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Abstract: In this paper, a universal formula is proposed for event-based stabilization of
nonlinear time-delay systems affine in the control. The feedback is derived from the seminal law
proposed by E. Sontag (1989) and then extended to event-based control of nonlinear undelayed
systems. Under the assumption of the existence of a control Lyapunov-Krasovsky functional
(CLKF), it enables smooth (except at the origin) asymptotic stabilization while ensuring that
the sampling intervals do not contract to zero. Global asymptotic stability is obtained under the
small control property assumption. Moreover, the control can be proved to be smooth anywhere
under certain conditions. Simulation results highlight the ability of the proposals.
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INTRODUCTION

The classical way to address a discrete-time feedback
for nonlinear systems is i) to implement a (periodic)
continuous-time control algorithm with a sufficiently small
sampling period (this procedure is denoted as emula-
tion). However, the hardware used to sample and hold
the plant measurements or compute the feedback control
action may make impossible the reduce of the sampling
period to a level that guarantees acceptable closed-loop
performance, as demonstrated in Hsu and Sastry (1987).
Furthermore, although periodicity simplifies the design
and analysis, it results in a conservative usage of resources
since the control law is computed and updated at the
same rate regardless it is really required or not. Other
ways are ii) the application of sampled-data control al-
gorithms based on an approximated discrete-time model
of the process, like in Nešić and Teel (2004), or iii) the
modification of a continuous-time stabilizing control using
a general formula to obtain a redesigned control suit-
able for sampled-data implementation, as done in Nešić
and Grüne (2005). Finally, iv) event-triggered approaches
have also been suggested as a solution, where the control
law is event-driven. These techniques are resource-aware
implementations, they overcome drawbacks of emulation,
redesigned control and complexity of the underlying non-
linear sampled-data models.

Although event-based control is well-motivated, only few
works report theoretical results about the stability, con-
vergence and performance, see Anta and Tabuada (2010);
Marchand et al. (2013) and the references therein. On the
other hand, only few works deal with time-delay systems
(which are of interest here), like in Lehmann and Lunze
(2011, 2012); Guinaldo et al. (2012); Durand (2013) for

linear systems. Moreover, in the best knowledge of the au-
thors, this is the first time an event-based control strategy
is proposed for general nonlinear time-delay systems.

The work in Marchand et al. (2013) is based on the univer-
sal formula of Sontag (1989). An event-based stabilization
of general (undelayed) nonlinear systems affine in the input
is proposed, where the control updates ensure the strict
decrease of a control Lyapunov function (CLF) and so is
asymptotically stable the closed-loop system. The concept
of CLF, which is a useful tool for designing robust control
laws for nonlinear systems, has been extended to time-
delay systems in the form of control Lyapunov-Razumikhin
functions (CLRF) and control Lyapunov-Krasovsky func-
tionals (CLKF), see Jankovic (1999, 2000, 2003). The
latter form is more flexible and easier to construct than
CLRFs. Moreover, if a CLKF is known for a nonlinear
time-delay system, several stabilizing control laws can be
constructed using one of the universal formulas derived for
CLFs (such as the Sontag’s formula for instance) to achieve
global asymptotic stability of the closed-loop system.

In the present paper, the universal event-based formula
of Marchand et al. (2013) is extended for the stabiliza-
tion of affine in the control nonlinear time-delay systems.
The class of time-delay systems under consideration is
restricted here to depend on some discrete delays and a
distributed delay. Note also that only state delays are con-
sidered whereas delays in the control signal (input delays)
are not considered. The rest of the document is organized
as follows. In section 1, definitions are introduced and the
problem is stated. The main contribution is then presented
in section 2. The smooth control particular case is also
concerned and an example is depicted. An analysis finally
concludes the paper.
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1. PRELIMINARIES

1.1 Event-triggered stabilization of nonlinear systems

Let consider the general nonlinear dynamical system

ẋ(t) = f
(
x(t), u(t)

)
(1)

with x(0) := x0

with x(t) ∈ X ⊂ Rp, u(t) ∈ U ⊂ Rq and f is a
Lipschitz function vanishing at the origin. Note that only
null stabilization is considered in this paper and the
dependence on t can be omitted in the sequel for the sake
of simplicity. Also, let define X ∗ := X\{0} hereafter.

