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Abstract: In networked control, event-triggered controllers can provide significant reduction in
message traffic as well as device energy consumption, which is potentially important in wireless
networks. Motivated by this fact, this work presents a systematic design method for event-
triggered PI controllers. The event generation is based on the evaluation of the degradation of a
linear quadratic (LQ) performance criterion. Based on the Lyapunov theory, a formal proof of
asymptotic stability of the closed-loop under the asynchronous sampling strategy is provided.
A simulation example illustrates the main characteristics of the proposed approach.
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1. INTRODUCTION

The simple structure of a PID controller, its effectiveness
and flexibility to address process control problems have
contributed to its popularity in industrial applications

(Åström and Hagglund [1995]). Digital communication
networks and wireless technology have not only open new
possibilities, for this simple and effective controller, but
also new challenges in terms of adapting its basic structure
and design tools to deal with issues such as unreliable
communication channels and the efficient use of the energy
(Villanova and Visioli [2012]). In order to make an efficient
use of the communication resources, several strategies
have been proposed to decrease the burden associated to
the transmission of information. The standard uniform
sampling has been replaced by sampling approaches based
on events and self-triggering schemes (see for instance
Mazo and Tabuada [2008], Wang and Lemmon [2010],
Fiter et al. [2012]). From these approaches, the plant
output or state is sampled only when a certain event or
condition related to the system response is fulfilled. The
sample is therefore used by the controller to update the
plant input in a discrete-time basis. This process configures
an asynchronous sampling scheme and leads to stability
issues that have to be properly addressed.

Considering PID controllers, one of the first authors to
realize the benefits of using event-based controller was
Arzen [1999]. He illustrated, by an example, that it is
possible to obtain large reductions in CPU utilization
with only minor control performance degradation. Later,
this approach was improved in Durand and Marchand
[2009a] and in Durand andMarchand [2009b], where event-
triggering strategies to compute a the new control signal
only when the measurement signal sufficiently changes are
proposed. Recently, there has been an increased interest
in providing insight on stability and performance issues

arising from the event-based setting. The stability of event-
based controllers can be addressed by using Lyapunov
theory. A preliminary analysis based on this theory of a
simplified state feedback event-driven control scheme is
described by Sandee et al. [2005] . Velasco et al. [2009]
provided conditions to ensure the asymptotic stability of
the closed-loop system by enforcing sampling, control al-
gorithm computation and actuation, each time the system
trajectory reaches a Lyapunov level set. In addition, they
also provided conditions to ensure that the sequence of
samples is infinite so that the system trajectory will tend
to zero as time tends to infinity. In Durand et al. [2011]
some relaxations of the Lyapunov sampling condition were
proposed to significantly reduce the number of samples.
On the other hand, as the plant evolves continuously,
but the control signal is updated depending on discrete-
time events, event-triggered control systems can be cast as
hybrid or impulsive systems. From this point of view many
results to asses stability have been proposed considering a
hybrid system framework and Lyapunov theory (see for
instance Donkers et al. [2011], Seuret and Prieur [2011],
Seuret et al. [2013]). In particular, Seuret and Prieur
[2011] addresses the stability problem of state feedback
controllers. They proposed two new event-triggered al-
gorithms. The first ones makes a Lyapunov-like function
decrease whereas the second one is able to ensures the
asymptotic stability of the closed-loop system with fewer
sampling times. In Seuret et al. [2013], a strategy based
on the evaluation of a linear quadratic (LQ) performance
criterion is proposed to compute event-triggered saturating
state feedback control laws.

These new event-based controllers have already been ap-
plied to some relevant industrial processes such as: so-
lar plants (Beschi et al. [2013]), modular crushing plants
(Airikka [2012]), room temperature (Hensel et al. [2012]),
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mine ventilation (Tiberi [2011]) and motion control (Wang
et al. [2011]).

