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Abstract:
In this paper, Received Signal Strength Indicator (RSSI) based localization, which attracts
many interests because of its simplicity, is investigated. However, the accuracy of RSSI based
localization is low because RSSI measurements are easily susceptible to human presence, multi-
path effect, fading and even the change of temperature. In order to improve the performance of
RSSI based localization, we propose a bias reduction algorithm. Another important contribution
of this paper is that, instead of proving the effectiveness of the algorithm through simulation,
a RSSI based localization system is developed using reconfigurable Software Defined Radios
(SDRs) to verify the algorithm in practice. The results obtained from real-world experiments
demonstrate that the proposed bias reduction algorithm can reduce the bias effectively, thus
greatly enhancing the localization accuracy of the system.

Keywords: Bias; Localization; Received Signal Strength Indicator (RSSI); Software Defined
Radio (SDR); Path-Loss-Exponent (PLE)

1. INTRODUCTION

Localization, also known as positioning, is to determine the
position of targets at unknown locations, and it is a critical
technology in numerous military and civilian applications,
including surveillance, navigation, tracking, etc. Localiza-
tion in wireless sensor network (WSN) is an important
problem that attracts significant research interests. In WS-
N, measurements obtained by different technologies, such
as Time Difference of Arrival (TDOA), Time of Arrival
(TOA) and Received Strength Signal (RSS) Patwari et al.
(2005), can be used to localize a target. Currently, Re-
ceived Signal Strength Indicator (RSSI) based localization
technology is becoming increasingly popular because of its
ease of hardware implementation, inexpensive cost and less
energy consumption Gorji and Anderson (2013). However,
the weaknesses of RSSI based localization are also obvious
because RSSI measurements are likely to be affected by the
change of environment where the measurements are taken,
such as temperature, humility, etc. Another factor that
influences the accuracy of RSSI measurements is multi-
path effect, which is caused by the reflection from ground,
walls and ceilings. In addition, the variance of sensor
hardware, antenna orientation and transmitter power, etc.
also produce noise in RSSI measurements. Therefore, to
achieve accurate localization using RSSI measurements is
very challenging. Many methods have been proposed to
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enhance the accuracy of RSSI based localization, such as
online calibration of the Path-Loss-Exponent (PLE) Mao
et al. (2007), adaptive distance estimation using RSSI
measurements Awad et al. (2007), etc. Apart from the
influence from environment and hardware, during the pro-
cess of target localization, a systemic error, or bias, arises
and also affects the localization result. Bias exists because
a localization process normally includes an application
of a nonlinear transformation of noisy measurements to
produce a desired estimated target position Ji et al. (2013).

Except the theoretical analysis, how to develop a practical
RSSI based localization system is also an attractive prob-
lem. Most of existing RSSI based localization systems are
implemented on specific hardware, such as CC2430 and
PC wireless network cards Havinga et al. (2010), which
have the problem of lack of flexibility in system design and
compatibility of different products. In addition, they often
use the same frequency (usually 2.4GHz) constrained by
the hardware, such as WiFi (802.11) and Zigbee (802.15.4)
Yang and Chen (2009), Zhang et al. (2011). However,
2.4GHz signal radiating sources widely exist in our daily
work and living ambient, which may greatly interfere the
accuracy of RSSI measurements of the signal on the same
frequency. To avoid the disadvantages of traditional plat-
forms, a RSSI based localization system is developed using
Software Defined Radios (SDRs). SDR is an universal RF
platform that aims to minimize the amount of specialized
hardware required and implement the majority of compo-
nents (and hence the desired functionality) in software.
It provides great flexibility and adaptability in system
design and implementation. In addition, SDR can cover
wide range of frequency from DC to 6 GHz. Therefore, by
choosing the frequency band on which there is few radiat-
ing sources, the interference from other signal sources can
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be reduced. In recent years, SDR has become a favorite
platform for researchers to evaluate theoretical work in
practice, such as to develop prototypes for researches on
cooperative communication Zhang et al. (2010), distribut-
ed beamforming Rahman et al. (2012) and TDOA based
localization system Wei and Yu (2013).

