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Abstract: A model reduction for a compressible flow with combustion is performed using
the POD-Galerkin procedure. The model parameters are determined by an optimization. The
obtained reduced-order model is incorporated in a model predictive controller and results are
shown from a closed-loop CFD-simulation. The controller influences the fuel mass-flow boundary
condition to control the temperature at a certain point within the computational domain.

1. INTRODUCTION

In many types of combustion processes, e.g. a combustion
in a rotary kiln for cement production, it is important
to guarantee a constant temperature profile over time.
This will be hard to achieve if the fuel mass flow for the
combustion has a changing heat value. This may occur if
waste is used for the combustion in order to reduce the
use of expensive fossil fuels. Thus a controller is needed to
keep the temperature profile constant.
Modeling this types of combustion processes requires the
consideration of the spatial extension of the system states.
Systems with non-negligible spatial dimension are called
distributed parameter systems and are typically modeled
with partial differential equations (PDEs) e.g. the Navier-
Stokes-Equations for flow problems. However, designing
a feedback controller requires low dimensional models of
ordinary differential equations (ODEs). One established
approach to retrieve an ODE-Model from a PDE is the
Proper Orthogonal Decomposition (POD) and subsequent
Galerkin projection (see e.g. Holmes et al. [1996]). The idea
is to compute a set of spatial basis functions of a subspace
containing most information from empirical data and to
project the PDE onto this subspace to arrive an ODE.
These methods have been applied in many different cases
of flow control. Kunisch and Volkwein [1999] obtained
a reduced model for the Burgers Equation via POD-
Galerkin technique. The empirical data for building up
the model has been generated from simulations. Baker
and Christofides [1999] analyzed the incompressible two-
dimensional Navier-Stokes equations in order to describe
Newtonian fluids and to synthesize a nonlinear controller.
The actuation has been realized via a volume force in the
equations. A case with three dimensions was examined by
Ma and Karniadakis [2002], who investigated the flow past
a cylinder by proper orthogonal decomposition to repro-
duce the arising limit cycle. For the Galerkin projection
the incompressible Navier-Stokes equations were used.
In all these approaches the flow is considered incompress-
ible, which simplifies the Navier-Stokes equations and the
? The authors gratefully acknowledge funding from the German
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simulations needed to obtain the data for the POD. How-
ever, combustion processes like all processes with note-
worthy temperature changes, require compressible model-
ing. An investigation of the two-dimensional compressible
Navier-Stokes-Equations has been given by Iollo et al.
[2000]. They formulated a compressible Galerkin-model
with conservation equations in velocity, pressure and spe-
cific volume. Heat flow was not considered. The choice of
specific volume instead of density guarantees a polynomial
structure of the model. A compressible case is also covered
in Gloerfelt [2008]. The POD is applied in order to describe
flow oscillations in a cavity. Again the specific volume
is chosen as value for the conservations equations and
the Galerkin projection. Some additional techniques for
compressible POD have been introduced by Rowley et al.
[2004]. They used simplified isentropic but compressible
Navier-Stokes equations for the Galerkin-projection and
modified the inner product for the projection in order to
respect both thermodynamic and kinematic variables.
An approach to include actuation via changing boundary
conditions in the reduced order model was outlined by
Graham et al. [1999]. They introduced an additional mode,
which homogenizes the given data ensemble at every time
step and thus represents the boundary conditions.
The POD-Galerkin method delivers the structure of the
model and the corresponding coefficients of the model.
As the computation of the modes requires empirical data
of the process, the calculation of the coefficients depends
on the modes and their derivatives, which can lead to
numerical problems. In order to improve the accuracy of
the reduced models, Couplet et al. [2005] and also Cordier
et al. [2009] calibrated the coefficients of the model using
optimization methods and regularizations.

In the present paper the outlined knowledge is combined
to receive a reduced model via the POD-Galerkin method
for a compressible channel flow with combustion. For that
purpose the models in Gloerfelt [2008] are expanded with
a combustion term to consider the heat flow. Actuation
via boundary conditions is considered using the ’control
function’ approach of Graham et al. [1999]. The model
is calibrated with the tools introduced in Cordier et al.
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[2009]. A model predictive controller is set up using the re-
duced model to control the temperature inside the channel
at a specific point. Section 2 introduces the plant. Section
3 gives a short overview over the POD-Galerkin method,
while the actual reduced order model is derived in Section
4. The controller design is described in Section 5 connected
with the investigation of the controller’s performance. Sec-
tion 6 gives a short conclusion.