In this work, a simple method to design event-based PI
controllers is proposed. As in Seuret et al. [2013], the
event-triggering strategy is based on the use of a LQ
performance criterion. Based on the evaluation of the
performance degradation, the decision on when the plant
output must be sampled and sent to the controller is taken.
Then the controller sends to the plant an updated control
signal, which remains constant until the next event. Using
Lyapunov theory arguments, a formal proof of stability
under the asynchronous sampling strategy is provided.

This paper is organized as follows: Section 2 states the
main problem to be addressed. Section 3 describes the
PI design strategy based on a LQ performance. Section 4
presents the event-triggering strategy ensuring closed loop
stability. Section 5 illustrates the main results by a simple
example. Finally, in section 6, some concluding remarks
and future work are outlined.

Notations: For a matrix A, A′ stands for the transpose of
A and He{A} = A+A′. For a symmetric matrix X ,X < 0
means that X is a negative definite matrix.

2. PROBLEM STATEMENT

Consider the following continuous-time linear plant:

ẋp(t) = Axp(t) +Bu(t)
y(t) = Cxp(t)

(1)

where xp ∈ ℜ
n, u ∈ ℜ, y ∈ ℜ are the plant state, input

and output, respectively, and A, B and C are constant
matrices of appropriate dimensions.

Let now a continuous-time PI controller be given by the
following state equation:

ẋc(t) = r − y(t)
u(t) = kixc(t) + kp(r − y(t)),

(2)

where r ∈ ℜ is supposed to be a constant reference and
xc ∈ ℜ the controller state. kp and ki are the proportional
and the integral gains, respectively.

In this paper we are concerned by the implementation
of the control loop through a network. In particular we
consider that the controller and the actuator-plant-sensor
are in different nodes of the network as depicted in Figure
1. We assume also that the message transmission-reception
are costly in terms of energy. This is for example the case
in wireless networks where the nodes are feed by batteries.

We are particularly interested in devising an event-
triggered strategy to sample and to update the control
signal applied to the plant. This means that the output
of the plant will be sampled in discrete instants of time
and the control action will be supposed to be constant
between two subsequent sampling instants tk and tk+1,
k ∈ N. Note however that, differently from classical digital
control approaches, the sampling interval tk+1 − tk is not
constant. The system dynamics in the interval [tk tk+1)
can be therefore described as follows:

ẋp(t) = Axp(t) +Bu(tk)
ẋc(t) = r − y(tk)
u(tk) = kixc(tk) + kp(r − y(tk)),

∀t ∈ [tk tk+1) (3)

controller network plant

sensor

actuator

u(t)

u(tk)

u(tk)

y(t)

y(tk)

y(tk)

Fig. 1. Networked control loop.

Regarding system (3), we assume that the output of the
plant is continuously measured (or, in practice, with a
high sampling rate), but it will be sent to the controller,
which is supposed to be in another node in the network,
only when an event occurs. At this time, i.e. at t = tk,
messages between the controller and the sensor-plant node
are exchanged. The sensor-plant node sends y(tk) to the
controller and this one sends back the new control value
u(tk) to be applied to the plant until the next event.

The decision on when to sample will be based on the per-
formance degradation of the closed-loop system. The per-
formance criterion we adopt is a classical linear quadratic
(LQ) one. The performance degradation will be therefore
measured with respect to the nominal performance that it
would be achieved by a continuous-time implementation.
In particular, since a Lypaunov-based approach is con-
sidered, the stability under the event-triggered sampling
strategy will be implicitly guaranteed.

3. GUARANTEED COST PI SYNTHESIS

In this section we consider the synthesis of the PI con-
troller in order to guarantee a certain LQ performance
for the closed-loop system considering a continuous-time
implementation.

