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Abstract: This paper deals with the problem of active target tracking with obstacle avoidance
for multi-robot systems. A nonlinear model predictive formation control is presented which
uses potential functions as terms of the cost function. These terms penalize the proximity with
mates and obstacles, splitting the problem of obstacle avoidance into two repulse functions.
Experimental results with real robots are presented to demonstrate the performance of the
approach.
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1. INTRODUCTION

Motion planning algorithms are widely used nowadays. In
areas such as: UAV path planning (Alejo et al. (2009)),
mobile robot indoor navigation (Nascimento et al. (2012)),
and even in video games (Khantanapoka and Chinnasarn
(2009)) path planning algorithms have been conceived to
be the solution to many obstacle avoidance issues.

Therefore, many path planning techniques rose over the
years. One among the most famous is the artificial po-
tential field approach. This methodology has been used
and it states that the collision-free trajectory is generated
along the negative gradient of the defined attractive and
repulsive potential field functions. The subsequent studies
can be found in Yang (2002), and Pathak and Agrawal
(2005). Predictive Control and its variants have been
widely used in multi-robot systems control, such as leader-
following approach (Ribeiro et al. (2013)), decentralized
Linear time-varying MPC (Bemporad and Rocchi (2011)),
formation control based on attractive potential functions
(Hernandez-Martinez and Bricaire (2012)), and formation
control with Takagi-Sugeno type fuzzy automaton (Nasci-
mento et al. (2013a)).

In this paper, the problem of Active Target Tracking
(ATT) with obstacle avoidance for a formation of mobile
robots is tackled by exploiting a Nonlinear Model Predic-
tive Formation Control (NMPFC), previously conceived
in Ahmad et al. (2013). The NMPFC is implemented in
a distributed fashion, meaning that the cost functions to
be minimized by each robot controller are coupled. In
this way, the actions and the target observations taken by
each robot affect every other component of the multi-robot
system. In particular, the problem of obstacles avoidance
based on Artificial Potential Field (APF) is examined in
details, showing the performance of the approach which

uses potential functions as terms of the cost function.
Experimental results show the effectiveness of strategy
proposed considering the obstacle avoidance problem with
two robots and with vision obstruction of the target.

The paper is organized as follows. The omnidirectional
robots are described in Section 2. Section 3 the NMPFC
proposed is explained. In section 4 the Artificial Potential
Field approach used in the cost function of the NMPFC
is explained. In section 5 the experimental results are pre-
sented and discussed. Finally, the conclusions and future
works are drawn in section 6.

2. ROBOT DESCRIPTION

The robots, Fig. 1, are equipped with three omnidirec-
tional wheels connected to geared motors. Each pair wheel-
encoder is connected to a controller board. This board
has a microcontroller that measures the wheel speed and
implements a local controller. This controller maintains
the requested speed and is based on PID (Proportional-
Integral-Derivative) control. This low level module has a
sampling frequency of 100 Hz. The controllers are con-
nected to the PC by a RS-232 link running at 115200
baud. The robot has a standard Notebook (Intel Dual
Core 2Ghz/Core with 2Gb RAM) with Ubuntu 9.04. The
high level controllers are implemented in Lazarus, it is a
component-based development environment for two-way
visual development of graphical user interface, internet,
database and server applications. Another very important
module is the one that deals with the image captured by
the onmidirectional vision system and extracts the most
important features. This information is used to construct
an estimation of the robot position. The vision camera
also provides the sample time control of the robot (25 Hz,
sample time of 40 milliseconds). Details about the model
of these robots can be found in Conceicao et al. (2009).
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Fig. 1. Mobile robots.

3. NONLINEAR MODEL PREDICTIVE FORMATION
CONTROL

The NMPFC’s ability to create and maintain a formation
is due to the fact that the cost functions used by the
controllers of each robot in the team are coupled. There-
fore, the NMPFC is implemented in a distributed fashion
(Maestre et al. (2011)). The above mentioned coupling
occurs when the teammates’ states are used in the cost
function of each robot’s controller to penalize the geometry
or the deviation from the desired objective. This means
that the actions of each robot affect every other teammate.
Each robot keeps the formation state (pose and speed of
the robots in formation, and position and speed of any
target that should be followed), updating them in each
control loop. This information is received by the controller
of each robot in the formation which in turn creates the
formation geometry where the actions of each robot affect
the other teammates.

Fig. 2. Controller diagram for each robot.

