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Abstract: In this paper we examine combined fully distributed payoff and strategy learning
(CODIPAS) in a queue-aware access game over a graph. The classical strategic learning analysis
relies on vanishing or small learning rate and uses stochastic approximation tool to derive steady
states and invariant sets of the underlying learning process. Here, the stochastic approximation
framework does not apply due to non-vanishing learning rate. We propose a direct proof of
convergence of the process. Interestingly, the convergence time to one of the global optima is
almost surely finite and we explicitly characterize the convergence time. We show that pursuit-
based CODIPAS learning is much faster than the classical learning algorithms in games. We
extend the methodology to coalitional learning and proves a very fast formation of coalitions
for queue-aware access games where the action space is dynamically changing depending on the
location of the user over a graph.
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1. INTRODUCTION

Strategic learning is a framework for learning solutions of
interactive decision-making problems. A strategic learning
algorithm is said to be partially (or semi-) distributed
if each player knows its own-action, its own-payoff func-
tion and the actions of the other players (or aggregate
signal) at the previous steps. Semi-distributed learning
algorithms are model-based in the sense that it requires
the mathematical structure (model) of the payoff function.
A strategic learning procedure is called fully distributed
(or model-free or uncoupled) if each player knows only a
numerical measurement of the realized payoff and its own-
action. In 1952 Bellman described the optimality equation
for model-based dynamic optimization Bellman [1952]. In
1953, Shapley proposed a model-based recursive equation
for equilibrium payoffs in the context of stochastic games
Shapley [1953]. One of the non-model learning algorithms
have been proposed by Bush and Mosteller [1953]. The
main idea behind these works is to combine both strategy
and payoff learning schemes, which we have referred to
as combined learning (see Tembine [2012]). In the model-
based learning, it is assumed that the game is common
knowledge. In particular, the transitions probabilities be-
tween the states are perfectly known. Then, each player
updates her value function and uses a policy that maxi-
mizes the Hamiltonian, i.e., a balance between the payoff
today and the continuation payoff. If the state is per-
fectly observed by the players, one can use state-based
dynamic programming principle and a solution to such
system provides an equilibrium strategy and equilibrium
payoff. Moreover, the variance between the model-based
learning and the equilibrium value is significantly reduced.
On the other hand, in the non-model (or model-free) learn-
ing, the players do not have knowledge of the transition

probabilities and do not have the mathematical structure
of their payoff functions. Each player updates her tables
after observing the signal (measured/observed payoff). Her
policy should be designed by the strategy-learning pattern
(maxmaxQ, soft-max, imitation, best response estimates,
etc). In the context of games, the convergence of such
method remains an open issue. However, there are some
special cases where the convergence can be proved as for
a single player in a dynamic environment. This is what
is done in a recent work by Martin and Tilak [2012].
Using stochastic approximation techniques, it have been
shown in Kushner and Yin [2003] that for single player
and vanishing learning rates, the non-model technique
also converges to expected equilibrium value if all the
states and actions have been sufficiently explored and
exploited. Thus, the two approaches give similar expected
payoffs in the long-run. An interesting remark is that
if the performance criterion is limited to the expected
equilibrium payoffs then, it is difficult to compare the
model-based learning and the model-free learning. One has
attempted to look at the convergence time and the speed
of convergence of both classes of algorithms. However,
the convergence time analysis remains a challenging task.
Another alternative is to look at not only the mean payoff
but also the variance of the payoff, leading to risk-sensitive
approach.

Less is more: It is widely observed that model-free
learning scheme is relatively simple and requires only few
arithmetic operations. However, it was conjectured that
it needs to run for lot of iterations in order to be close
to the expected payoff. Thus, a natural question is to
know if one can get a faster convergence time for such a
learning scheme while preserving accuracy. In the case of
single player in an i.i.d environment, the pursuit combined
fully distributed payoff and strategy learning (pursuit
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CODIPAS learning) algorithms are known to have very
fast convergence time in practice. However, for more than
one player the question is open as mentioned in Tembine
[2012].