Supposing the connection between (1) and (2) is asymp-
totically stable, the equilibrium point of the closed-loop
system is given by:

[

xp,eq

xc,eq

]

= −

[

A− kpBC kiB
−C 0

]

−1 [

kpB
1

]

r

ueq = kixc,eq + kp(r − Cxp,eq),

(4)

Considering

x̃p = xp − xp,eq , x̃c = xc − xc,eq, ũ = u− ueq,

the continuous-time closed-loop system can be re-written
as:

˙̃x(t) = Ax̃(t) + Bũ(t)
ũ(t) = [kp ki]Cx̃(t)

(5)

with

x̃ =

[

x̃p

x̃c

]

,A =

[

A 0
−C 0

]

, B =

[

B
0

]

, C =

[

−C 0
0 1

]

Consider now the following linear quadratic criterion
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J (x̃, ũ) =

∫

∞

0

φ(x̃, ũ)dt (6)

with

φ(x̃, ũ) = x̃′Qx̃+ ũ′Rũ, Q = Q′ ≥ 0, R > 0 (7)

Theorem 1. If there exist a matrix P = P ′ > 0 such that
the following matrix inequality is verified

[

He{P (A+ B[kp ki]C)}+Q C
′[kp ki]

′

[ kp ki ]C −R−1

]

< 0 (8)

then it follows that the closed-loop system is asymptoti-
cally stable and

J (x̃, ũ) < x̃(0)′P x̃(0)

Proof. Consider a candidate Lyapunov function Vo(x̃) =
x̃′P x̃.

Applying now Schur’s complement to (8) and pre and pos-
multiplying the result by x̃′ and x̃ respectively, it follows
that:

V̇0(x̃) + x̃′Qx̃+ ũ′Rũ < 0 (9)

Since Q ≥ 0 and R > 0, inequality (9) implies that

V̇0(x̃) < 0 and the asymptotic stability of the closed-loop
system follows.

On the other hand, integrating (9) from 0 to ∞ it follows
that:

∫

∞

0

(V̇0(x̃) + x̃′Qx̃+ ũ′Rũ)dt =

V0(x̃(∞))− V0(x̃(0)) + J (x̃, ũ) < 0
(10)

Hence, since the closed-loop system is asymptotically sta-
ble it follows that V0(∞) = 0 and, therefore

J (x̃, ũ) < V0(x̃(0)) = x̃(0)′P x̃(0)

For a given PI controller, i.e. considering kp and ki given,
note that the matrix inequality (8) is linear in the variable
P , i.e. it is a linear matrix inequality (LMI). Thus, the
result of Theorem 1 can be used to certify a certain
guaranteed cost performance with respect to criterion (6).
This can be done by solving the following optimization
problem:

min
P

trace(P )

s.t. (8)
(11)

On the other hand, the PI parameters can be tuned to
minimize J(x̃, ũ). This can be accomplished by solving
(11) with ki and kp as decision variables. Note that in
this case constraint (8) is no longer an LMI. However,
the optimal solution of the problem can be approximated
by considering a grid on the parameters kp and ki and
iteratively solving (11) for each point of this grid.

4. EVENT-TRIGGERED STRATEGY

Considering variables x̃p x̃c and ũ, the closed-loop sample-
data system (3), for t ∈ [tk tk+1), can be rewritten as
follows:

˙̃x(t) = A1x̃(t) + Bus(t) + Eys(t) (12)

with ys(t) = Cx̃(tk), us(t) = ũ(tk),

A1 =

[

A 0
0 0

]

, B =

[

B
0

]

and E =

[

0
−1

]

.

Define now the vector

ξ(t) = [x̃(t)′ us(t)
′ ys(t)

′]′ (13)

and the matrix

M =





PA1 + A
′

1P + µ−1Q PB PE

B
′P µ−1R 0

E
′P 0 0



 (14)

with µ > 1

The event-triggered sampling strategy can therefore be
described by the following algorithm:

Algorithm 1.
if ξ′(t)Mξ(t) > 0 then sample, i.e:

tk+1 = t
k ← k + 1
ys(t) = ỹ(t)
us(t) = ũ(t)

otherwise:
ys(t) = ỹ(tk)
us(t) = ũ(tk)