Fig. 2 illustrates the structure of the NMPFC where

U(k|k) = U(k) = [ vref (k) vnref (k) wref (k) ]
T

is the

output control signal in the first prediction step, Û(k+i|k)
with i = 0...Nc − 1 is the output control signal from
the optimizer sent to the predictor, and P̂ (k + i|k) with
i = 1...Np is the response of the predictor block to each

Û(k + i|k). The vector PRi
(k) = [ xRi

(k) yRi
(k) θRi

(k) ]
T

represent the robots’pose at instant k. Furthermore, the
NMPFC receives the robots’ poses [PR1

(k)...PRN
(k)], the

position of the target in the world frame wPt(k) =

[ wxt(k) wyt(k) ]
T

and the velocity of the target t in

the world frame wVt(k) = [ wvxt(k) wvyt(k) ]
T

from the

robot’s RTDB (Real Time Data Base). Details about the
Cooperative Target Estimator (CTE) and the Real Time
Data Base (RTDB) can be found in Ahmad and Lima
(2011) and Oliveira et al. (2012), respectively.

The sub-block called Predictor performs the state evolu-
tion of the robot itself, the teammates and the target based
on pre-defined models. Each robot keeps the formation
state (pose and speed of the robots in formation, and
position and speed of any target that should be followed),
updating them in each control loop. The sub-block called
Optimizer uses an on-line numeric optimization method to
minimize the cost function and to generate the signals of
the optimal control. The resilient propagation (RPROP)
method is used here and it guarantees a swift convergence.
To overcome the inherent disadvantages of pure gradient-
descent, the RPROP performs a local adaptation of the
weight-updates according to the behavior of the error
function.

3.1 The Cost Function

The cost function of a NMPC (here NMPFC) represents
the cost to be minimized by the predictive controller.
It is typically associated with the dynamic changing of
the system (formation geometry) over time. The desired
formation for the robots to be around the target in a way to
better estimate the target’s velocity possesses the following
characteristics:

• Minimize the total amount of uncertainty;
• The robots must maintain a threshold distance Dval,

from the target;
• The robots must maintain a desired orientation

around the target;
• The robots must not collide between them, with an

obstacle or with the target.

The cost function (Ahmad et al. (2013)), embedded in all
robots, is as follows :

J(N1, Np, Nc) =

Np∑
i=N1

λa|det(Σ⊥Merged(k + i))|+

Np∑
i=N1

λ0|(Dval − ||PRn
t (k + i)||)|+

Np∑
i=N1

λ1|δ(θRn
(k), θRn

t (k + i))|+

Np∑
i=N1

λ2|Pval + (P̃Rn
t (k + i) · Ṽt(k + i))|+

Np∑
i=N1

NM∑
j=1

λ3 max (1−
||PRj

Rn
(k + i)||
DM

, 0)+

Np∑
i=N1

NO∑
l=1

λ4 max (1−
||POl

Rn
(k + i)||
DO

, 0)+

Nc∑
i=1

λ5|∆U(k + i− 1)|

(1)
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where N1, Np are the predicted horizon limits in discrete
time. Nc is the control horizon. λa, λ0, λ1, λ2, λ3, λ4 and
λ5 are the weights for each component of the cost function.
Σ⊥Merged is the formation team’s merged target observation
covariance matrix. Dval is the threshold distance between
the robot and the ball. Pval is the position coefficient which
puts the robot around the ball in a determined position.
∆U(k+ i−1) is the variation of the control signals, where
U(k) is the velocity vector of the robot’s frame. Finally, it
is important to remember that here | · | denotes 1-norm for
vector arguments and absolute value for scalars as well as
|| · || represents the euclidean norm.

4. POTENTIAL FIELD APPROACH IN NMPFC

The obstacle avoidance approach that most rapidly and
easily fits into the optimal control group is the artificial
potential fields (APF) approach. In Camacho and Bordons
(2004), the author uses the APF embedded in a nonlinear
model predictive controller as an example for avoid static
obstacles. The potential field approach uses a potential
function to navigate the robot (attraction function) that
drives the robot towards the target, and an avoidance
function (repulse function) that repels the robot when it
is near an obstacle. If the NMPFC is considered, then
the attraction function could be seen as the first and
second terms of the NMPFC cost function in equation 1.
Therefore, a repulse function had to be made in order to
consider the obstacle avoidance problem.