In this paper we construct a pursuit algorithm for queue-
aware access games using coalitional combined fully dis-
tributed payoff and strategy learning (coalitional CODI-
PAS). The idea of coalitional CODIPAS is to estimate si-
multaneously the expected coalitional equilibrium payoffs
for each action of the temporary coalition and the asso-
ciated optimal intra and inter-coalition strategies. Based
on it, we construct a pursuit strategy which consists to
take the index of the maximum estimates with a certain
probability and act with a distribution with full support
in case of multiple maximizers. We show that the non-
model algorithm can be accelerated by exploiting the ex-
periences and by designing a learning rate appropriately.
We specially focus on queue-aware access games, a class
of anticoordination games for multiple items, i.e., games
with negative externalities where choosing the same action
creates a cost rather than a benefit. Anticoordination
games are common problems in economics, engineering
and transportation science: a number of players have to
choose independently whether or not to undertake some
activity, such as enter a market, go to a bar, drive on
a road, choose a frequency/technology, choose a network
or surf the web, the payoff from which is decreasing in
the number of participants of the chosen decision. Those
choosing not to undertake the activity can be thought of
as staying at home, staying out of the market, choosing an-
other technology or simply not participating. Such games
typically admit a large number of Nash equilibria. Pure
equilibria involve considerable coordination on asymmetric
outcomes (decisions). Given this multiplicity of equilibria,
an obvious question is: which type of equilibrium are
agents likely to coordinate upon?

Review of access control interaction models: The
authors in Liu and Liu [2013] considers a cognitive mul-
tiuser dynamic channel access where users can decide to
stay or switch between different channels. The queue as-
pect is neglected in their analysis. In Nguyen and Baccelli
[2012], a spatial modelling of the carrier-sensing-multiple-
access (CSMA) network is proposed via poisson point
processes. Their model captures some aspects of stochastic
locations and mobility. However the independence and
stationary assumption of user mobility seems questionable
in the context of carrier sensing multiple access. Indeed,
the successfulness of a transmission depends mainly on
the powers, queues, locations, on interference created by
the active users. Thus, their main assumptions fail when
the correlation between the queues of users is taken into
consideration. The work in MacKenzie and Wicker [2003]
studies stability region for a slotted Aloha system with
multipacket reception and selfish users for the case of
perfect information. However the assumption of perfect
information is not valid in many cases of interest. In
particular in our setup a user may not be able observe the
number active users present in the system. In this paper we
deal with imperfect information and non-model learning
algorithm.

Review of learning in access control interactions:
The authors in Tekin and Liu [2011] studied online learn-

ing in opportunistic spectrum access based on a restless
bandit approach. However, their reward model is not in-
teractive and limited to single user case.

The work in Sarikaya et al. [2012] proposed a dynamic
pricing and queue stability in wireless random access
games. The authors proposed also a learning algorithm.
However, their model has restriction of the probability of
transmission to be bounded away from zero at any time. It
means that each user transmits with non-zero probability
all the time (even if the queue is empty!), which is clearly
not a realistic model.

Why queue-aware access control model is more
suitable in practice? Most prior works (see for example,
Liu and Liu [2013]; Nguyen and Baccelli [2012]) assumed
saturated queues, i.e. they assumed that each user has
always a data to send. In practice however, it is observed
that, some user may not a packet to send for a certain
period of time. In order to capture such a scenario we
shall introduce a queue-aware decision-making approach.
By doing so, if the queue is empty, a player will not
transmit and will save energy. It is important to notice
that the different queue size evolutions are correlated since
they depend on the success probability and the strategy
adopted in each coalition of players.

The challenges: The action set may be changing in
time due to changes in the queue or due to the position of
the player over the connectivity graph. In some locations,
there more available access points than some others. Most
of learning procedures in the literature are limited to the
case where the action set is static and fixed forever. The
dynamic aspect of the choices and the constraints on queue
size bring novel challenges to the learning procedure.

Thus, the coalitional CODIPAS that we have developed
earlier Tembine [2012] needs to be adapted to graph-
restricted coalition formation that changes in time. The
challenge here is to get the possibility to incorporate this
important aspect and evaluate the cost of making the
coalition formation process while the group members are
actively changing.