Definition 1.1. (Event-based feedback).
By event-based feedback we mean a set of two functions,
that are i) an event function ε : X ×X → R that indicates
if one needs (when ε ≤ 0) or not (when ε > 0) to recompute
the control law and ii) a feedback function υ : X → U .

The solution of (1) with event-based feedback (ε, υ) start-
ing in x0 at t = 0 is then defined as the solution of the
differential system

ẋ(t) = f
(
x(t), υ(xi)

)
∀t ∈ [ti, ti+1[ (2)

with xi := x(ti) (3)

where the time instants ti, with i ∈ N, are considered as
events (they are determined when the event function ε
vanishes and denote the sampling time instants) and xi
is the memory of the state value at the last event. With
this formalization, the control value is updated each time
ε becomes negative. Usually, one tries to design an event-
based feedback so that ε cannot remain negative (and so
is updated the control only punctually). In addition, one
also wants that two events are separated with a non van-
ishing time interval avoiding the Zeno phenomenon. All
these properties are encompassed with the Minimal inter-
Sampling Interval (MSI) property introduced in Marchand
et al. (2013). In particular:

Property 1.2. (Semi-uniformly MSI).
An event-triggered feedback is said to be semi-uniformly
MSI if and only if the inter-execution times can be below
bounded by some non zero minimal sampling interval
τ(δ) > 0 for any δ > 0 and any initial condition x0 in
the ball B(δ) centered at the origin and of radius δ.

Remark 1.3. A semi-uniformly MSI event-driven control
is a piecewise constant control with non zero sampling
intervals (useful for implementation purpose).

A particular event-based feedback has been proposed
in Marchand et al. (2013), based on the universal formula
of Sontag (1989). In order to then understand how was
built this strategy, we first recall some seminal results for
the stabilization of continuous-time systems. Let consider
the affine in the control nonlinear dynamical system

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
u(t) (4)

with x(0) := x0

where f and g are smooth functions with f vanishing at
the origin.

Definition 1.4. (Control Lyapunov function).
A smooth and positive definite functional V : X → R is
a control Lyapunov function (CLF) for system (4) if for
each x 6= 0 there is some u ∈ U such that

α(x) + β(x)u < 0 (5)

with

∣∣∣∣∣∣∣∣
α(x) := LfV (x) =

∂V

∂x
f(x)

β(x) := LgV (x) =
∂V

∂x
g(x)

where LfV and LgV are the Lie derivatives of f and g
functions respectively.

Property 1.5. (Small control property).
If for any µ > 0, ε > 0 and x in the ball B(µ)\{0}, there is
some u with ‖u‖ ≤ ε such that inequality (5) holds, then it
is possible to design a feedback control that asymptotically
stabilizes the system (Sontag (1989)).

Theorem 1.6. (Sontag’s universal formula).
Assume that system (4) admits V as a CLF. For any real
analytic function q : R → R such that q(0) = 0 and
bq(b) > 0 for b 6= 0, let φ : R2 → R be defined by

φ(a, b) :=

{
a+
√
a2 + bq(b)

b
if b 6= 0

0 if b = 0

(6)

Then, the feedback υ : X → U , smooth on X ∗, defined by

υ(x) := −β(x)φ
(
α(x), ‖β(x)‖2

)
(7)

with α(x) and β(x) defined in (5), is such that (5) is
satisfied for all x ∈ X ∗.
Property 1.7. If the CLF V in Theorem 1.6 satisfies the
small control property, then taking q(b) = b in φ in (6),
the control is continuous at the origin and so is globally
asymptotically stable the closed-loop system.

The event-based feedback in Marchand et al. (2013) is
based on such an approach, where the control law υ is sim-
ilar to the one in (7) (but with a lightly different function
φ) and event function ε is related to the time derivative
of the CLF in order to ensure a (global) asymptotic sta-
bility of the closed-loop system. In the present paper, this
event-based feedback is extended for the stabilization of
nonlinear time-delay systems. Actually, the construction
is quite similar, this is why the event-based feedback for
nonlinear undelayed systems is not detailed here.

