE) if, for every ε > 0, there exists
δε > 0 such that

lim sup
n→∞

sup
x∈Rd

sup
y:‖y−x‖<δε

‖gn(y)− gn(x)‖
w.p.1
< ε.

In order to use Theorem 2 to show Theorem 4, we need
to show that, for each t ∈ N, µN (t), obtained from (8),
converges w.p.1 to some local maximum x?(t) ∈ Rd of
Ξ(x). While not necessary for Theorem 2, we go a step
further and show that x?(t) is actually the true value x(t)
of the state to be estimated at time t. The convergence
in this case is called strong consistency. Conditions to
guarantee strong consistency typically require that the
maximization problem used to find µN (t) is constrained
to a compact set [Gourieroux and Monfort, 1996, Property
24.2], [Newey and McFadden, 1994, Th. 2.1]. However, this
assumption is inappropriate in our context. This is because
we are estimating the state of a linear dynamic model,
which is not guaranteed to be included in any compact
set. To go around this issue, we introduce the following
variant of the strong consistency results cited above.
Theorem 6. Let x? ∈ Rd, for each N ∈ N, ΞN : Rd → R
and

µN = arg max
x∈Rd

ΞN (x) , (20)

Ξ = lim
N→∞

E {ΞN (x)} . (21)

If

(C1) arg max
x∈Rd

Ξ (x) = {x?};

and there exists a compact set K ⊂ Rd with x? ∈ K such
that

(C2) ΞN is CSUC on K;
(C3) lim supN→∞ supx∈K{ ΞN (x)

w.p.1
< Ξ (x?) (K{ de-

notes the complement of the set K);

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

7402



then
lim
N→∞

µN
w.p.1
= x?.

Proof. Let ε = Ξ (x?)− lim supN→∞ supx∈K{ ΞN (x). We

have ε
w.p.1
> 0. Let N0 ∈ N, such that, for all N ≥ N0,

sup
x∈K

∣∣ΞN (x)− Ξ (x)
∣∣ < ε

2
,

sup
x∈K{

Ξ (x?)− ΞN (x) >
ε

2
.

Then, for all N ≥ N0, µN ∈ K. Then, the result follows
from [Gourieroux and Monfort, 1996, Property 24.2].

We now provide the proof of Theorem 4.

Proof. We split the argument in steps:

Step 1: We need to show that, for each t ∈ N, LN,t (x) =
P (YN (t)|x(t) = x) satisfies the conditions of Theorem 2.
Due to the statistical independence of measurements from
different sensors, we have

LN,t (x) =

N∏
n=1

ln,t (x) ,

ln,t (x) =

ˆ
Q−1[yn(t)]

gcTnx,σ2 (ξ) dξ.

Let

ΞN,t (x) =
1

N

N∑
n=1

log ln,t (x) ,

Ξt (x) = lim
N→∞

E {ΞN,t (x)} .

Step 2: We have
Ξt (x(t))− Ξt (x)

= lim
N→∞

1

N

N∑
n=1

E
{

log
ln,t (x(t))

ln,t (x)

}

= lim
N→∞

1

N

N∑
n=1

DKL (P (yn(t)|x(t)) ‖P (yn(t)|x)) ,

where DKL(p‖q) denotes the Kullback-Leibler distance
between the probability distributions p and q [Cover and
Thomas, 2006]. Let zn = cTnx, and
fn(z) = DKL

(
P
(
yn(t)|zn = cTnx(t)

)
‖P (yn(t)|zn = z)

)
.

From [Cover and Thomas, 2006, Th. 2.6.3], fn (z) ≥ 0 with
equality if and only if z = cTnx(t). Then, ∂fn

(
cTnx(t)

)
= 0.

Also, it is easy to verify that there exists ε > 0 such that
∂2fn(z) ≥ ε. Thus,

fn(z) ≥ ε
(
z − cTnx(t)

)2
.

Then,
Ξt (x(t))− Ξt (x)

= lim
N→∞

1

N

N∑
n=1

fn
(
cTnx

)
≥ ε (x− x(t))

T

(
lim
N→∞

1

N

N∑
n=1

cnc
T
n

)
(x− x(t)) .

Hence, from (19),
arg max
x∈Rd

Ξ (x) = {x(t)} , (22)

and Condition (G1) follows.