Another important challenge here is to construct a faster
and more accurate algorithm for both coalition formation
and distributed strategic learning for global optima.

Novel results from CODIPAS learning: To the best
to our knowledge there has been no study of distributed
strategic learning in the context of queue-aware access
channel, either in terms of efficiency and accuracy or fast
convergence to global optimum based on queue size. Here
lies the contribution of the present paper. Our results
can be summarized as follows. (i) Fast convergence to
evolutionarily stable coalitional structure in queue-aware
access games (ii)Characterization of the convergence time
of pursuit CODIPAS in queue-aware access game in strate-
gic form as well as in evolutionary coalitional form. See
Propositions 1 and 2. (iii) Less is More: For queue-aware
access game, we show that CODIPAS is much faster (and
more accurate) than the classical learning in games such
as fictitious play Brown [1951] and Bush-Mosteller-based
CODIPAS Bush and Mosteller [1953]. This is counterintu-
itive because the pursuit CODIPAS uses less information
than fictitious play (which requires perfect observations
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of previous actions of the other players) but still ficti-
tious play is slower than pursuit CODIPAS. Note that
the fictitious play exhibits a cycling behavior between the
states if it starts with initial strategy distribution in the
form (ϵ, 1 − ϵ), ϵ < 1/2. Thus, the sequence of action
profile does not converge under fictitious play and the
cumulated payoff is worse than the worst Nash equilibrium
payoffs. Under pursuit CODIPAS algorithm we show that
the strategy profile and the long-run payoff converge to the
best equilibrium which is also a global optimum, and this
holds even for random and heterogeneous learning rates.

Structure: The remainder of the paper is organized as
follows. In Section 2, we introduce the model and present
the pursuit CODIPAS procedure. In Section 3 we present
the main results. Section 4 concludes the paper.

We summarize some of the notations used in the paper in
Table 1.

Table 1. Summary of Notations

Symbol Meaning

N set of users (players)
n cardinality of N
A set of atomic actions (access points)
aj(t) action or set of simultaneously actions of j at time t
qj(t) queue length of user j at time t
DQj departure process from queue of user j
AQj arrival process to queue of user j
rj(a) payoff function
rj(t) measured payoff of user j at time t
r̂j(t)) estimated payoff (vector) of user j at time t
xj(t) mixed strategy of user j at time t
C coalition (subset of N )
V (., C) value of coalition C
ϕj dynamic Shapley value
E expectation operator

2. MODEL

We consider n players (users), N = {1, 2, . . . , n}:n ≥ 2.
Every player j has its own queue. Let qj be the queue
length of player j. If qj = 0 the queue of player j is empty,
i.e., player j has no packet to send. Each player has m
possible atomic-actions A = {1, 2, . . . ,m} if its queue is
non-empty, and has only one action {0} if its queue is
empty. The action ”0” is interpreted as ”Not transmit” or
”Wait”. The actions, from 1 to m, correspond to different
access points that can be chosen by the players. If its
queue allows, a player can select several access points
simultaneously. In that case, an action is a choice of a
subset of A.

In the one-shot queue-aware access game, each player j
who has a packet can choose an action aj ∈ A and receives
a payoff, rj(a1, . . . , an), that depends on the actions picked
by all players. Hence a pure strategy of a player in the
one-shot queue-aware access game is a mapping from its
own-queue length to a subset of A (union the singleton
{0}).
Anticoordination games with saturated queues: We say
that a player has a saturated queue if its queue is never
empty, i.e., the player has always at least a packet to send.
For n = m = 2 we represent the matrix game problem in a
table. Player 1 chooses a row, player 2 chooses a column of

the table. If player 1 chooses a1 ∈ A and player 1 chooses
a2 ∈ A then player 1 receives r1(a1, a2), and player 2 will
get r2(a1, a2). This gives a matrix game between the two
players. The matrix game above is an anticoordination

Player 1 vs Player 2 a1 a2
a1 (r1(1, 1), r2(1, 1)) (r1(1, 2), r2(1, 2))
a2 (r1(2, 1), r2(2, 1)) (r1(2, 2), r2(2, 2))

Table 2. Matrix game

game if the table is strategically equivalent to the following
one, where αi ≥ 0 A Nash equilibrium is a strategy profile

Player 1 vs Player 2 action 1 action 2

action 1 (0, 0) (α1, α2)∗

action 2 (α2, α1)∗ (0, 0)

such that no player can improve its (expected) payoff by
unilateral deviation. In the randomized (mixed) strategies,
the anticcordination game above has three Nash equilibria
(2 pure equilibria and one mixed equilibrium - uniform).
The fact that we have three equilibria is not surprising, this
is part a more general result that says that, generically a
finite game has an odd number of Nash equilibria in mixed
strategies.