2. SIMULATION AND PLANT

The plant considered in this paper is a compressible
channel flow with combustion simulated with the CFD-
Solver Fluent from ANSYS [2011]. In order to simplify
computations and to utilize symmetry, the upper half of
a longitudinal cut through a channel of 50 m length and a
height of 5 m is considered as plant. Thus the computation
area is two-dimensional with a length of 50 m and a height
of 2.5 m. For further modeling only two dimensions have
to be taken into account.
The fuel inlet with a height of 12.5 cm, where methane
enters the channel with a constant temperature of 300 K,
is located on the lower part of left boundary. The mass
flow of methane is variable and can be actuated by the
controller. Preheated air with a mass flow of 21.6 kg/s
enters the channel at a constant temperature of 973 K
through the upper part of the left boundary. The velocity
vanishes on the walls along the channel and heat transfer
across the wall is also considered. On the right side of the
channel a pressure outlet condition with a gauge pressure
of 1 bar is used.
A sketch of the plant is shown in Fig. 1.

air
pressure

outlet

fuel

Fig. 1. Boundary conditions of the plant

The physics of the channel-flow are described by the
conservation of mass, conservation of momentum and
conservation of energy. The equation for conservation of
mass can be written as

∂

∂t
ρ+ div(ρv) = 0 (1)

for the whole system and (without concerning mass diffu-
sion)

∂

∂t
(ρYk) + div(ρYkv) = ω̇k (2)

for every species, where ρ denotes the density, v the
velocity, Yk the mass fraction of species and ω̇k the
generation rate of species k. Further the reaction of species
is described by

CH4 + 2 O2 ⇒ CO2 + 2 H2O. (3)

The conservation of momentum becomes with v =
(v1 v2)

T
= (u v)

T

∂

∂t
(ρu) + div(ρuv) = − ∂p

∂x1
+
∂τ11
∂x1

+
∂τ21
∂x2

(4)

in streamwise direction x1 and

∂

∂t
(ρv) + div(ρvv) = − ∂p

∂x2
+
∂τ12
∂x1

+
∂τ22
∂x2

(5)

in normal direction x2. In these equations p denotes the
pressure and τij the stress tensor computed by

τ11 = µ

(
4

3

∂

∂x1
u− 2

3

∂

∂x2
v

)
τ22 = µ

(
4

3

∂

∂x2
v − 2

3

∂

∂x1
u

)
(6)

τ12 = τ21 = µ

(
∂

∂x2
u+

∂

∂x1
v

)
with the dynamic viscosity µ.
In order to close the system of equations the ideal gas law

p = ρRT (7)

is applied. Here R denotes the specific gas constant and T
the temperature of the gas. For the caloric state equation

e = cvT (8)

is used, where cv is the isochoric heat capacity and e the
internal energy.
Finally, the conservation of energy is described by

∂(ρ(e+ ‖v‖2
2 ))

∂t
+ div(ρ(e+

‖v‖2

2
)v) = −div (vp)

+∆ (kT ) + ρq̇ −
N∑

k=1

hkω̇k +

2∑
i,j=1

∂(τijvj)

∂xi

(9)

with q̇ as the volumetric heat flow, the enthalpy of forma-
tion hk and the thermal conductivity k.
These equations are solved by the CFD-Solver Fluent
using an implicit pressure based solver with a Courant
number of ten and a cell-based least square method to
approximate the gradient. For turbulence the k−ε−model
was applied. The effects of radiation are considered using
the P1-model. The input of the plant is the mass-flow of
methane into the channel scaled with the nominal value
3 kg/s. The controlled variable is the cell average of the
temperature at the position (20 m, 1.2 m).