In this paper, based on the analysis of the RSSI based
localization algorithm, a bias reduction algorithm is intro-
duced theoretically to reduce the localization bias. More-
over, the algorithm is implemented on a RSSI based local-
ization system developed using SDRs. The experimental
results show significant improvement on the localization
accuracy of the system.

The rest of the paper is organized as follows: the RSSI
based localization is reviewed in Section 2. Section 3 in-
troduces the bias reduction algorithms in the target local-
ization. In Section 4, system setting up is described and
then real-world experiments are implemented. Conclusion
and future work are presented in Section 5.

2. RSSI BASED LOCALIZATION

RSSI based localization can be divided into two categories:
the distance estimation based and RSS profiling based
technologies Mao et al. (2007). In this paper, we focus
on the distance estimation one and without any further
notice RSSI based localization means the one based on
distance estimation. RSSI based localization is intended
to measure the power decay of the signal transmitted by
the electromagnetic source, and to transform the measured
signal power loss into distance the signal travels in space.
The distance estimate is then used to localize the signal
source.

Consider a simple scenario with one stationary emitter
as the target and K stationary sensors that measure the
power level of the signal transmitted by the emitter at
different locations. Without any further information, such
as the direction of the target, the minimum number of
K is 3 in 2D space (n = 2) and 4 in 3D space (n = 3).
Define xk = [xk yk]

′, k ∈ {1, ...,K} as the known position
of the sensor at k-th location. Also, let x0 = [x0 y0]

′ be
the unknown position of the emitter.

The received signal power at the k-th location can be ex-
pressed by a log-normal model as Pahlavan and Levesque
(2005)

zk = z̄k + wk (1)

where z̄k denotes the mean received power, and wk rep-
resents the log-normal shadow fading effect in a multi-
path environment. Here the received signal power data
is measured in dB milliwatts. It is assumed that wk is
Gaussian distributed with zero mean and the correlation
defined as follows:

E(wk1 wk2) =

{
0 k1 ̸= k2
σ2
w otherwise

(2)

where σ2
w is measured in dB milliwatts squared being the

known variance. The received average power is a function
of the distance between the emitter and the sensor, and
the Path-Loss-Exponent (PLE). It has been shown in
Pahlavan and Levesque (2005) that the received average
power can be written in the following form:

z̄k = P0 − 10 ∗ γ ∗ log10(
ηk
d0

) (3)

with ηk being the Euclidean distance between the emitter
and the sensor at the k-th location, viz

ηk =
√

(x0 − xk)2 + (y0 − yk)2 (4)

In (3), d0 refers to the known reference distance at which
P0 is measured. The value of P0 can be measured at the
reference distance through experiments. The parameter γ
is called the Path-Loss-Exponent (PLE), which measures
the rate at which the received signal strength decreases
with distance. The value of γ depends on the specific
propagation environment, so it can only be determined
empirically. A generic method based on the quantile-
quantile (q-q) plot Hyndman and Fan (1996) is used to
estimate the unknown constant γ.

Once the unknown parameters P0 and γ are determined,
the distance ηk between the sensor at the k-th location and
the emitter can be estimated by measuring the received
signal strength at that location according to equation (3).
With adequate distance measurements between the target
and the receivers, the location of a target can be obtained
by solving the following formulation in noiseless case:

η = f(x) (5)

where the function f can be obtained analytically accord-
ing to the geometry of the target and the sensors at known
positions. For example, with three distance measurements
in 2-dimensional space, the mapping f can be easily for-
mulated as follows:

η1 = f1(x0, y0) =
√
(x0 − x1)2 + (y0 − y1)2

η2 = f2(x0, y0) =
√
(x0 − x2)2 + (y0 − y2)2

η3 = f3(x0, y0) =
√
(x0 − x3)2 + (y0 − y3)2

In real-world situations, errors in distance measurements
are inevitable due to radiating influence from other signal
sources in the environment, reflection and the estimation
of the function f . Though when the usable number of
measurementsN = n, one can still obtain a target location
estimate in effect by solving η̃ = f(x̃) (tilde denotes noisy
measurements or estimates). However, generally when
N ≥ n+1, this equation will have no solution in the noisy
case. The main idea of obtaining approximate estimate in
this situation is to convert the localization problem to an
optimization problem as follows and solve it using methods
such as maximum likelihood, least square, etc. Foy (1976),
Torrieri (1984).

x̃ = argmin
x

C(x, η̃) (6)

where the cost function C is related to f and can be
possibly formulated as follows:

C =
∑
i=1

N [(fi)
2 − (η̃i)

2] (7)

By solving the minimization problem, estimated positions
of the unlocalized sensors can be obtained.

3. BIAS CORRECTION IN TARGET LOCALIZATION

In the target localization, due to 1) the non-linear of
the mapping from target measurements to the target’s
location and 2) the measurements are noisy, bias is to be
expected Ji et al. (2013). In practice these two factors are
mostly present. In RSSI based localization, the noise in the
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distance measurements is inevitable because of inaccurate
RSSI measurements and approximately estimated PLE of
the environment. This motivates us to implement the bias
reduction algorithm.

For the simplicity of notation, the Einstein summation
convention is used: A repeated subscript and superscript
is an implied summation, e.g. uiv

i = Σiuiv
i = uT v. We

define the bias as the difference between the expected value
of x based on multiple mapping of measurements and the
true target location:

E[δx] = E[g(η̃)] ̸= x (8)

where x ∈ Rn denotes the location vector of a target, δx
denotes the error in estimated target position, g denotes
the localization mapping from the (noisy) measurements
to the target position (estimates). η̃ denotes the noisy
measurements.

Since the noise always exists in the measurements in the
real world, the target location estimate will be:

x+ δx = g(η + δη) (9)

To determine the bias here we consider xα = gα(ηi + δηi).
Assume the localization mapping g is well-defined for each
point and there are derivatives of any order of gα. Now gα

can be expanded by Taylor series and truncated at the
second order term:

xα + δxα = gα(ηi + δηi)

≈ gα(ηi) + gα,iδη
i +

1

2
gα,ijδη

iδηj
(10)

where gα,i =
∂gα

∂ηi and gα,ij =
∂2gα

∂ηi∂ηj . Hence the difference be-

tween the true position and the estimate is approximately:

δxα = gα,iδη
i +

1

2
gα,ijδη

iδηj (11)

and its expectation result is denoted by

E(δxα) = gα,iΨ
i +

1

2
gα,ijΣ

ij
η (12)

where Ψi denotes the mean error and Σij
η denotes the ij

entry of the measurement error covariance matrix. Though
in the theoretical analysis, the mean measurement error
is assume to be zero mean, in practical situation this
assumption is not necessarily satisfied. Apart from the
influence of the imperfection of hardware and surrounding
environment, in real-world experiments, we will not take
very large number of measurements due to significate
consumption of time and energy. That is why in equation
(12) we remain the first term.

Here the expected value of δxα which is E(δxα) can be con-
sidered as analytical expression of the bias in localization.
However, in (12), when considering, e.g. a scenario in R3

involving a mixture of range and bearing measurements,
to obtain the analytical expression of gα becomes very
challenging. Therefore, an alternative method to analyti-
cally express the derivatives of gα is proposed to allow the
computation of bias and its consequent reduction. Next we
will present how to formulate gα,ij in terms of the known
cost function C in (7), evaluated at (x,η), where x = g(η).

