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Abstract: We propose a novel estimation method of the rotational velocity of a flying ball as
well as its position and translational velocity via aerodynamics model by measuring the ball
trajectory using the middle speed cameras for table tennis system. The aerodynamics model
is complex nonlinear and the measured data of the ball trajectory has quantization errors
because the size of the ball is very small in the field of view of the middle speed cameras.
Then, we consider the estimation by minimizing the difference between the trajectories which
are measured by the cameras and numerically solved by integrating the aerodynamics model
respectively. Since the difference is not analytical function, the minimization is solved by the
downhill simplex method, where some modification is introduced for improving the converge
speed. The effectiveness of the method is verified by numerical simulations.

Keywords: Optimal estimation, Estimation algorithms, State estimation, Robotics,
Model-based recognition, Physical models, Table tennis system, Online estimation

1. INTRODUCTION

Dynamic manipulation is dexterous task of humans by
utilizing dynamics of manipulated targets (Mason and
Lynch (1993)). Ball sports are examples of the dynamic
manipulation because there are intermittent interactions
between balls and players or environments. Table tennis
is a typical example since flying time of ball is very
short, e.g. 550 [ms] because the ball speed is fast and the
distance between players is close (usual speed is 5.0 [m/s]
(Tamaki et al. (2004))). It is therefore essential to rapidly
recognize the ball in the opponent’s court and predict the
ball trajectory in order to plan the racket motion at the
time when a player hits the ball. Since these issues are very
attractive and challenging, many researchers have studied
and developed robots playing table tennis (Zhang et al.
(2008)).

Models of ball motion including flying and rebounds on
the table and racket are necessary for the prediction of
the ball trajectory. The models have been dealt with by
two methodologies, one of which is based on input-output
black-box or grey-box models, e.g. Miyazaki et al. (2002);
Matsushima et al. (2005), and the other of which is based
on explicit physical models, e.g. Hashimoto et al. (1987);
Anderson (1988); Zhang et al. (2010); Yang et al. (2010).
In these studies, the rotational velocity was not considered
although it effects on the ball trajectory when the ball is
flying and rebounds. Especially in the case of table tennis,
since the rotational velocity is very large (3000 [rpm]) and
the ball’s mass is very light (2.7 [g]), the spin effects are
much bigger than the ones in other ball sports (Tamaki
et al. (2004)).

We have developed a robotic table tennis system as shown
in based on physical models of ball where the effects of the
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Fig. 1. Table Tennis System with High Speed Cameras.

rotational velocity are considered. The ball is shot from the
automatic ball catapult machine. The robotic table tennis
system consists of the subtasks of 1) the ball recognition;
2) the ball trajectory prediction; 3) the racket motion
determination; and 4) the motion planning for the racket
motion. 1) The ball recognition is the measurement of
the position, translational/rotational velocities of a flying
ping-pong ball, which is performed by an online-estimation
method (Liu et al. (2011, 2012)) using the high-speed vision
cameras (1000fps) (Nakabo et al. (2000)). 2) With the
measured ball states, the ball trajectory is predicted to
provide the ball’s position and velocities at the hitting
time using the aerodynamics model (Nonomura et al.
(2010)) and rebound model of the table (Nakashima et al.
(2010b)). 3) The racket motion means the velocity and
orientation at the predicted position and at the time of
arrival of the ball. The racket motion is determined as to
make the ball hit by the racket arrive to desired points
in the opponent’s court using the aerodynamics model
and rebound model of the racket (Nakashima et al. (2011,
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2012); Liu et al. (2013)). 4) The robot is controlled along
trajectory planned to the predicted hitting point at the
time of arrival. These tasks are performed sequentially as
shown in the lower of Fig. 1, where the subtasks 1) and
2) have to be terminated as fast as possible to assure time
enough for the robot to move by the subtasks 3) and 4).

The left figure of Fig. 2 shows the field of view of the
high speed camera, where the flying ball is measured. The
feature areas on the ball is necessary for measuring the
rotational velocity. Unfortunately, because the field of view
of the high speed camera is very small (about 15 [cm]
square) due to its high sampling rate, the cameras can
only measure narrow areas around the ball catapult as the
illustrated red square in Fig. 1. Then, it is impossible for
the system to play with a human player. On the other
hand, middle speed cameras (150fps) can measure area
including whole table as shown in the right figure of Fig. 2.
However, it is impossible to measure the feature areas on
the ball since the ball is too small in the field of view of
the middle speed camera. Furthermore, the sampling rate
is not high enough to measure the high speed rotational
velocity using the feature area.