1.2 Stabilization of (time-triggered) time-delay systems

Hereafter, the state of a time-delay system is described
by xd : [−r, 0] → X defined by xd(t)(θ) = x(t + θ). This
notation, used in Jankovic (2000) in particular, seems more
convenient than the more conventional xt(θ). Note that the
dependence on t and θ can be omitted in the sequel for the
sake of simplicity, writing xd(θ) – or only xd – instead of
xd(t)(θ) for instance. Let consider the affine in the control
nonlinear dynamical time-delay system

ẋ = f(xd) + g(xd)u (8)

with xd(0)(θ) := χ0(θ)

where f , g are smooth functions and χ0 : [−r, 0] → X is
a given initial condition. Note that the class of time-delay
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system under consideration has been restricted to depend
on l discrete delays and a distributed delay in the form

ẋ = Φ(xτ ) + g(xτ )u (9)

with Φ(xτ ) := f0(xτ ) +

∫ 0

−r
Γ(θ)F

(
xτ , x(t+ θ)

)
dθ

and xτ :=
(
x, x(t− τ1), . . . , x(t− τl)

)
where f0, g and F : R(l+2)p → RΓ are smooth functions of
their arguments. Without loss of generality, it is assumed
that F (xτ , 0) = 0 and the matrix Γ : [−r, 0] → Rp×Γ is
piecewise continuous (hence, integrable) and bounded.

Remark 1.8. The restriction (9) on this class of delay
systems is needed to avoid the problems that arise due
to non-compactness of closed bounded sets in the space(
C([−r, 0],X

)
, ‖·‖), where C([−r, 0],X ) denotes the space

of continuous functions from [−r, 0] into X . This is dis-
cussed in Jankovic (1999, 2000).

Remark 1.9. Input delays of the form u(t − τ) are not
considered in this paper. However, the control law is
computed using the state xd of the time-delay system.

Definition 1.10. (Control Lyapunov-Krasovsky functional).
A smooth functional V : X → R of the form

V (xd) = V1(x) + V2(xd) + V3(xd) (10)

with

∣∣∣∣∣∣∣∣∣∣
V2(xd) =

l∑
j=1

∫ 0

−τj
Sj(x(t− ς))dς

V3(xd) =

∫ 0

−r

∫ t

t+θ

L(θ, x(ς))dςdθ

where V1 is a smooth, positive definite, radially unbounded
function of the current state x, V2 and V3 are non-negative
functionals respectively due to the discrete delays and the
distributed delay in (9), Sj : X → R and L : R+ × X →
R are non-negative integrable functions, smooth in the
x-argument, is a control Lyapunov-Krasovsky functional
(CLKF) for system (9) if there exists a function λ, with
λ(s) > 0 for s > 0, and two class K∞ functions κ1 and κ2

such that

κ1(|χ0|) ≤ V (χd) ≤ κ2(‖χd‖)
and

βd(χd) = 0⇒ αd(χd) ≤ −λ(|χ0|) (11)

with

∣∣∣∣ αd(xd) := L∗fV (xd)
βd(xd) := LgV1(xd)

for all piecewise continuous functions χd : [−r, 0] → X ,
where χ0 is defined in (8).

Remark 1.11. Whereas the classical Lie derivative nota-
tion is used in LgV1(x) = ∂V1

∂x g(x) for the CLKF part V1

which is function of the current state x, an extended Lie
derivative is required for functionals of the form (10). L∗fV ,

initially defined in Jankovic (2000), comes from the time
derivative of the CLKF V in (10) along trajectories of the
system (9), that is

V̇ = L∗fV (xd) + LgV1(xd)u = αd(xd) + βd(xd)u (12)

with L∗fV (xd) :=
∂V1

∂x
Φ +

l∑
j=1

(
Sj(x)− Sj(x(t− τj))

)
+

∫ 0

−r

(
L(θ, x)− L(θ, x(t+ θ))

)
dθ

where Φ is defined in (9).