Theorem 2. Consider system (12) with the event-triggered
sampling strategy given in Algorithm 1, where M is
defined as in (14) with matrix P verifying (8). Then the
following holds:

a) lim
t→∞

x̃(t) = 0, i.e. the closed-loop system is asymptot-

ically stable.
b) J(x̃, us) ≤ µx̃(0)′P x̃(0)

Proof. Let V (x̃) = x̃′P x̃ be a candidate Lyapunov function
and consider the following notation:

• V̇s(x̃, us, ys) for denoting the time derivative of V (x̃)
along the trajectories of system (12)

• V̇ (x̃) for denoting the time derivative of V (x̃) along
the trajectories of system (5)

From the definition of matrix M and the vector ξ, it
follows:

ξ(t)′Mξ(t) = 2x̃(t)′P (A1x̃(t) + Bus(t) + Eys(t))
+ µ−1(x̃(t)′Qx̃(t) + us(t)

′Rus(t))

= V̇s(x̃, us, ys) + µ−1φ(x̃, us)

with φ(x̃, us) defined as in (7), with us replacing ũ.

Since Q ≥ 0 and R > 0, if ξ(t)′Mξ(t) ≤ 0, ∀t ∈ [tk−1 tk)
we can conclude that

V̇s(x̃, us, ys) < 0 ∀t ∈ [tk−1 tk), (15)

Let us consider now the sampling instant t = tk. At this in-
stant, the control and the sensor values are instantaneously
updated and it follows that:

us(tk) = ũ(tk) = [kp ki]Cx̃(tk)

A1x̃(tk) + Bus(tk) + Eys(tk) = Ax̃(tk) + Bũ(tk)

and we can conclude that

Vs(x̃(tk), us(tk), ys(tk)) = V (x̃(tk))

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

6949



Supposed now that (8) is verified. From the proof of
Theorem 1, it follows that:

V̇s(x̃(tk), us(tk), ys(tk)) + φ(x̃(tk), us(tk)) < 0 (16)

and thus:

V̇s(x̃(tk), us(tk), ys(tk)) = V̇ (x̃(tk)) < 0 (17)

Note now that (16) can be re-written as follows:

ξ(tk)
′Mξ(tk) + (1− µ−1)φ(x̃(tk), us(tk)) < 0 (18)

Hence, since µ > 1, we conclude that

ξ(tk)
′Mξ(tk) < 0

which means, by continuity, that the interval between
two sampling instants is not empty. From this fact and
from (15) and (17), it follows that the state converges
asymptotically to the origin under the sampling strategy,
i.e. item a) is proved.

Let us now prove item b). With this aim consider that
ξ(t)′Mξ(t) ≤ 0 for t ∈ [tk tk+1). In this case, ∀t ∈
[tk tk+1) it follows that:

V̇s(x̃(t), us(t), ys(t)) + µ−1φ(x̃(t), us(t)) ≤ 0

Integrating the previous expression on the time interval
[tk tk+1) leads to

∫ tk+1

tk

(V̇s(x̃(t), us(t), ys(t)) + µ−1φ(x̃(t), us(t)))dt =

V (x̃(tk+1))− V (x̃(tk)) + µ−1

∫ tk+1

tk

φ(x̃(t), us(t))dt ≤ 0

Consider t0 = 0 and, since lim
t→∞

x̃(t) = 0, there exists an

integer k̄ ∈ (0 ∞) such that V (x(tk̄+1)) = 0. Hence, we
can conclude that:

k̄
∑

k=0

(V (x̃(tk+1))− V (x̃(tk)) + µ−1

∫ tk+1

tk

φ(x̃(t), us(t))dt) =

−V (x̃(0)) + µ−1

∫

∞

0

φ(x̃(t), us(t))dt ≤ 0

which leads to

J (x̃, us) =

∫

∞

0

φ(x̃(t), us(t))dt ≤ µV (x̃(0)) = µx̃(0)′P x̃(0)

The event-triggering strategy defined in Algorithm 1 is
supposed to run in the actuator-plant-sensor node, where
the sensor device is assumed to have a processor (i.e.
it is a smart sensor). In this case, note that both the
plant and control states should be available to perform
the test ξ′Mξ. Of course, in general applications only
the plant output is measured. Moreover, assuming that
the controller is running in a different node and that the
communication is done only when an event occurs, the
current value of its state is not available in the actuator-
sensor-plant node.