Figure 3 shows some ball trajectories with different rota-
tional velocities which are calculated by the aerodynamics
model of the ball (Nonomura et al. (2010)). The red,
green, blue and black lines represent the spins of top, back,
left-side and right side respectively. The sold and dashed
lines denote the different magnitudes of the rotational
velocities, 100 and 300 [rad/s] respectively. It is found that
the every trajectories are different from each other. This
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Fig. 3. Ball Trajectories with Different Rotational Veloci-
ties.
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Fig. 4. Difference between Measured and Numerically
Solved Trajectories of Ball.

imply that the rotational velocity can be estimated by the
measured ball trajectory via the aerodynamics model.

Therefore, we propose a novel estimation method of the
rotational velocity as well as the position and translational
velocity via the aerodynamics model by measuring the
ball trajectory using the middle speed cameras. Note
that the table tennis system becomes new one where the
subtask 1) in Fig. 1 is replaced to the proposed one.
The aerodynamics model is complex nonlinear and the
measured data of the ball trajectory has quantization
errors because the size of the ball is very small in the
field of view of the middle speed cameras. Then, as shown
in Fig. 4, we consider the estimation by minimizing the
difference between the trajectories which are measured by
the cameras and numerically solved by integrating the
aerodynamics model respectively. Since the difference is
not analytical function, the minimization is solved by
the downhill simplex method (Nelder and Mead (1965)),
where some modification is introduced for improving the
converge speed.

The robotic table tennis system is briefly explained in
Section 2. The aerodynamics model is described in Section
3. The estimation method is proposed in Section 4. The
method is verified by various cases of conditions of ball
trajectories in numerical simulations in Section 5. Some
conclusions and future work are shown in Section 6.

2. ROBOTIC TABLE TENNIS SYSTEM

2.1 Experimental System

Figure 5 illustrates our robotic table tennis system. The
table is an international standard one with the sizes of
1.525(W)×0.760(H)×2.740(D) [m]. The ball is shot out
from the automatic ball catapult, ROBO-PONG 2040
(SAN-EI Co.). The flying ball is measured by the two
color middle-speed cameras (150fps) of the Radish System
(Library, Co.). The reference frame ΣB is set at the right
corner of the robot’s court. The racket is attached to the
robot’s tip and its board and rubber are Fukuhara-Ai Spe-
cial and Bryce Speed FX (Butterfly, Ltd.). The distance
from the center to the edge of the racket is about 75
[mm]. The PCs for the control and visual measurement are
Dell Precision T5500 (CPU: Intel(R)Xeon E5503 2.66GHz,
Memory: 2GB RAM) and Dell Precision T5300 (CPU:
Intel(R)Xeon E5430 2.66GHz, Memory: 2GB RAM). The
OS of the PCs are Windows XP Professional sp2 and
the program language is C++. The measured position of
the ball is transmitted to the PC for the control by the
LAN with the sampling time ∆t = 1/150 ≃ 6.7 [ms].
In the estimation method, the ball prediction and the
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Fig. 5. Robotic Table Tennis System.

determination of the racket motion are performed in the
PC for the control.

2.2 Scheme of Subtasks with Middle Speed Cameras

Figure 6 shows the scheme of hitting a flying ball. The
subtasks 1)–4) have been already explained in Section 1.
In the middle of the figure, the red, green and blue squares
represent the time intervals where the subtasks 1), 2) and
the set of 3), 4) are performed respectively. Note that the
time intervals are overlapped in the interval [t1, t2] while
the intervals of the subtasks are completely separated in
the previous system as shown in Fig. 1. This reason is
explained as follows.

Since the estimation method is based on the difference
between the measured and calculated trajectories, the
accuracy of the result depends on the number of the data
of the trajectory. As shown in latter, enough number is
about 60 while it is 6 in the method using the high speed
cameras. This number corresponds to the trajectory to the
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Fig. 6. Table Tennis System with Middle Speed Cameras.

position just before the rebound on the table. It is obvious
that the time of the rebound, t = t2 is too late to start the
subtasks 2) to 4), i.e. the prediction and the robot control.
Therefore, the subtasks 2) and the pair of 3) and 4) has
to be started before the time of the rebound, i.e. has to be
started at t = t1 < t2.