The Sontag’s universal formula (Theorem 1.6) has been ex-
tended in Jankovic (2000) for the stabilization of nonlinear
time-delay systems (9) with a CLKF of the form (10). This
can be summarized as follows:

Theorem 1.12. (Sontag’s universal formula with CLKF).
Assume that system (9) admits a CLKF of the form (10).
For any real analytic function q : R→ R and φ : R2 → R,
both defined in Theorem 1.6, let the feedback υ : X → U ,
smooth on X ∗, defined by

υ(xd) := −βd(xτ )φ
(
αd(xd), ‖βd(xd)‖2

)
(13)

with xτ and αd, βd defined in (9) and (11) respectively.
Then υ is such that (11) is satisfied for all non zero
piecewise continuous functions χd : [−r, 0]→ X .

Property 1.13. If the CLKF V in Theorem 1.12 satisfies
the small control property, then taking q(b) = b in φ in (6),
the control is continuous at the origin and so is globally
asymptotically stable the closed-loop system.

1.3 Contribution of the paper

In the present paper, the event-based approach previously
developed in Marchand et al. (2013) is extended for
nonlinear time-delay systems admitting a CLKF.

In the sequel, let

xdi := xd(ti) (14)

be the memory of the delayed state value at the last event,
by analogy with (3).

2. EVENT-BASED STABILIZATION OF NONLINEAR
TIME-DELAY SYSTEMS

It is possible to design an event-based feedback control
that asymptotically stabilizes time-delay systems (9) with
a CLKF of the form (10):

Theorem 2.1. (Event-based universal formula with CLKF).
If there exists a CLKF V of the form (10) for system (9),
then the event-based feedback (ε, υ) – see Definition 1.1 –
defined by

υ(xd) = −βd(xτ )∆(xτ )γ(xd) (15)

ε(xd, xdi) = −αd(xd)− βd(xd)υ(xdi)

−σ
√
αd(xd)2 + θ(xd)βd(xd)∆(xd)βd(xd)T (16)

with

• αd and βd as defined in (11) ;

• ∆ : X ∗ → Rq×q (a tunable parameter) and θ : X → R
are smooth positive definite functions ;

• γ : X → R is defined by
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γ(xd) :=


αd(xd) +

√
αd(xd)2 + θ(xd)βd(xd)∆(xd)βd(xd)T

βd(xd)∆(xd)βd(xd)T

if xd ∈ Sd

0 if xd /∈ Sd

(17)

• Sd := {xd ∈ X | ‖βd(xd)‖ 6= 0} ;
• σ ∈ [0, 1[ is a tunable parameter ;

where xdi and xτ are defined in (14) and (9) respectively,
is semi-uniformly MSI, smooth on X ∗ and such that the
time derivative of V satisfies (11) ∀x ∈ X ∗.
Remark 2.2. The simplification made with respect to the
original result in Marchand et al. (2013) (for the stabi-
lization of nonlinear undelayed systems) resides in the
assumptions made for the functions θ and ∆, that are more
restrictive here whereas they are assumed to be definite
only on the set Sd in the original work.

Remark 2.3. The idea behind the construction of the
event-based feedback (15)-(16) is to compare the time
derivative of the CLKF V i) in the event-based case, that
is applying υ(xdi), and ii) in the classical case, that is
applying υ(xd) instead of υ(xdi). The event function is the
weighted difference between both, where σ is the weighted
value. By construction, an event is enforced when the event
function ε vanishes to zero, that is hence when the stability
of the event-based scheme does not behave as the one in
the classical case. Also, the convergence will be faster with
higher σ but with more frequent events in return. σ = 0
means updating the control when V̇ = 0.

Also, properties inherited from Marchand et al. (2013)
complete Theorem 2.1. In particular:

Property 2.4. (Global asymptotic stability).
If the CLKF V in Theorem 2.1 satisfies the small con-
trol property, then the event-based feedback (15)-(16) is
continuous at the origin and so is globally asymptotically
stable the closed-loop system.