For the model reduction dynamic information about the
plant is needed in form of snapshots. These snapshots
contain the data of different physical variables on the
whole computational domain at certain points in time. To
generate this snapshot-data the plant is simulated over a
time scale of 15 s with a step size of 0.1 s for the data
export. The 151 snapshots include all values of density,
pressure, velocity and of mass-concentration of oxygen and
methane. To generate dynamic information the plant has
been simulated with an excitation of the left boundary
condition. Fig. 2 shows the fuel mass flow at the inlet as a
function of time. The mass-flow is scaled with the nominal
value 2.5 kg/s and time is scaled by the cycle time.

3. REDUCED-ORDER-MODELS

The derivation of a reduced-order-model for a given plant
with POD-Galerkin consists of two steps. The first is
to compute a set of spatial basis functions via proper
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Fig. 2. Actuation of the plant

orthogonal decomposition based on the snapshot-data,
which should cover the operating range of the system.
Second the investigated PDE is reduced to a system of
ODEs by application of the Galerkin-projection. Some
theoretical background for the POD and the Galerkin-
projection is outlined in paragraph 3.1 and 3.2. The model-
reduction for the present case is presented in Section 4.

3.1 Proper Orthogonal Decomposition

Given a data set y(t,x). The goal of the POD is to
decompose the data into temporal coefficients ai(t) and
spatial functions ϕi(x) such that

yN (t,x) =

N∑
i=1

ai(t)ϕi(x) (10)

is the optimal approximation of y(t,x) in a time-averaged
least-squares sense (see e.g. Holmes et al. [1996]). This
problem leads to the determination of the spectrum of
a linear, self-adjoint and compact operator. In case of
time-discrete data and applying the method of snapshots
introduced by Sirovich [1987] the solution simplifies to the
calculation of eigenvalues of a correlation matrix.
Let 〈·, ·〉 be a spatial inner product in L2(Ω) and Nt the
number of time-steps in the data. Then the (Nt × Nt)
correlation matrix can be computed by

Cij = 〈y(ti,x)y(tj ,x)〉. (11)

The temporal coefficients ai(t) are determined as eigen-
vectors to the largest eigenvalues of C, hence

Cai = λiai. (12)

The POD modes ϕi(x) are given via projecting ai on the
data set y by

ϕi(x) =
1√
λiaTa

ai(t)
Ty(t,x). (13)

This computation ensures, that the POD modes form an
orthonormal basis of an optimal subspace of L2(Ω). In
the case that y(t,x) is multi-dimensional the sum of the
inner products of the different dimensions of y leads to
the same result. For the compressible model reduction,
different physical quantities like velocity or pressure need
to be combined in one inner product. Therefore a proper
scaling of the variables is essential to receive a meaningful

decomposition. Here all variables will be scaled by the
operating point values. So y(t,x) has been scaled with the
average values of the initial simulation. The calculation of
POD modes ensures a model of low dimension and optimal
representation of the ensemble data.

3.2 Galerkin-Projection

With this modal decomposition into temporal coefficients
ai(t) and spatial basis functions ϕi(x) a transformation
of the PDE into a system of ODEs can be achieved.
Substitution of the series expansion (10) into the PDE and
projecting the residual onto the j-th basis function results
in an ODE for the j-th temporal coefficient aj . Repeating
this procedure for each of the temporal coefficients gives a
system of N ODEs. The corresponding calculation is the
following: Given a PDE with the structure

ẏ(t, x) = f (y, ∂xy, . . . , ∂
n
xy) . (14)

From the Orthogonal Decomposition follows

y(t,x) ≈
N∑
i=1

ai(t)ϕi(x) and 〈ϕi(x), ϕj(x)〉 = δij ,

(15)
where N is the number of POD modes. Then also the
identity

ȧj = 〈ẏ(t, x), ϕj(x)〉

≈ 〈f

(
N∑
i=1

aiϕi,

N∑
i=1

ai∂xϕi, . . . ,

N∑
i=1

ai∂
n
xϕi

)
, ϕj〉 (16)

= f̃ (a, ϕ, ∂xϕ, . . . , ∂
n
xϕ)

holds. Boundary conditions do not explicitly occur in the
resulting ODE-system. Thus for an exact matching of the
boundary conditions, the boundary conditions have to be
satisfied by the POD modes. This will only be the case for
homogeneous boundary conditions, since the POD modes
inherit these conditions from the data set and all linear
combinations will fulfill them too. Inhomogeneous bound-
ary conditions can be satisfied with additional modes in-
troduced by Graham et al. [1999]

y(t,x) = yh(t,x) + ȳ(x) + u(t)ỹ(x). (17)