Remark 1. Most of the previous analysis (Liu and Liu
[2013]; Nguyen and Baccelli [2012]) were conducted under
saturated queues. As a consequence a player will be taking
the suggested strategy even if its queue is empty (no data
to send) which is not realistic. In the next subsection we
propose and analyze a queue-length based game theoretic
model.

Two players with non-saturated queues: Now we consider
the case where the queue can be empty. In that case
there are more possibilities and more strategic outcomes,
represented in Fig. 1- 5. When there are two available
access points operating at different frequencies f1 and f2,
we distinguish six classes of states.

First class: q1 ≥ 2, q2 ≥ 2 In this first-class of states,
each user has at least two packets to send and there are
two available access points. A user has 4 four actions
in this particular state: choose one of the two frequen-
cies f1, f2, or to choose both frequencies simultaeously
{f1, f2}, or to wait (no transmission). When frequencies
are chosen simultaneously, the payoff is the sum-payoff
(success condition) over the two channels. If a user has
a successful transmission in both channels then its queue
length is decreased by 2 for the corresponding slot and
increased with the arrivals. the queue length is decreased
by one if there exactly one successful transmission in one
the two channels. If there is no suceesful transmission,
the queue length will increase if there is an arrival and
remains the same if not. Thus, from this first-class of states
(q1 ≥ 2, q2 ≥ 2), the stochastic game can move to the fol-
lowing classes of states: (qj = 1, qj′ ≥ 2), (qj = 1, qj′ = 1),
(qj = 0, qj′ ≥ 2), or it can stay at the class of states
(qj ≥ 2, qj′ ≥ 2).

A pure Nash equilibrium is an action profile such no
user can improve its payoff by unilateral deviation. If the
expectation of the random quantity αi are non-zero, then
the pure action profiles, (f1, f2), (f2, f1), (Wait, both),
(both,Wait) are global optima and pure Nash equilibria of
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the expected game in that particular state. These action
profiles give the expected payoff E(α1 + α2) ≤ 2. We
say that an action profile is Pareto optimal if one cannot
improve of the payoff of one user cannot decreasing the
payoff of the other. The (pure) Pareto optimal profiles are
represented by star (∗).

f1 f2 both Wait
f1 0, 0 (α1, α2)

∗ 0, α2 α1, 0
f2 (α2, α1)

∗ 0, 0 0, α1 α2, 0
both α2, 0 α1, 0 0, 0 (sum, 0)∗

Wait 0, α1 0, α2 (0, sum)∗ 0, 0

q1 ≥ 2, q2 ≥ 2

Fig. 1. Each user has at least two packets to send. αc =
1l{SNRj,c≥β|qj≥2}, sum = α1 + α2

f1 f2 Wait
f1 0, 0 (α1, α2)

∗ α1, 0
f2 (α2, α1)

∗ 0, 0 α2, 0
both α2, 0 α1, 0 (α1 + α2, 0)

∗

Wait 0, α1 0, α2 0, 0

q1 ≥ 2, q2 = 1

Fig. 2. One of the users has at least two packets to send
and the other has exactly one packet.

Second class of states: (qj = 1, qj′ ≥ 2) The fact that
one of the users has only one packet will affect the system
performance compared to the previous class of states. If
the user who has at least two packets use both frequencies
simultaneously and the other stay quiet then (both,Wait)
is an equilibrium. Interestingly these pure equilibria are
also global optima.