Property 2.5. (Smooth control).
If there exists some smooth function ω : X → R+ such
that on S∗d := Sd\{0}

ω(xd)βd(xd)∆(xd)βd(xd)
T − αd(xd) > 0

then the control is smooth on X as soon as θ(xd)‖∆(xd)‖
vanishes at the origin with

θ(xd) := ω(xd)
2βd(xd)∆(xd)βd(xd)

T − 2αd(xd)ω(xd) (18)

2.1 Proofs

Proof of Theorem 2.1: The proof follows the one devel-
oped in Marchand et al. (2013) for event-based control of
systems without delays (4). First, let define hereafter

ψ(x) :=
√
αd(x)2 + θ(x)βd(x)∆(x)βd(x)T (19)

Let begin establishing γ is smooth on X ∗. For this,
consider the algebraic equation

P (xd, ζ) := βd(xd)∆(xd)βd(xd)
T ζ2

− 2αd(xd)ζ − θ(xd) = 0 (20)

Note first that ζ = γ(x) is a solution of (20) for all xd ∈ X .
It is easy to prove that the partial derivative of P with
respect to ζ is always strictly positive on X ∗

∂P

∂ζ
:= 2βd(xd)∆(xd)βd(xd)

T ζ − 2αd(xd) (21)

Indeed, when ‖βd(xd)‖ = 0, (11) gives ∂P
∂ζ = −2αd(xd) ≥

2λ(|χ0|) > 0 and when ‖βd(xd)‖ 6= 0, (17) gives ∂P
∂ζ =

2
√
αd(xd)2 + θ(xd)βd(xd)∆(xd)βd(xd)T > 0 replacing ζ

in (21) by the expression of γ (since ζ = γ(x) is a solution
of (20)). Therefore ∂P

∂ζ never vanishes at each point of the

form {(xd, γ(xd))|xd ∈ X ∗}. Furthermore, P is smooth
w.r.t. xd and ζ since so are αd, βd, θ and ∆. Hence, using
the implicit function theorem, γ is smooth on X ∗.
The decrease of the CLKF of the form (10) when applying
the event-based feedback (15)-(16) is easy to prove. For
this, let consider the time interval [ti, ti+1], that is the
interval separating two successive events. Recall that xdi
denotes the value of the state when the ith event occurs
and ti the corresponding time instant, as defined in (14).
At time ti, when the event occurs, the time derivative of
the CLKF, i.e. (12), after the update of the control is

dV

dt
(xdi) = αd(xdi) + βd(xdi)υ(xdi) = −ψ(xdi) < 0

when substituting (17) in (15), where ψ is defined in (19).
More precisely, defining a compact set not containing the
origin, that is Ω = {xd ∈ CP ([−r, 0],X ) : d ≤ ‖xd‖ ≤
D}, where CP ([−r, 0],X ) denotes the space of piecewise
continuous functions from [−r, 0] into X , d and D are some
constant in R+. If V is a CLKF for the system of the
form (9) then for all 0 < δ < D there exists ε > 0 such
that αd(χd) ≥ − 1

2λ(|χ0|)⇒ |βd(χd)| ≥ ε for χd ∈ Ω. This
gives

V̇ ≤ −λ(|x|)
One can refer to Lemma 1 in Jankovic (2000), and Jankovic
(1999), for further details. With this updated control, the
event function (16) hence becomes strictly positive

ε(xdi, xdi) = (1− σ)ψ(xdi) > 0

since σ ∈ [0, 1[, where ψ is defined in (19). Furthermore,
the event-function necessarily remains positive before the
next event by continuity, because an event will occur
when ε(xd, xdi) = 0 (see Definition 1.1). Therefore, on the
interval [ti, ti+1], one has

ε(xd, xdi) = −αd(xd)− βd(xd)υ(xdi)− σψ(xd)

= −dV
dt

(xd)− σψ(xd) ≥ 0

which ensures the decrease of the CLKF on the interval
since σψ(xd) ≥ 0, where ψ is defined in (19). Moreover,
ti+1 is necessarily bounded since, if not, V should converge
to a constant value where dV

dt = 0, which is impossible
thanks to the inequality above. The event function pre-
cisely prevents this phenomena detecting when dV

dt is close
to vanish and updates the control if it happens, where σ
is a tunable parameter fixing how “close to vanish” has to
be the time derivative of V .
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To prove that the event-based control is MSI, one has to
prove that for any initial condition in an a priori given
set, the sampling intervals are below bounded. First of all,
notice that events only occur when ε becomes negative
(with xd 6= 0). Therefore, using the fact that when
βd(xd) = 0, αd(xd) < −λ(|χ0|) (because V is a CLKF
as defined in Definition 1.10), it follows from (16), on
{xd ∈ X ∗ | ‖βd(xd)‖ = 0}, that