Thereby ȳ(x) meets the stationary boundary conditions
while ỹ(x) represents the influence of the time depen-
dent boundary condition u(t). The POD is applied just
on yh(t,x) and so these modes meet the homogeneous
boundary conditions of yh(t,x). Thus the modes of yh
combined with ỹ(x) and ȳ(x) fulfill the inhomogeneous
boundary conditions.
The additional modes ȳ(x) and ỹ(x) are in general not
orthogonal to the POD modes of yh and the equations are
modified to

ȧj(t) = 〈
N∑
i=1

ȧi(t)ϕi(x), ϕj(x)〉 − u̇〈ỹ(x), ϕj(x)〉 (18)

and
N∑
i=1

ai(t)ϕi(x) + ȳ(x) + u(t)ỹ(x) =

N+2∑
i=1

ai(t)ϕi(x). (19)

Because the input variable u̇ appears as time-derivative in
(18), its more convenient to choose

w = u̇ (20)
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as input of the system. The resulting model is a system
of ODEs for the temporal coefficients aj(t) related to
modes ϕj(x) containing most information of the system
dynamics. The j-the ODE of the model describes the
change of the influence, that the mode ϕj(x) has on the
solution.

4. MODEL-REDUCTION OF THE CHANNEL-FLOW

At first some additional equations not directly included
in the CFD-Simulation but needed for the reduction are
presented. Together with the equations for the plant this
results in a system of nonlinear PDEs, which will be
reduced with the presented methods to a system of ODEs.
Because direct calculation of the coefficients of the ODEs
is ill conditioned, the structure of the reduced-order-model
will be maintained, but the coefficients will be determined
indirectly by an optimization.

4.1 Additional equations for the channel-flow

First methane (equivalent to k = 1), oxygen (k = 2) and
CO2 + 2H2O (k = 3) are chosen as species for equation
(2) and (3). Further the kinetics of the reaction shall follow
the differential equations

∂

∂t
(ρY1) = −kRρY1ρY2 (21)

∂

∂t
(ρY2) = −kRρY2ρY1,

where kR is the rate constant. The change of the rate
constant due to changes in temperature are describe by the
Arrhenius ansatz, which presumes a exponential relation.
The effects of radiation are described via the Stefan-
Boltzmann law

q̇ =
1

V
εσAT 4 (22)

with the variables ε as the emissivity, σ the Stefan-
Boltzmann constant and surface and volume A and V .
Together with the equations (1) - (8) these form a system
of nonlinear PDEs.

4.2 The reduced ODE-model

A direct Galerkin projection of the nonlinear PDEs into a
reduced order model would lead to a model with terms
of high order owing to the T 4-Term due to radiation
and the eT -Term due to the Arrhenius ansatz for the
reaction coefficient. Also many physical quantities have to
be taken to account. With the assumption, that k and R
are constant, and via a linearization of the equation around
a temperature working point T0, the structure of the
model can be simplified to an ODE-System with quadratic
structure and only six physical quantities. These are the
specific volume ξ, the streamwise and normal velocity u
and v, the absolute pressure p and the mass concentrations
of fuel (ψ = ρY1) and oxygen (χ = ρY2). The choice
of the inverse density (see Gloerfelt [2008]) ensures the
polynomial structure of the resulting model, because the
temperature can be written as RT = pξ. With the choice
of

y(t,x) = (ξ u v p ψ χ)
T

=
(
yI(t,x) · · · yV I(t,x))

)T
ϕi(x) =

(
ϕI
i (x) · · ·ϕV I

i (x)
)T

(23)

and the dot product

〈y(x), ϕ(x)〉 =

V I∑
i=I

〈yi(x), ϕi(x)〉 (24)

the resulting model has the structure

ȧj = aT
(
Ξj + U j + V j + P j + Ψj +Xj

)
a+ wgj

= aTQja+ wgj ∀j = 1 . . . N (25)

ȧN+1 = 0

ȧN+2 = w.