In the interval [t1, t2], it is ideal that the sequential process
consisting of the subtasks 1) to 4) is executed at every
sampled times as illustrated in the lowest of Fig. 6, which
represents some sampling time intervals in the interal
[t1, t2]. Therefore, the processing time of the estimation
method in the subtask 1) has to be short enough for all
the subtasks to be terminated during the sampling time
∆t. Furthermore, the method has to be accurate enough
for the predicted position of arrival in the subtask 2) using
the estimated value in the subtask 1) to be close to the real
position such that the racket can hit the ball. Intuitively,
the error of the predicted position has to be smaller than
the radius of the racket.

3. AERODYNAMICS MODEL

Define the ball position as p = [px py pz]
T ∈ R3 and

the rotational velocity as ω = [ωx ωy ωz]
T ∈ R3. The

rotational velocity ω is assumed to be constant. Then, the
aerodynamics model of the ball is given by (Nonomura
et al. (2010))

mp̈ = −mg − 1

2
ρSbCD(ṗ,ω)||ṗ∥ṗ+ ρVbCM (ṗ,ω)ω × ṗ,

(1)

where Sb := πr2 is the ball cross section area, Vb :=
4
3πr

3 is
the ball volume, r = 0.02 [m] is the ball radius,m = 0.0027
[kg] is the ball mass, ρ = 1.184 [kg/m3] is the air density
and and g := [0 0 g]T with g = 9.8 [m/s2] is the
acceleration of gravity. In the right hand of (1), the second
and third terms represent the drag and lift effects with
their coefficients CD and CM as shown in Fig. 7.

ω

Lift

Drag

Airflow 

Ball

p&

Fig. 7. Drad and Lift Forces of Rotated Flying Ball.

The coefficients depend on the directions of the rotational
velocity ω, i.e. the top, back and side spins, which are
described in Fig. 8. In the left figure, ṗxy := [ṗx ṗy 0] ∈ R3

represents the x and y components of the ball velocity in
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Fig. 8. Definitions of Top, Back and Side Spins.
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the reference frame ΣB. The frame ΣBall is defined such
that the x′- and z′-axes are along the direction of ṗxy and
the z-axis of ΣB . The orientation of ΣBall relative to ΣB

is represented by the rotational matrix

RBall(ψ) :=

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
, (2)

where ψ is the angle between the x- and x′- axes of the
frames defined by

cosψ :=
ṗx√
ṗ2x + ṗ2y

, cosψ :=
ṗy√
ṗ2x + ṗ2y

.

The top and back spins are defined as the axes along the
positive and negative directions of the y′-axis respectively.
The side spin is defined as the positive and negative
directions of the z′-axis. The coefficients are changed in
terms of the types of the spin, i.e. the axes directions as
follows:

CD = aD + bD cosϕ,

CM = aM + bM cosϕ, (3)

where aD = 0.505, bD = 0.065 and aM = 0.094, bM =
−0.026. As shown in the right figure of Fig. 8, ϕ is defined
as the angle of the rotational velocity ω′

yz ∈ R3, which is

obtained by projecting ω′ := RT
Ball(ψ)ω onto the (y′, z′)-

plane:

ω′
yz = [0, ω′

y, ω
′
z]

T := [0, ωy cosψ − ωx sinψ, ωz]
T. (4)

Note that ϕ = 0,±90, 180 [deg] represent the spins of
the top, side and back respectively. By using (2) and (4),
the angle ϕ is represented in terms of the ball transla-
tional/rotational velocities (ṗx, ṗy) and (ωx, ωy) by

cosϕ =
ω′
y√

ω′2
y + ω′2

z

=
ṗxωy − ṗyωx√

(ṗxωy − ṗyωx)2 + (ṗ2x + ṗ2y)ω
2
z

.

(5)

4. ESTIMATION METHOD

4.1 Overview of Estimation

Since the rotational velocity ω is estimated based on the
difference between the measured and numerically solved
trajectories as shown in Fig. 4, the initial position and
velocity, pini and ṗini are necessary for the integration of
the aerodynamics model. Although the initial values can
be obtained by the measured data, these also has to be
estimated to reduce the measuring error of the cameras.
Therefore, the estimation method is decomposed of two

Phase 2: Rotational Velocity 

& Initial Velocity 

Phase 1: Initial 

Position 

Data Used in Phase 2

Data Used in Phase 1

Fig. 9. Scheme of Estimation in Subtask 1).

phases as shown in Fig. 9; the first estimation phase for
the initial position pini and the second estimation phase
for the rotational velocity ω and the initial velocity ṗini.
The first phase uses the data from the initial time step
k = 1 (t = t0) to the current time step k. This estimation
is performed at the sampled time steps iteratively until
conditions of phase termination are satisfied. Then, the
estimated initial position p∗

ini is obtained. After the first
phase is terminated at a time step, e.g. k = k1, the second
phase is performed using the data from the initial time
step k = 1 to current time step k > k1 at the sampled
time steps iteratively with the estimated initial position
p∗
ini until a condition of phase termination is satisfied.