Theorem 1. Let C : RD × RN → RD be a known
smooth cost function for which a unique solution of the
optimization problem (6) is available for all η ∈ Θ ⊂
RN . Let g(η) denote the minimizing value of x. Let
ω(x,η) = ∂C

∂xT . The following equations hold at every
point (x,η) = (g(η),η) for η ∈ Θ and for all a =

1, 2, ..., D, α = 1, 2, ..., D, β = 1, 2, ..., D, i = 1, 2, ..., N
and j = 1, 2, ..., N :

ωa
,αg

α
,i + ωa

,i = 0 (13)

and by further differentiating equation (13) in respect to
θj and can obtain:

ωa
,αg

α
,ij = −[ωa

,αβg
α
i g

β
j + ωa

,αjg
α
,i + ωa

,βig
β
,j + ωa

,ij ]

= −[gα,i 1]

[
ωa
,αβ ωa

,αj
ωa
,βi ωa

,ij

] [
gβ,j
1

]
(14)

Assuming invertibility for all η ∈ Θ of the Jacobian
matrix with (a, α) entry ωa

,α, first derivatives of gα can
be expressed in terms of first derivatives of ωα by (13),
and second derivatives of gα can be expressed in terms of
first and second derivatives of ωa by (14).

Proof. Because g(η) is a minimizer with respect to x of
C(x,η), it is a zero of ∂C

∂x = w(x, η), i.e.

ω(g(η),η) = 0 ∀ηi (15)

Differentiating with respect to ηi yields (13). Equation
(14) results from differentiation of (13) with respect to
ηi.

The condition of the theorem statement that the Jacobian
matrix be nonsingular is not unreasonable; it is a suffi-
cient, though admittedly not necessary, condition for the
existence of a unique function g.

From equation (14), we obtain the analytical expressions
for the second derivatives of gα. Substituting the formu-
las into equation (12) we can finally obtain the easily-
calculated expressions for the bias.

In practical situations, we can obtain the inaccurate esti-
mated position of the target by using existing localization
algorithms. Then we can input the inaccurate target loca-
tion into the obtained analytical expression for the bias.
Finally we can improve the accuracy of the localization by
subtracting the obtained bias, viz. x̃−biasx̃ . If necessary,
one can input this target location into the expression for
the bias as the argument at which second derivatives are
evaluated, to improve the accuracy of the computed bias.

4. EXPERIMENTS

4.1 System setting up

As mentioned in Introduction, here we apply the bias
reduction algorithm to improve the performance of the
RSSI based localization system developed using SDRs.
The SDR model we used is USRP N210 which is developed
by Ettus Research. In the experiments, both of the emitter
and receiver are developed using USRP N210s. A simple
framework of the localization can be seen in Fig. 1. The
emitter can transmit signals at a wide frequency bands
(from 50MHz to 2.2GHz for this model) using bandwidth
up to 40MHz. The parameters of the emitter are listed in
Table 1. For simplicity, 1.2 GHz carrier signal (Sine wave)
is transmitted as the signal source using omni-directional
antenna. The receivers are tuned to the desired frequency
and obtain M (M=102400) complex samples of the signal
source. The sampling rate is set to 1M sps (sample per
second).

The principle to obtain RSSI is described in Fig. 2.
The SDR receiver obtains RF signal through its RF
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Fig. 1. Three receivers and one target

Fig. 2. Block diagram of RSSI measurement

front end and the signal is sampled by the 14-bit ADC.
Then, the sampled signal is processed by GNU Radio and
stored in the PC. The RSSI is calculated by obtaining
the magnitude of the I/Q components of each samples,
denoted by I2 + Q2, and averaging the magnitude of M
samples in one measurement. To enhance the reliability of
the measurements, measurements are implemented many
times at one position and the average RSSI is obtained.
The power of the emitter is unknown, but we found it is
almost constant as long as the emitter are not switched
off.