The main idea underlying the definition of the repul-
sive potential is to create a potential barrier around the
obstacle region that cannot be traversed by the robots’
configuration (Latombe (1991)). In addition, it is usually
desirable that the repulsive potential does not affect the
motion of the robot when it is sufficiently far away from
the obstacles. One way to achieve these constraints is to
define the repulsive potential function as follows:

Urep(q) =

{
1
2η( 1

ρ(q) −
1
ρ0

)2 if ρ(q) ≤ ρ0
0 if ρ(q) > ρ0

(2)

where η is a positive scaling factor, ρ(q) denotes the
distance from q to the obstacle region (CB), i.e.:

ρ(q) = min
q′∈CB

||q − q′|| (3)

and ρ0 is a positive constant called the distance of influence
of the obstacles. The function Urep is positive or null, it
tends to infinity as q gets closer to the obstacle region,
and is null when the distance of the robots’ configuration
to the obstacle region is grater then ρ0.

This paper divided the problem of obstacle avoidance in
two repulse functions. The first considers the mate avoid-
ance, preventing the robots from colliding with themselves.
The second function considers the obstacle avoidance, pre-
venting the robots from colliding with static or moving
obstacles which may, or may not appear.

4.1 Mate Avoidance Function

The first idea of a term in a nonlinear model predic-
tive controller that penalizes the approximation between
robots in a formation was presented in Nascimento et al.
(2013b). In his work, the authors created a sub-function in
their nonlinear model predictive controller such as in the
equation (4).

Np∑
i=N1

λ3((
1

||PRm1

Rn
(k + i)|| −DM

)2+

+(
1

||PRm2

Rn
(k + i)|| −DM

)2)

(4)

Where ||PRm1

Rn
(k + i)|| is the distance between robot Rn

and the mate 1. This function has a nonlinear decreasing
behavior as shown in Fig. 3

Fig. 3. Behavior of function in 4

As it can be noticed, the first problem is that this approach
does not consider a generalized number of mates, only
two. However, a more important issue is addressed when
analyzing the behavior of this function. The avoidance
function for its nonlinearity, takes more time to increase
the penalization by proximity, allowing the robots to get
too near each other before penalizing it.

A simple solution is proposed here to avoid these problems.
The proposed function for mate avoidance can be seen in
equation (5).

Np∑
i=N1

NM∑
j=1

λ3 ×max (1−
||PRj

Rn
(k + i)||
DM

, 0) (5)

Noticing that NM is the maximum number of mates,

||PRj

Rn
(k + i)|| is the distance between robot Rn and the

mate Rj and DM is the given value where small distances
are not penalized. The proposed function was changed to a
linear function which increases the penalization with prox-
imity much more rapidly. The generalization of mates was
also considered with a second sum that gives scalability to
the NMPFC controller in this study.

Finally, an extreme case had to be considered when us-
ing potential functions. This extreme case, also studied
among the potential field approach, takes into account
the possibility of the robots being too close to each other
much more rapidly then allowed. This behavior can occur
if the robots are moving in high velocities for instance.
To avoid collision in these cases a protection zone was
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created around the robots where the weights (λ1 and λ3)
of the attraction and repulsion functions (terms of the
NMPFC cost function) are rapidly switched so the robot
gives priority to penalize the mate avoidance rather then
get to the target. When the robots are outside this zone
once again, the weights of the cost function are set back
to the initial values.

4.2 Obstacle Avoidance Function

An obstacle avoidance function was created based on the
idea of mates avoidance function and the potential field
approach. The repulsion function proposed in this paper
can be seen in equation (6).

Np∑
i=N1

NO∑
l=1

λ4 ×max (1−
||POl

Rn
(k + i)||
DO

, 0) (6)

Remembering also that NO is the maximum number of
obstacles, ||POl

Rn
(k + i)|| is the distance between robot Rn

and the obstacle Ol and DO is similar to DM .

This function’s behavior is similar to the function proposed
in the mate avoidance problem. In the obstacle avoidance
proposed function, all obstacles (static or moving) are
considered to be stopped during the 40ms loop control.
This assumption speeds up the calculations in the predic-
tion of the NMPFC by calculating only the robot-obstacle
distance evolution in a simplified fashion.