Note that the phase termination means that the phases
are terminated.

4.2 Phase 1: Estimation of Initial Position

In the first phase, the ball trajectory is approximated as a
quadratic polynomial with respect to time t as follows:

p̄(tk;θ) = c2t
2
k + c1tk + c0 (6)

where θ := [cT0 cT1 cT2 ]
T ∈ R9 is the parametric vector

and cj := [cjx cjy cjz]
T ∈ R3 (j = 0, 1, 2) denotes the

coefficients of the jth order term in the polynomial in
the x-, y- and z-axes and tk := (k − 1)∆t is the ith
sampled time. The approximation is performed by solving
the minimization problem with the following performance
function at kth time step:

J1,k(θ) :=
k∑

i=1

||pi − p̄(ti;θ)||2, (7)

where pi is the measured ball position at the ith time
step. Since the problem with (7) is quadratic with respect
to the coefficients θ, it can be solved with the linear least-
squares method. Define θ∗ as the optimized parametric
vector. Then, the initial position pini is estimated as

p∗
ini = p̄(0;θ∗) = c∗0. (8)

This optimization is performed iteratively at the sampled
times until the following conditions of the phase termina-
tion: (i) the difference between the optimized positions, i.e.
∥p̄(0;θ∗

k) − p̄(0;θ∗
k−1)∥ is smaller than a specified thresh-

old; (ii) pxk
is smaller than 1.37[m] which is the half length

of the table.

4.3 Phase 2: Estimation of Initial Translational Velocity
and Rotational Velocity

As mentioned in Section 1, the estimation of the rotational
velocity ω and the initial velocity ṗini is performed based
on the difference between the measured trajectory pi and

Numerical Solution 

Measured Trajectory  

of Aerodynamics Model

Initial 

Position &

Velocity 

Fig. 10. Criterion in Phase 2: Difference between Measured
and Numerically Solved Trajectories of Ball Using
Initial Position Obtained in Phase 1.
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the one p̂i solved by integrating the aerodynamics model
(1) with the estimated initial position p∗

ini as illustrated
in Fig. 10. The sequence of the numerically solved ball
position p̂i (i = 1, · · · , k) is obtained with the Euler
method as

p̂i+1 = p̂i + v̂i∆t

v̂i+1 = v̂i + f(v̂i,ω)∆t (9)

where

f := −g − ρSbCD(v̂i,ω)

2m
∥v̂i∥v̂i +

ρVbCM (v̂i,ω)

m
ω × v̂i,

p̂1 := p∗
ini, v̂1 := ṗini.

Since the lift effect is represented by the cross product
of ṗ and ω, it is sufficient to consider the components
of ω perpendicular to ṗ. Therefore, as an approximated
situation, we introduce the following constraint for the
rotational velocity ω:

[ṗxini ṗyini 0]Tω = 0, (10)

where ṗxini and ṗyini are the components of the x- and
y-axes of ṗini. The constraint (10) represents that the
rotational velocity ω is included in the (y′, z′) of ΣBall as
shown in Fig. 8. The constraint (10) expresses the realistic
situation where almost all the cases of balls hit by an usual
racket are either the top, back or side spins. Therefore, the
rotational velocity ω is reduced to its y and z components
in ΣBall defined as

ω̃ := [ω̃y ω̃z]
T ∈ R2 (11)

which is translated to the rotational velocity ω by the
relationship:

ω = RBall(ψini)

[
0
ω̃

]
, (12)

where

cosψini :=
ṗxini√

ṗ2xini
+ ṗ2yini

, cosψini :=
ṗyini√

ṗ2xini
+ ṗ2yini

.

Therefore, the objective variable in the optimization is
defined as

q :=

[
V ṗini

W ω̃

]
∈ R5 (13)

where W and V are the weight parameters for ω̃ and ṗini

and are set as W = 5.0× 10−4 and V = 2 in this paper.