Table 1. Emitter parameters

Parameter value
Central frequency 1.2GHz

Waveform Sine
Bandwidth 1MHz

Sampling rate 1M Sps
Antenna omni-directional

4.2 PLE estimation

The value of the PLE depends on the environment and it
is determined by RSSI measurements at the corresponding
distances in a specific environment. A 8m by 10m indoor
area is used in the experiments. The emitter and receivers
are placed on identical bar stools to reduce the influence
of multi-path effect which is mainly caused by reflection
of walls, ground and ceiling. In addition, for a particular
transmitter power, the Signal-to-Noise ratio (SNR) drops
when the spacing between the emitter and the receiver
increases. To obtain high SNR, the gains of both the
emitter and the receiver need to be large.

The process of obtaining the PLE of this indoor area is
described as follows: an emitter is fixed at one point, then
a receiver is moved away from the emitter in a straight
line by steps of half meter and the RSSI value is obtained
at each point. 0.5m step is chosen because smaller steps,
such as 0.1m or 0.2m, does not show obvious change of
received signal strength. Fig. 3 shows the distribution of
RSSI measurements at some training points, which obeys
Gaussian distribution approximately. To determine the
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Fig. 4. PLE estimate of the indoor area

RSSI value, the average value is obtained from multiple
measurements. At each training point, the measured RSSI
values show small variance, which shows that the RSSI
measurements obtained from SDRs are stable. The vari-
ance of RSSI measurements become larger gradually due
to the drop of SNR when the distance between the emitter
and the receiver increases.

Fig. 4 shows the obtained RSSI-distance plot, in which
some fluctuation can be seen, especially at 2m to 3m
and 6m to 7m. In practical environment, however, the
fluctuation is inevitable. Even though many tests are
implemented at these abnormal points, the results are
almost the same. This is determined by the reflection
characteristics of the room. Rooms with different size or
sharp will give different patterns of the fluctuation of RSSI-
distance plot. To estimate the PLE γ, a fitting curve is
obtained based on the average RSSI measurements at the
corresponding distance. The approximated PLE of this
room is 2.0838. This value is very close to the empirical
value in the free space because the emitter and receiver are
placed at the same height and in a line-of-sight condition.
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Table 2. Error statistics of distance estimate(1)

Real Average distance Variance(m) Error ratio
distance(m) measurement(m)

1.89 1.7619 0.0015 6.78%
2 1.9068 0.008 4.66%
3 2.7992 0.0195 6.69%

4.3 Experimental results

Once γ and P0 are estimated, the distances between
the emitter and receivers can be calculated according
to average RSSI measurements obtained by receivers at
different locations. Then, one can estimate the location of
the target by using the obtained distance measurements.

Three scenarios are considered to verify the performance
of the bias reduction algorithm in RSSI based localization.
In each scenario, the locations of anchors are known. The
locations of targets are unknown and to be estimated.
The SDR can be built as a receiver or an emitter by
simply changing the software configuration. Therefore,
the distance measurement in an anchor/target pair can
be obtained by using the target as the emitter and the
anchor as the receiver. The distance measurement in a
target/target pair can be obtained by using one target as
the emitter and the other one as the receiver.

Scenario 1 Firstly, the simplest scenario with three an-
chors and one target is considered (shown in Fig. 5(a)).
The dashed line denotes the distance measurements be-
tween two nodes. Using the average distance measure-
ments obtained by three anchors, the location of the target
is estimated. In order to evaluate the localization perfor-
mance we use the root mean square error (RMSE) which
is calculated as follows:

RMSE =

√∑m
k=1(xk − x̃k)2

m
. (16)

In Table 2, the real distance between the emitter and the
receiver, the mean and variance of distance measurements,
and the error ratio of the distance measurements to the
true value are presented. The distance measurements show
errors with non-zero mean and the largest error of 6.78%.
Before the bias reduction algorithm is used, the RMSE of
the localization result is 0.3521m. After the bias reduction
algorithm is applied, the RMSE of target location estimate
is reduced by 77.3% from 0.3521m to 0.08m (shown in Fig.
6(a)).