Step 3: Fix t ∈ N and x ∈ Rd. Then, ln,t(x), n ∈ N, are
independent random variables. Hence, so are log ln,t(x),
∇ log ln,t(x) and ∇2 log ln,t(x). It is straightforward to ver-
ify that log ln,t(x),∇ log ln,t(x) and∇2 log ln,t(x) have uni-
formly bounded second moments. Then, from Rajchman’s
strong law of large numbers [Chung, 2000, Th. 5.1.2], ΞN,t :
Rd → R, ∇ΞN,t : Rd → Rd and ∇2ΞN,t : Rd → Rd×d
converge with probability one. Also it is straightforward
to verify that,

sup
i∈{1,··· ,d},n∈N,x∈Rd

∥∥∂i∇2 log ln,t (x)
∥∥ w.p.1

< M <∞.

Then, the sequence ∇2 log ln,t is SAE on Rd, and from
Lemma 9, so is ∇2ΞN,t = 1

N

∑N
n=1∇2 log ln,t. Then, from

Lemma 8,
∇2ΞN,t : Rd → Rd×d is CSUC, (23)

and Condition (G3) follows.

Step 4: Fix t ∈ N and x ∈ Rd, and choose a compact
set Dx ⊂ Rd with x ∈ int (Dx). From (23) and two
applications of Lemma 7, Ξt (x) is twice continuously
differentiable at x. Then,

Ξt (x) is twice continuously differentiable on Rd. (24)

Step 5: Our next step is to show that (G2) holds,
for fix t ∈ N. To this end, we need to show that the
conditions of Theorem 6 are satisfied. Condition (C1)
follows from (22). Choose a compact set K ⊂ Rd such that
x(t) ∈ int (Dt). Then, Condition (C2) follows from (23)
and two applications of Lemma 7. Also, Condition (C3)
follows since, in view of (24), Ξt (x) is continuous, and, for
all 0 6= x ∈ Rd,

lim
α→∞

Ξt (αx) = −∞.

Step 6: It remains to be shown that (G4) holds. We have

∇2L
1/N
N,t

= L
1/N
N,t

(
1

N
∇2 logLN,t +

1

N2
∇ logLN,t∇T logLN,t

)
= L

1/N
N,t

(
∇2ΞN,t +∇ΞN,t∇TΞN,t

)
.

From (19), w.p.1, there exists N0 ∈ N such that, for all
N ≥ N0,

∏N
n=1 ln,t (x) is bounded by a multivariate Gaus-

sian function, and therefore, so is L1/N
N . Also, ∇ log ln has

linear growth, and ∇2 log ln is bounded, hence ∇2ΞN,t +
∇ΞN,t∇TΞN,t exhibits quadratic growth. Then, the first
part of (G4) holds. For the second part, we have[
∇2L

1/N
N

]
i,j

=
[
∇2 exp (ΞN )

]
i,j

≤ max
x∈Rd

exp (ΞN (x))
[
∇2ΞN

]
i,j

≤ exp (ΞN (x?)) max
n∈N,x∈Rd

[
∇2 log ln (x)

]
i,j

<∞.

5. NUMERICAL SIMULATIONS

In this section we compare the tracking performance of
the ML filter, with the one obtained using the Bayesian
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Fig. 1. State estimation error of the particle filter vs.
number of particles.

tracker (3)-(4). This comparison is done using the quan-
tized system described in Section 4, with d = 3, R =
P = 0.01, A = 0.999 and Σ = 50. Also, Q [·] is a one-bit
quantizer, i.e.,

Q [ξ] =

{
q1, ξ < 0

q2, ξ ≥ 0
,

and each d-dimensional row vector cn is randomly chosen
as cn = c̃n/ ‖c̃n‖, with c̃n = [c̃n,1, · · · , c̃n,d]T and c̃n,i,
n ∈ {1, · · · , N}, i ∈ {1, · · · , d}, being drawn from the
distribution N (0, 1).

To obtain an approximation of the performance of the
Bayesian tracker, we use an importance-sampling particle
filter [Arulampalam et al., 2002]. The accuracy of this filter
depends on the number of particles used. In order to choose
a number of particles such that the approximation error is
negligible, we plot in Figure 1 the relative estimation error
erel obtained using the particle filter with different number
of particles. This error is defined by

erel =

∑T
t=1 ‖x(t)− x̂(t)‖2∑T

t=1 ‖x(t)‖2
,

where x̂(t) denotes the estimated state, and we use T =
105 samples. We see that the improvement obtained using
more than 200 particles is rather small. Hence, we use this
value in our simulations.