Finally, the same consideration made in the mate avoid-
ance function has to be considered here by creating a
security zone. An obstacle can appear in the visible zone
towards the robot too rapidly for the robot to avoid it. To
avoid collision in these cases a protection zone is created
around the robots where the weight of the attraction and
repulsion functions (terms of the NMPFC cost function)
are rapidly switched so the robot gives priority to penalize
the mate avoidance rather then get to the target. When
the robots are outside this zone once again, the weights of
the cost function are set back to normal.

5. RESULTS

A setup, to perform the experiment, was created in order
to analyze the behavior of two omnidirectional mobile
robots with the NMPFC. Each robot had a computer, a
Notebook (Intel Dual Core 2Ghz/Core with 2Gb RAM)
with Ubuntu 9.04, running its own NMPFC, CTE and
RTDB applications previously seen in Fig. 2. There has
been used the following weight values: λa = 505, λ0 =
918, λ1 = 297, λ2 = 510, λ3 = 500, λ4 = 500, λ5 = 5.00.
The control horizon was Nc = 2 and the prediction limits
were N1 = 1 and N2 = 7.

This experiment addresses the obstacle avoidance problem
with vision obstruction to the target, where the robot
1 has to avoid an I shape obstacle (wall) as presented
in Fig. 4(a). As robot 2 is near the target and it does
not have any vision obstruction, it sends the information
with the target’s position to the robot 1. Therefore, the
objective here is to converge to the target departing from
the coordinates (2.2,-0.2), (-1.5,-0.2) and (0,-0.2) for the

robots 1, 2 and the target(ball), respectively. Then, the
NMPFC attracts both robots to the desired distance. The
potential function performs a important role in the mates
avoidance as well as the obstacle avoidance.

Results show that robot 1 was successful in avoiding
the wall, both robots converge to a equilibrium position
avoiding collision between them, the target and the wall.
This is better noticed on the video available online at:
http://youtu.be/kiqi-Cq1zhs. The description of the
terms of the cost function showed on video are: C (co-
variance), D (distance), Or (Orientation), P (Position),
M (mate avoidance), Ob (Obstacle avoidance) and CE
(Control Effort). Fig. 4(b) shows a snapshot of the referred
video at instant 3 seconds, and Fig. 4(c) shows the robots
at final position.

(a) Initial Position.

(b) Snapshot - 3 seconds.

(c) Final Position.

Fig. 4. Environment and Plot XY.
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Fig. 5 shows the trajectories performed by the robots, as
well as the perception of the target by the robots.

Fig. 6 shows the behaviour of the potential functions as
terms of the cost function during the experiment. Fig. 6(a)
shows the evolution over time of the Obstacle avoidance
term, Fig. 6(b) shows the mate avoidance term and Fig.
6(c) shows all terms. We can see a clear influence of the
Obstacle term in the objective function of the robot 1, due
to its initial position.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Robot 1
Robot 2
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Fig. 5. Robots trajectories.

A graph with the distance between the robot and the
ball and the minimization of the merged covariance’s
determinant can be seen in Fig. 7. As the minimization
of the covariance is cooperative, robot 1 moves itself into
another pose allowing robot 2 to place itself in a such a
fashion that the convergence is achieved. It can also be seen
through Fig. 5 that in the real experiment the convergence
of both robots towards the target was accomplished.

6. CONCLUSION

This paper presents a nonlinear model predictive forma-
tion controller for multi-robots systems. Artificial poten-
tial fields are included as terms of the cost function, in
order to avoid obstacles and teammates collisions.

The controllers were embedded in omnidirectional mobile
robots and experiments considering vision obstruction and
static obstacle between the robots and the target were
performed. This problem lies in the fact that the target
is initially absent for one robot and the formation of a
multi-robot system must converge to this target in the
environment.

The NMPFCs are implemented in a distributed fashion,
and the coupling occurs when the teammates’ states are
used in the cost function of each robot’s controller to
penalize the geometry or the deviation from the desired
objective. The distributive configuration was created using
wireless communication, where each robot received data
from the other robots and processed its own task in the
formation without the need of any kind of supervisor.

The main advantage of this approach is to consider in
the same minimization problem both controller and ob-
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Fig. 6. Terms of the cost function.

stacle/mate avoidance problem. This approach excludes
the need of a path planner in the active target tracking
problem.
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Σ⊥Merged.

The results demonstrated the efficiency of this approach in
active target tracking with obstacle avoidance and vision
obstruction in experiments with real robots. Future works
includes cases of singularities, where algorithms of path
planner can be used in order to exit entrapment situations.
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