The states aN+1 and aN+2 correspond to the two homog-
enizing modes (the time average field and the actuation
field). The matrices Ξj · · ·Xj are related to the differential
equations in ξ, u, v, p, ψ and χ and are computed by
Galerkin projection (e.g. 〈ξ̇, ϕI

j 〉 ⇒ aTΞja). Thereby the
matrices include quadratic and also linear terms (aN+1 =
1). The term gj = −〈ỹ(x), ϕj(x)〉 represents the boundary
control (see (18)). An example computation can be found
in the appendix.
These equations include a computational scheme for the
determination of the model-coefficients. However, for the
computation of these coefficients, first order derivatives of
the POD modes are required. Because of high pressure
changes in the fuel inlet based on different velocities, this
approach is numerical ill conditioned and delivers poor
results. So it is more reasonable to identify the model-
coefficients. However, the presented equations are used
to define the structure of the reduced model, which is a
system of quadratic ODEs.

4.3 Optimization of model-coefficients

A numeric practicable way to determine the model param-
eters of reduced Galerkin models has been introduced by
Couplet et al. [2005]. The main idea is to demand, that the
true coefficients - gathered by projection of the computed
modes ϕ onto the solution data y - shall fulfill the differ-
ential equation. The optimization minimizes the quadratic
error between that true coefficients and the result of the
differential equation by changing the parameters of the
differential equation. This approach has been applied by
Cordier et al. [2009], who expanded the idea with an regu-
larization. From the three different formulations presented
in Cordier et al. [2009] the state calibration method

ei(ζ, t) = aiP (t)−
t∫

0

f(ζi, aP (τ))dτ − aiP (0), (26)

where ζ denotes the optimization parameters and f the
differential equation, has been chosen. The resulting linear
equation system has been regularized using the Tikhonov
method in order to reduce the condition number to an
acceptable value. Only half of the simulation time was used
for identification of the model parameters, the other half
was used for validation. The training-data span the non-
dimensional timescale from 1 to 2 (scaled with a cycle time
of 6.23 s as above), while the whole data ranges from 0 to
2.5.

Fig. 3 shows the curves of the true (projected) states and
the states computed with the model (reduced) for the
training and validation data. The model states match the
system dynamics for the training sample as well as for the
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Fig. 3. Comparison of the projected and the model based
coefficients for the whole simulation-time

validation samples. With four modes more than 90% of
the relative information content of the snapshot ensemble
can be represented. This number of modes is used for the
reduced order model. Together with the time average flow
field mode and the actuation mode, the reduced order
model comprises six states in total. The Fluent simulation
has over seven million states.

5. CONTROLLER-DESIGN AND PERFORMANCE

After the derivation of a reduced model for the given plant,
it is possible to design a model predictive controller, which
explicitly uses this model.

5.1 Controller and Estimator

The controller solves a finite horizon open-loop control
problem in every time step and applies the first value of the
calculated optimal control sequence to the plant. For that
purpose the nonlinear continuous time model is linearized
and discretized in each time step. To take advantage of
the available continuous time description of the plant, the
free system response is predicted using the full nonlinear
model. To secure stationary accuracy the error in the
prediction at the point of measurement d0 = y − ypred
is fed back. The reference trajectory is shifted with this
value so that

ref + d0 − y = ref + (y − ypred)− y = ref − ypred (27)

holds. In this formulation the minimum of ref − ypred− d0
(the predicted output and the shifted reference trajectory)
leads to a minimum of ref − y, which is the desired goal of
the control. Since the model predictive controller needs the
state of the system an estimator was implemented in addi-
tion. To unify the time continuous plant with the discrete
output and input variables a hybrid extended Kalman
filter (see e.g. Simon [2006]) was used. The estimation
problem could be solved using only the controlled variable
(temperature at (20 m, 1.2 m)) as measurement.