Third class: q1 = 1 = q2 In this class, each player has
exactly one packet to send. There are 3 equilibria (two
of them are pure and one fully mixed). Under the two
pure equilibrium strategies, the queue state will move (0, 0)
if there is no arrival. In state (0, 0) the queues are all
empty and therefore the action sets are reduced to the
set {Wait}. As we can see in Fig. 3 the pure strategy
both (which consists to use both frequencies simultneously)
is not feasible in this state. Similarly the action can be
reduced to ”0” or Wait if the energy level (battery-state)
of the user does not allow.

f1 f2 Wait
f1 0, 0 (α1, α2)

∗ α1, 0
f2 (α2, α1)

∗ 0, 0 α2, 0
Wait 0, α1 0, α2 0, 0

q1 = 1 = q2

Fig. 3. Each user has exactly one packet to send.

Fourth class: qj ≥ 2, qj′ = 0 In this class of states, one of
the users has NO packet to send and the other has at least
two packets. This is a dominant solvable game and is re-
duced to a single decision-maker problem. The equilibrium
structure consists to use both channels by the user who has
least two packets (the other user has no packet and hence
will be waiting). The equilibrium payoff will have the form

Wait
f1 α1, 0
f2 α2, 0

both (α1 + α2, 0)
∗

Wait 0, 0

q1 ≥ 2, q2 = 0

Fig. 4. One of the users has NO packet to send and the
other has at least two packets.

of (0, α1+α2) which is also a global optimum. The pursuit
CODIPAS learning algorithm provided below converges to
the global optimum in the corresponding state (Fig4).

Fifth class of states: qj = 1, qj′ = 0 In this class, one of
the users has NO packet to send and the other has exactly
one packet. If α1 ̸= α2, the game is dominant solvable
game. Therefore the outcome is (fc∗ ,Wait) where c∗ is the
best channel among the two. The equilibrium payoff is in
the form (max(α1, α2), 0). The pursuit CODIPAS learning
algorithm provided below converges to the equilibrium
which is also a global optimum in the corresponding state.

Wait
f1 α1, 0
f2 α2, 0

Wait 0, 0

q1 = 1, q2 = 0

Fig. 5. One of the users has NO packet to send and the
other user has exactly one packet.

Sixth class: qj = qj′ = 0 In this state, the queues are
empty and both action sets are reduced to the singleton
{Wait} and the payoffs are 0. The queue state will move
to the number of new arrivals.

As we can see from the above analysis, the equilibrium
structures depend on the class of states. Therefore, there is
no state-independent equilibrium. This means that one has
to take into consideration the queue-length in our analysis.
We consider an extension of this anticoordination game to
n players and m atomic-actions.

Definition 1. We say that the general n-players m-atomic
actions game is an anticoordination game if the payoff
functions are defined by

rj(a1, . . . , am) =

{
αaj if aj ̸= ai, ∀i ̸= j
0 otherwise

where αaj represents the indicator for success condition.
When aj is a subset we count the total number of success.
The action outputs depend implicitly on the queue and
battery (energy) level.

For channel c, the random variable αc is the indicator
condition 1l{SNRj,c≥β|qj>0} where

SNRj,c =
pj |hjc|2

N2
0 (ϵ

2 + d2j,c)
ξ
2

,

the allocated power

pj = pj(location, qj , remaining energy level),

N0 > 0 is a background noise, dj,c is the distance from the
transmitter to the receiver (assimilated to as from user to
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access point), ξ ≥ 2 is the pathloss exponent and ϵ > 0.
In particular, it is important to notice that the optimal
decision process and the payoff function depend on the
queue size.

Evolution of queues: Let AQj be the arrival process of
player j′s queue. AQj(t) denotes the number of packets j
receives at time t. Let DQj(t) be the departure process,
i.e., the number of packets successfully transmitted by
player j over all the available channels/access points. The
evolution of queue length can be written as qj(t + 1) =
max{0, qj(t) − DQj(t)} + AQj(t + 1). The term max is
used in order to capture the fact that DQj(t) ≤ qj(t) at
any time t. There is a departure from player j queue only
if (i) its queue is non-empty, (ii) player j is the only one to
transmit a packet to one of the access points (channels)
and hence all the other players have no departure on
that particular access point, (iii) its channel conditions
on that access point are good. Thus, the queue dynamics
of the users will be correlated through interactions via
the departure processes (DQj(t))j,t. An important issue
is the boundedness of the queue length as time goes. A
simple condition for the queue length to remain almost
surely bounded is if the arrival rate is less than the
success probability over both channels. This means that∑

j EAQj < E(α1 + α2) ≤ 2. Under the strategy π the
condition yields

E(AQ1 +AQ2) < E(x1,1(1− x2,1)α1 + x1,2(1− x2,2)α2)

which achieves the bound E(α1+α2) under the equilibrium
that is also global optimum.