Scenario 2 In this Scenario, a more complex case is
considered in Fig. 5(b), where three anchors are used to
localize two targets and dashed lines denote the distance
measurements between two nodes. The error statistics of
the obtained distance measurements are shown in Table
3. While the distance measurement of 2m shows relatively
larger error (19.29%), other measurements give errors less
than 10%. As can be seen in Fig. 6(b), the RMSE of
location estimate is also reduced by 79.7% from 0.4193m
to 0.0853m for target T1 and by 67.2% from 0.2011m to
0.066m for target T2 respectively after our bias reduction
algorithm is applied.

Scenario 3 Fig. 5(c) shows a more complex scenario,
where we use three anchors to localize 4 targets. The error
statistics of distance measurements are shown in Table 4.

Table 3. Error statistics of distance estimate(2)

Real Average distance Variance(m) Error ratio
distance(m) measurement(m)

4.5 4.7509 0.0792 5.58%
2 2.3857 0.0036 19.29%
3.4 3.2346 0.0157 5.97%
1.5 1.492 0.00074 1.84%
2.24 2.1298 0.0086 4.92%
2.04 2.0566 0.0031 0.81%

Table 4. Error statistics of distance estimate(3)

Real Average distance Variance(m) Error ratio
distance(m) measurement(m)

1 1.0002 0.00068 0.02%
2 1.7602 0.0073 11.99%

2.85 1.9362 0.0238 32.06%
1.34 1.226 0.0016 8.51%
2.26 1.5626 0.0206 30.86%
3.5 2.5968 0.0155 25.81%
3.23 3.3467 0.0206 3.61%
3.86 4.1787 0.1241 8.26%
3.95 3.816 0.0632 3.39%
3.2 2.8322 0.039 11.49%
2.3 1.8477 0.008 19.67%
4.7 4.1885 0.1833 10.88%

Similar to Scenario 2, some distance measurements show
large errors, e.g. 2.85m, 2.26m, 2.3m and 3.5m. This is the
combined influence of inaccurate PLE estimate and RSSI
measurements at those distances, which are caused by the
noise of the experimental platforms and environment.

In this scenario, the initial localization results of the tar-
gets without the bias reduction algorithm being imple-
mented also show larger errors than previous two scenar-
ios, which is mainly caused by larger distance measure-
ment errors at some points. Moreover, the factor like error
accumulation also influences the localization accuracy in
this more complex network. After the bias reduction al-
gorithm is implemented, the results can still prove that
the algorithm improves the localization accuracy largely.
For target T1, T2, T3 and T4 in Fig. 6(c), the RMSEs of
localization results drop by 55.4% to 0.602m, by 46.5% to
0.5047m, by 77.8% to 0.4929m and by 66.3% to 0.5406m
respectively.

5. CONCLUSION AND FUTURE WORK

In this paper, a RSSI based localization system is develope-
d using reconfigurable SDRs. To improve the performance
of the localization system, a bias reduction algorithm is
applied. To verify the performance of the algorithm in
practice, indoor localization experiments are implemented
with different number of emitters and receivers. The ex-
perimental results show that the bias reduction algorithm
can reduce the localization error by around 50% to 80%
and therefore the localization accuracy of the SDR based
RSSI localization system is significantly enhanced.

Our future work is to further improve the localization
accuracy of the SDR based RSSI localization system.
From the perspective of system implementation, firstly,
the RF parameters such as central frequency, bandwidth,
RF gain and modulation scheme, etc. are easily changed
as SDR is a reconfigurable platform. Therefore optimized
parameter setting can be obtained to enhance the accuracy
of RSSI measurements. Secondly, as discussed in the paper,
PLE is important and thus methods to calibrate PLE
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Fig. 5. Localization scenario: (a) 3 receivers and 1 targets, (b) 3 receivers and 2 targets, (c) 3 receivers and 4 targets
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(b) Scenario 2
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(c) Scenario 3

Fig. 6. Localization results: (a) one emitter, (b) two emitters, (c) four emitters

according to the reflection feature of the environment
will be developed. In addition, to enhance the accuracy
of localization estimate, apart from bias reduction, other
optimized localization algorithms will be implemented.
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