5.2 Results

This controller has been tested in a closed loop simulation
using the CFD simulation as plant. As the controller has

been implemented in Matlab, a coupling of Matlab with
the CFD-Solver Fluent has to be designed as closed-loop
interface. This has been done using the possibility to
change boundary conditions in Fluent via a user defined
function (udf). Matlab generates after every time step
a new file containing this udf with the new boundary
conditions computed by the controller. Fluent is run as
batch process in Matlab and simulates the plant with
the new boundary condition one time step and hands the
measurement information, that is the temperature value
at the position (20 m 1.2 m), to the controller.
In order to evaluate the performance, the controller has
been analyzed regarding reference action and disturbance
rejection. The measurement of this output has been dis-
turbed with a white measurement noise with σ = 0.1 K
The reference trajectory ranges from 1800 K to 2050 K,
which doubles the operating range from 1925 K to 2050 K
covered by the data used for training the model. In spite of
the big range the controller was able to follow the reference
as shown in Fig. 4.
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Fig. 4. Time response for varying reference trajectory

Second the controller received an stationary reference
value. Then the mass flow inlet has been increased by 20%
as an unknown disturbance. This perturbation is neither
known to the controller nor to the model, because it did
not occur in the snapshots. But the controller has the abil-
ity to compensate the disturbance as shown in Fig. 5. The
corresponding values for the input of the plant are shown
in Fig. 6. The values are scaled with the factor 2.5 kg/s, so
that the maximum change of the input is roughly 1.2 kg/s.
The amplitudes are in an acceptable range regarding the
amplitude of the disturbance. The shown values are not
the input variable to the model w, but the value of the
boundary condition u.

6. CONCLUSION AND OUTLOOK

The applied procedure is able to produce a reduced model
for the model predictive controller, which is good enough
to enable a good controller performance. Due to the POD-
Galerkin procedure the polynomial order of the model
is known and the number of states is small. This allows
an optimization of the model coefficients to receive an
accurate model. Drawbacks are, that the model only
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Fig. 6. Value of the input to reject the disturbance

represents the dynamic information in the operating range
due to the linearization in temperature and the need of
snapshot data. Also the optimization of the coefficients
may not represent the real physics like an analytical
computation based on the modes.
Further steps are to integrate the k − ε turbulence model
into the equations to improve the Galerkin projection. Also
an analytical computation of the model coefficients and
a comparison with the optimized coefficients is needed.
Finally, an integration of disturbances into the data used
for the POD is desired to give the model knowledge
about characteristic disturbances and by that improve
their rejection.
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Appendix A. EXEMPLARY COMPUTATION FOR
THE REDUCED MODEL

To compute the Matrix Ξj first the related ODE has to be

set up. With the notation ∂
∂x1

= ∂1 and ∂
∂x2

= ∂2

ξ̇ =
˙(1

ρ

)
= − ρ̇

ρ2
=

1

ρ2
(ρ∂1u+ ρ∂2v + u∂1ρ+ v∂2ρ)

= ξ∂1u+ ξ∂2v − u∂1ξ − v∂2ξ. (A.1)

follows. Using (19), (23) and (24) further

〈ξ̇, ϕI
j 〉 = 〈ξ∂1u+ ξ∂2v − u∂1ξ − v∂2ξ, ϕI

j 〉

= 〈
N+2∑
i=1

aiϕ
I
i

N+2∑
k=1

ak∂1ϕ
II
k +

N+2∑
i=1

aiϕ
I
i

N+2∑
k=1

ak∂2ϕ
III
k

−
N+2∑
i=1

ai∂1ϕ
I
i

N+2∑
k=1

akϕ
II
k −

N+2∑
i=1

ai∂1ϕ
I
i

N+2∑
k=1

akϕ
III
k , ϕI

j 〉

= (a1 · · · aN+2)
(

Ξj
ik

)
ik

(a1 · · · aN+2)
T

= aTΞja

holds with

Ξj
ik = 〈ϕI

i ∂1ϕ
II
k + ϕI

i ∂2ϕ
III
k − ∂1ϕI

iϕ
II
k − ∂1ϕI

iϕ
III
k , ϕI

j 〉.
(A.2)

An ODE for the coefficient aj is gathered via the equation

〈ẏ, ϕj〉 = 〈
N+2∑
i=1

ȧiϕi, ϕj〉 = ȧj + 〈
N+2∑

i=N+1

ȧiϕi, ϕj〉 = ȧj − wgj

= 〈ξ̇, ϕI
j 〉+ · · ·+ 〈χ̇, ϕV I

j 〉.
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