Coalition formation over geographical area: Some
of the players may be moving around a geophical area,
thus, the list of available access points may be changing
and the list of possible partners to form a coalition is also
changing due to low connectivity. The geographical area
is represented by a graph (V e,Ed) where V e is the set
of the vertices (access points) and Ed is the list of some
pairs of access points that are connected by links. This
leads us to a game with action-constrained in time-varying
environment. The action space is therefore function of
queue-length and location of the player.

Let V (t, C) be the value associated to the coalition C
starting from t. This value is exactly the probability of
success of the coalition C over the two channels and
can be computed in function of the queue length under
equilibrium strategies.

The dynamical Shapley value is a fair single-valued so-
lution concept for dynamic coalitional games. Shapley’s
original goal was to answer the question ”How much would
a user be willing to get or pay for participating in a coali-
tion formation game? Plainly, the answer to that question
depends on how much the user expects to receive when he
comes to play the coalition formation game. As we know
that the core may be empty and grand coalition becomes
unstable for higher cost of cooperation, we work directly
with dynamical sustainable alllocation structure.

The optimal payoff per coalition satisfies the Bellman
equation

vj(t, lj , qj) = max
aj∈A(qj ,lj)

{rj(t)+

Evj(t+ 1, l′j ,max{0, qj −DQj(t)}+AQj(t+ 1))
}

where A(qj , lj) is the set of actions available from location
lj when its queue length is qj .

Our goal is to design a fully distributed efficient, accurate
and convergent learning algorithm to a global optimum of
the game with time-varying and queue-aware action space.
In order to define the learning pattern we introduce a long-
run setup. By doing so, a player will have opportunity to
revise her strategy during the game.

Pursuit CODIPAS learning:We introduce a particular
learning algorithm, called pursuit CODIPAS learning. Let
xj,i(t) be the probability for player j ∈ N to choose the
action i, at time t, rj(t) its perceived/measured payoff and
r̂j(t) = (r̂j,i(t))i∈A be its estimated payoff per action. The
action process of j is denoted by aj(t). Let EBR(r̂j(t))
is the estimated best response strategy, i.e. a uniform
distribution over the set{

i ∈ A: r̂j,i(t) = max
k∈A

{r̂j,k(t)}
}
,

and the learning rate λj,t ∈ [λj,min, λj,max] depends on the
private history Hj,t.

The pursuit CODIPAS learning algorithm is given by

for each j ∈ N , (1)

Initialization: xj(0),

Estimation of the optimal strategy:

xj(t+ 1)− xj(t) = λj,t [EBRj(r̂j(t))− xj(t)] , (2)

Estimation of the expected payoff:

for each i ∈ A,

r̂j,i(t+ 1)− r̂j,i(t) = 1l{aj(t)=i}
1

θj,i(t)
(rj(t)− r̂j,i(t)) (3)

θj,i(t+ 1) = θj,i(t) + 1l{aj(t)=i},(4)

For every player j, the algorithm requires the knowledge of
a numerical measurement rj(t) and her local clock θj,i(t)
which counts how many times the action i has been picked
up to t.

3. MAIN RESULTS

In this section we present two main results (Propositions
1 and 2).

Proposition 1. (Convergence of pursuit CODIPAS). In a
two users anticoordination game, for every λj ∈ (0, 1],
the pursuit CODIPAS learning algorithm converges almost
surely to one of the global optima, i.e., (x1,1(t), x2,1(t)) →
(1, 0) or (0, 1) as time grows whenever it is feasible with
the respect the queue and the remaining energy.

This is an important convergence result since it holds not
only for small λ but also for big λ (around 1).