ε(xd, xdi) = −αd(xd)− σ|αd(xd)| = (1− σ)λ(|χ0|) > 0

because σ ∈ [0, 1[ and λ(s) > 0 for s > 0. Therefore,
there is no event on the set {xd ∈ X |‖βd(xd)‖ = 0} ∪
{0}. The study is then restricted to the set S∗d = {xd ∈
X ∗|‖βd(xd)‖ 6= 0}, where θ and ∆ are strictly positive by
assumption. Rewriting the time derivative of the CLKF
along the trajectories yields

dV

dt
(xd) = αd(xd) + βd(xd)υ(xdi)

= −ψ(xd) + βd(xd)
(
υ(xdi)− υ(xd)

)
(22)

when using the definition of υ(xd) in (15) and (17), where
ψ is defined in (19). Let define for xdi ∈ Sd, the level
ϑi := V (xdi) and the set Vϑi

:= {xd ∈ X |V (xd) ≤ ϑi}.
From the choice of the event function, it follows from (22)
that xd belongs to Vϑ ⊂ Vϑi

. Note that if xdi belongs to
Sd, this is not necessarily the case for xd that can escape
from this set. First see that, since i) θ(xd) is such that
αd(xd)

2 + θ(xd)βd(xd)∆(xd)βd(xd)
T > 0 for all xd ∈ S∗d ,

and ii) αd(xd) is necessarily non-zero on the frontier of Sd
(except possibly at the origin)

dV

dt
(xdi) = −ψ(xdi)

≤ − inf
xdi∈Sd

s.t. V (xdi)=ϑi

ψ(xdi) =: −ϕ(ϑi) < 0 (23)

Considering now the second time derivative of the CLKF

V̈ (xd) =

(
∂αd
∂xd

(xd) + υ(xdi)
T ∂β

T
d

∂xd
(xd)

)
Θ(xd, xdi) (24)

with Θ(xd, xdi) := Φ(xτ ) + g(xτ )υ(xdi)

where Φ is defined in (9). By continuity of all the involved
functions (except for Γ in Φ which is piecewise continuous
but bounded by assumption), both terms can be bounded
for all xd ∈ Vϑi

by the following upper bounds %1(ϑi) and
%2(ϑi) such that

%1(ϑi) := sup
xdi∈Sd s.t. V (xdi)=ϑi

xd∈Vϑi

∥∥∥∥∂αd∂xd
(xd)

+υ(xdi)
T ∂β

T
d

∂xd
(xd)

∥∥∥∥
%2(ϑi) := sup

xdi∈Sd s.t. V (xdi)=ϑi

xd∈Vϑi

‖Θ(xd, xdi)‖

where Θ is defined in (24). Therefore, V̇ is strictly negative
at any event instant ti and cannot vanish until a certain
time τ(ϑi) is elapsed (because its slope is positive). This
minimal sampling interval is only depending on the level
ϑi. A bound on τ(ϑi) is given by the inequality

dV

dt
(xd) ≤

dV

dt
(xdi) + ρ1ρ2(t− ti) x ∈ Vϑi

that yields

τ(ϑi) ≥
ϕ(ϑi)

%1(ϑi)%2(ϑi)
> 0

where ϕ is defined in (23). As a consequence, the event-
based feedback (15)-(16) is semi-uniformly MSI.