Therefore, we solve the minimization problem with the
following performance function at the kth time step:

J2,k(q) =
k∑

i=1

∥pi − p̂i(p
∗
ini, q)∥2. (14)

Define q0
k and q∗

k as the initial and optimized values at kth
time step. Then, the initial value q0

k is set to the previous
optimized value q∗

k−1 as follows:

q0
k = q∗

k−1, q0
1 =

[
V ṗ0

ini

W ω̃0

]
(15)

where q0
1 is the first initial value. The initial value ω̃0 is

a specified values, e.g. [145, 145]T [rad/s] and ṗ0
ini is given

by the time derivative of the estimated initial position in
the first phase as follows:

ṗ0
ini =

d

dt
p(t;θ∗)

∣∣∣
t=0

= c∗1. (16)

This optimization is performed iteratively at the each
sampled time step until the following condition of the

phase termination: the ball height pzk is smaller than
0.05 [m] which means that the ball almost rebounds on
the table. Since the performance function (14) is not an
analytical one, we solve the problem with the downhill sim-
plex method (Nelder and Mead (1965)). Its explanation,
parameter setting and modification are omitted because of
space limitation.

5. VERIFICATION OF ESTIMATION METHOD

The effectiveness of the estimation method is verified by
numerical simulations. The measured data is produced
by solving the aerodynamics model with white noise.
The initial conditions of the data are set as pini =
[2.5, 0.7625, 0.8]T [m] and ṗini = [−5.43, 0.0, 0.8]T [m/s],
which are referring to the values in the measurement of
the situations where usual humans play table tennis. The
rotational velocity ω is set to [0, η cos ξ, η sin ξ]T [rad/s],

where η = 50i, (i = 1, · · · , 7) and ξ = (j−1)π
6 , (j =

1, · · · , 12). The cases of j = 1, j = 4, 10 and j = 7
correspond to the top, side and back spins respectively.
The total number of the data is 84. The termination
threshold in the first phase is 1.0× 10−6 [m].

z
x

The estimated trajectory

The desired trajectory

Table

Ball

Hitting position 

Fig. 11. Verification Criterion of Estimation.

The results of the estimation should be evaluated in the
situation that the robot hits balls. Define the hitting times
when the balls arrive at the side of the table near the
robot, i.e. px = 0 as shown in Fig. 11. Then, in detail,
the positions at the hitting times are compared which are
obtained by integrating the aerodynamics model with the
desired and estimated values of pini, ṗini and ω. The
estimation is judged as successful when the error of the
positions at the hitting time is smaller than 0.075 [m] of
the racket radius and the error of the estimated and true
rotational velocities is smaller than 100 [rad/s]. Note that
the rebound phenomenon on the table is simulated by the
rebound model proposed by Nakashima et al. (2010a).

All the estimation results of the second phase are shown in
Fig. 12. The optimizations of the first phase are omitted
because they are trivial. The histories of the errors with
respect to the time step are plotted. The upper and lower
figures represent the errors of the hitting position and
rotational velocity respectively. The blue solid lines, black
dotted lines and the red circles represent the errors, the
thresholds and the errors at the terminated time step
respectively. The rate of the success with all the trial data
is 91.1%. It is found that almost all errors are close to
the thresholds around the time step 40 (t ≃ 0.27 [s]) and
are smaller than the thresholds around the time step 60
(t ≃ 0.40 [s]). The time when the errors are close to the
thresholds is smaller than half of averaged flying time of
the balls, 0.55 [s]. Then, it is possible for the prediction
and the robot control to be started at this early time. The
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Fig. 12. Errors of Verifications of Hitting Point and Rota-
tional Velocity.

results guarantee that the proposed method is useful for
the table tennis robot system.

6. CONCLUSIONS

We have proposed a novel estimation method of the
rotational velocity of a flying ball as well as its position
and translational velocity via aerodynamics model by
measuring the ball trajectory using the middle speed
cameras for table tennis system. As the criterion in the
estimation, the difference between the trajectories is used
which are measured by the cameras and numerically solved
by integrating the aerodynamics model respectively. The
downhill simplex method is utilized for the optimization
with some modification for improving the converge speed.
The effectiveness of the method was verified by numerical
simulations.

Combining the trajectory prediction and the robot control
with the proposed method is one of our future work. And
the application of it to the real system where the robot
plays with a human is another future work.
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