Proposition 2. (Convergence time). The following state-
ments hold:

• The pursuit CODIPAS (2)-(4) is faster than the
standard reinforcement learning of Bush-Mustoller
(1955).

• In anticoordination matrix games, the pursuit CODI-
PAS converges almost surely in finite time if λ1 =
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λ2 = 1 starting with estimations r̂1,1 = r̂1,2 = r̂2,1 =
r̂2,2 = 0. Furthermore, the time of steps the system
need to arrive to one of the global optimum has
geometric distribution of parameter 1

2 .
• The pursuit CODIPAS (2)-(4) is faster than fictitious
play.

Remark 2. Let GO be the set of global optima of the anti-
coordination game, i.e.,GO = argmaxπ∈∆n

m−1
{
∑

j∈N rj(π)}
where we used by abuse notation rj(π) as the mixed
extension of the payoff rj(a) i.e., rj(π) = Ea∼πrj(a).

Following Martin and Tilak [2012], we say a learning
algorithm is almost-optimal if, for any ϵ > 0, and for any
δ ∈ (0, 1), there exists T ∗ = T ∗(ϵ, δ,m) and λ∗ = λ∗(ϵ, δ)
such that

P
(

inf
go∈GO

d(xt, go) < ϵ

)
> 1− δ

for all t > T ∗ and λ ∈ (0, λ∗). d(xt, go) denotes the
distance between the vector xt and the vector go. Our
result above implies that the proposed learning is almost-
optimal.

Effect of λ: The pursuit CODIAS converges for any
learning rate λ ∈ (0, 1]. However, the convergence time
may differ. It is interesting to notice that once the system
is in a good state, the probability to stay there increases
with λ. In other words, if the vector (r̂j,1(t0), r̂j,2(t0)) is
such that r̂1,1(t0) > r̂1,2(t0), and r̂2,1(t0) < r̂2,2(t0) at a
certain time t0 then, P ((a1(t), a2(t)) = (1, 2)), for every
time t > t0 increases with λ.

Very fast coalition formation algorithm: The pursuit coali-
tional CODIPAS learning algorithm aims to form coali-
tions between the players in order to play a joint-effort
maximizing action.

xj(t+ 1)− xj(t) = λj,t [EBRj(r̂j(t))− xj(t)] , (5)

r̂j,C(t+ 1)−r̂j,C(t)=
1l{aj(t)=C}

θj,C(t)
(rj(t)− r̂j,C(t)) (6)

θj,C(t+ 1) = θj,C(t) + 1l{aj(t)=C}, C ∈ 2N \{}, (7)

For every player j, the coalitional CODIPAS algorithm
requires the knowledge of a numerical measurement rj(t)
and her local clock θj,C(t) which counts how many times
the coalition C has been formed up to t.

For two players the possible coalitional structures are
{{1}, {2}}, {{12}}. The coalitional structure {{1}, {2}}
corresponds to fully non-cooperative case and the coali-
tional structure {{12}} corresponds to full cooperation
(grand coalition). The payoff inside a coalition is the Shap-
ley value associated the success of the coalition minus the
cost of making the corresponding coalition.

As a corollary of the above Propositions 1 and 2, if the
cost of making coalition is small enough compared to
α then CODIPAS converges to a grand coalition and
the convergence time is faster than the one provided in
Tembine [2012].

Thanks to big and non-vanishing learning rate our con-
vergence time is better than most of the known learning
algorithms. In addition, our coalition formation algorithm

is accurate in the sense that it provides quickly a very
small error to an optimal solution.

4. CONCLUDING REMARKS

In this paper, we have examined the convergence prop-
erties of pursuit CODIPAS to global optima in antico-
ordination games under queue dynamics. In contrast to
the stochastic approximation framework that is widely
used in classical learning algorithms in games, we have
constructed a direct and simple proof of convergence and
provided a convergence time bound by a geometric law.
Our approach works for all range of learning rates. In
addition, the convergence time of the proposed scheme
is carefully studied and is bounded by a geometric law
which is faster than the standard learning algorithms in
games including fictitious play and relative entropy-driven
CODIPAS.
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