In Figure 2 we show the relative estimation errors obtained
using the particle filter and the ML filter, as a function of
the number of sensors. Again, we use T = 105 samples. We
see that the difference in performance between both filters
is negligible when the number N of sensors is greater than
or equal to 20. This is due to the fact that, for these values
of N , the difference between the LF (7) and its Gaussian
approximation (18) is very small.

To show how the accuracy of the Gaussian approximation
to the LF increases with N , we show in Figure 3 the
quadratic error eq between the LF and its Gaussian
approximation, defined by

e2
q =

ˆ ∣∣∣LN (x)− LN (µN ) e−
1
2 (x−µN )TΣ−1

N
(x−µN )

∣∣∣2 dx,
for different values of N , when the true value is x? = 0. To
evaluate the error, for each point, we use 1000 Monte Carlo
runs. Also, Figure 4 shows examples of both functions for
N equal to 6, 12 and 18.
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ML filter.

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16  18  20

G
a
u
s
s
ia

n
 a

p
p

ro
x
im

a
ti
o
n
 e

rr
o

r

Number of nodes (N)

Fig. 3. Quadratic error between the LF and its Gaussian
approximation for different numbers of sensors.

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

-4 -2  0  2  4

A
m

p
lit

u
d
e

x1

LF (N=6)
GA (N=6)

LF (N=12)
GA (N=12)
LF (N=18)
GA (N=18)

Fig. 4. LF and its Gaussian approximation (GA) for
different numbers of sensors.

Finally, an example of the evolution of the first component
x1(t) of the state x(t), together with its estimates obtained
using particle filtering and ML filtering, is shown in
Figure 5. In this comparison we use N = 20 sensors. We
see how both estimates closely resemble each other.

6. CONCLUSION

We provide a number of technical conditions to guarantee
that the ML filter converges to the theoretical Bayesian
tracking solution, as the number of sensors tends to in-
finity. The implication of this result is that, in tracking
applications using a large number of sensors, the compu-
tational advantages offered by the ML filter, a guarantee
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Fig. 5. Evolution of the first component x1(t) of the state
x(t), and its two estimates obtained using particle
filtering and ML filtering, for N = 20 nodes.

for the stability of the tracker, as well as the possibility
of a distributed implementation, come without noticeable
performance detriment. We used our result in a case study,
and presented simulation results confirming our theoretical
claim.

Appendix A. LEMMAS

Lemma 7. Let D ⊂ Rd be compact and fn : D → R,
n ∈ N, be a sequence of stochastic differentiable functions.
If limn→∞ fn (x) converges for every x ∈ D, w.p.1, and
∂fn is CSUC, then:

(1) fn is CSUC;
(2) ∂ limn→∞ E {fn} = limn→∞ E {∂fn}.

Proof. Claim 1 follows by applying [Rudin, 1976, Th.
7.17] on each event where the pointwise convergence of
limn→∞ fn and the uniform convergence of ∂fn occur. On
the same event we have

lim
n→∞

E
{
∂

∂x
fn(x)

}
= lim

n→∞

∂

∂x
fn(x)

(a)
=

∂

∂x
lim
n→∞

fn(x) =
∂

∂x
lim
n→∞

E {fn(x)} ,

where (a) follows from [Rudin, 1976, Th. 7.17], and Claim 2
follows.
Lemma 8. If fn : Rd → R, n ∈ N, is SAE, and converges
w.p.1, then it is CSUC.

Proof. Clearly, the SAE condition implies that fn is
continuous, for each n ∈ N. Then, the result follows
from [Davidson, 1994, Th. 21.8].
Lemma 9. If fn : Rd → R, n ∈ N, is SAE, then so is
FN = 1

N

∑N
n=1 fn.

Proof. Choose ε > 0. We have
sup
x∈Rd

sup
y:‖y−x‖<δε/2

‖FN (y)− FN (x)‖

≤ 1

N

N∑
n=1

sup
x∈Rd

sup
y:‖y−x‖<δε/2

‖fn (y)− fn (x)‖ . (A.1)

Let Nε ∈ N be such that
sup
x∈Rd

sup
y:‖y−x‖<δε/2

‖fn (y)− fn (x)‖ < ε,

for all n > Nε. Then, the result follows by taking lim sup
on both sides of (A.1).
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