Proof of Property 2.4: To prove the continuity of υ at
the origin, one only needs to consider the points in S since
υ(xd) = 0 if ‖βd(xd)‖ = 0. Then (15) gives

‖υ(xd)‖ ≤
|αd(xd)|

βd(xd)∆(xd)βd(xd)T
‖∆(xd)βd(xd)

T ‖

+
ψ(xd)

βd(xd)∆(xd)βd(xd)T
‖∆(xd)βd(xd)

T ‖

≤ 2|αd(xd)|
βd(xd)∆(xd)βd(xd)T

‖∆(xd)βd(xd)
T ‖

+
√
θ(xd)‖∆(xd)‖ (25)

With the small control property (see Property 1.5), for any
ε > 0, there is µ > 0 such that for any xd ∈ B(µ)\{0},
there exists some u with ‖u‖ ≤ ε such that L∗fV (xd) +

[LgV1(xd)]
Tu = αd(xd) + βd(xd)u < 0 and therefore

|αd(xd)| < ‖βd(xd)‖ε. It follows

‖υ(xd)‖ ≤
2ε‖βd(xd)‖‖∆(xd)βd(xd)

T ‖
βd(xd)∆(xd)βd(xd)T

+
√
θ(xd)‖∆(xd)‖

Since the function (v1, v2) → ‖v1‖‖v2‖
vT1 v2

is continuous w.r.t.

its two variables at the origin where it equals 1, since θ
and ∆ are also continuous, since θ(xd)‖∆(xd)‖ vanishes
at the origin, for any ε′, there is some µ′ such that
∀xd ∈ B(µ′)\{0}, ‖υ(xd)‖ ≤ ε′ which ends the proof of
continuity.

Proof of Property 2.5: With θ as in (18), the control
in (15), (17) becomes υ(xd) = −βd(xd)∆(xd)ω(xd) which
is obviously smooth on X .

2.2 Example

Consider the nonlinear time-delay system

ẋ1 = u
ẋ2 = −x2 + x2d + x3

1 + u
(26)

with x2d := x2(t− τ)

that admits a CLKF (proposed in Jankovic (2000))

V (x) =
1

2
(x2

1 + x2
2) +

1

2

∫ 0

−τ
x2

2(θ)dθ (27)

with

∣∣∣∣∣ αd = x2(−x2 + x2d + x3
1) +

1

2
(x2

2 − x2
2d)

βd = x1 + x2

Indeed, setting, λ(|x|) = 1
4 |x|

4, one obtains

βd = 0⇒ x1 = −x2

⇒ αd = −1

2
(x2 − x2d)

2 − x4
2 ≤ −x4

2 ≤ −λ(|x|)
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which proves that (27) is a CLKF for (26) using Defini-
tion 1.10.

The time evolution of x, υ(x) and the event function
ε(x, xi) is depicted in Fig. 1, for ∆ = Ip (the identity
matrix), θ(x) is as defined in (18) (for smooth control

everywhere), with ω = 0.1, σ = 0.1, x0 = (1 −2)
T

and
a time delay τ = 2 s. One could remark that only 5
events occurs in the 20 s simulation time (including the
first event at t = 0) when applying the proposed event-
based approach (15)-(16). Furthermore, x1 and x2 slowly
converge to 0, as one can see in the 200 s simulation time
in Fig. 2.
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Fig. 1. Simulation results of system (26) with CLKF as
in (27) and event-based feedback (15)-(16).
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Fig. 2. Convergence of x1 and x2 to 0.

CONCLUSION

In this paper, an extension of the Sontag ’s universal for-
mula was proposed for event-based stabilization of nonlin-
ear time-delay systems. Whereas the original work deals
with control Lyapunov functions, some control Lyapunov-
Krosovsky functionals (CLKF) are now required for a
global (except at the origin) asymptotic stabilization of
systems with state delays. The sampling intervals do not
contract to zero. Moreover, the control is continuous at
the origin if the CLKF fulfills the small control property.
With additional assumption, the control can be proved
to be smooth everywhere. Some simulation results were
provided, they notably highlighted the low frequency of
events of the proposal.

Next step is to also consider input delays. Another way
of investigation could be to develop event-based strategies
for nonlinear systems based on other universal formulas,
like the formula of Freeman and Kokotovic (1996) or the
domination redesign formula of Sepulchre et al. (1997),
using CLRF and CLKF in the spirit of Jankovic (2000)
(for the time-triggered case).
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