However, if we assume that the controller sends also the
value of its state at time tk, the controller state can be
directly obtained as follows in the actuator-plant-sensor
node:

xc(t) =

∫ t

tk

(r − y(tk))dt+ xc(tk)

= (t− tk)(r − y(tk)) + xc(tk)

On the other hand, since y(t) is supposed to be continu-
ously available at the sensor node, the value of xp(t) can
be recovered through a classical Luenberger observer:

˙̂xp(t) = Ax̂p(t) +Bus(t) + L(Cx̂p(t)− y(t))

where x̂p(t) denotes the estimate of xp(t).

Thus, both xc(t) and xp(t) can be recovered at the
actuator-plant-sensor node in order to implement the
event-triggered strategy.

Remark 3. The proposed framework and event-triggered
strategy apply also to the case where we have a controller-
actuator-plant node and a sensor node. This is the case, for
instance, when the plant and the actuator are geographi-
cally separated from the local where the output measures
are effectively taken by the sensor.

5. NUMERICAL EXAMPLE

In this section, an event-triggered PI controller as de-
scribed in previous sections is used to control a simple first
order plant. The simplicity of the plant makes possible to
have some insights on why sampling is triggered at specific
instants of time.

The plant is described by:

ẋp(t) =−xp(t) + u(t) (19)

y(t) = xp(t) (20)

The design parameters are the weighting matrices Q =
[

3 0
0 3

]

and R = 0.15. The controller gains have been

determined by minimizing the trace of P subject to (8)
leading to kp = 4.4747 and ki = 4.4740. For xp(0) =
0, xc(0) = 0 and r = 1 the output of the continuous plant
y(t) and the sampled output y(tk) considering Algorithm
1 with µ = 40 is depicted in Figure 2 . Details of the event-
triggered sampling of the output can be seen in Figure 3.

The discrete-time control signal, u(tk) is shown in figure
4. Again, note the effect of the event-triggered sampling.

In this experiment, a total of 12 samples were performed
to drive the system to its reference. Figure 5 shows the
temporal distribution of the events. At each moment, a
value of 0 means no event and a value of 1 means a event.
Although not regularly spaced in time, events tend to
happen in bursts. Note that the sampling is more frequent
when the output is changing fast and is close to the
reference.

Those samples are decided based on the value of ξ′(t)Mξ(t),
which is shown in Figure 6. Note that a sampling event
and a consequent change in the control value is performed
as soon as ξ′(t)Mξ(t) > 0. Thus the value of ξ′(t)Mξ(t)
above 0 tends to be very small. In Figure 7 it can be seen
that ξ′(t)Mξ(t) actually becomes positive in the instants
corresponding to the sampling events.
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Fig. 2. Output of the continuous plant y(t) (dashed) and
the sampled output y(tk) (solid).
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Fig. 3. Details of the event-triggered sampling. Output of
the continuous plant y(t) (dashed) and the sampled
output y(tk) (solid).
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Fig. 4. Control effort.

The evolution of the Lyapunov function is shown in Figure
8. As expected, its value decreases as the time increases
and its derivative is always negative.

6. CONCLUDING REMARKS

A systematic design method for event-triggered PI con-
troller has been proposed. The method is based on a
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Fig. 5. Sampling events. 0 means no event, 1 means event.
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Fig. 6. Evolution of ξ′(t)Mξ(t).
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Fig. 7. Detail of the evolution of ξ′(t)Mξ(t).

LQ performance criterion evaluation which leads to an
event-triggered strategy ensuring closed loop stability. The
simulation results have shown the flexibility of the design
method to cope with different design requirements. In
particular, the application of the proposed methodology
in networked control, mainly in wireless networks, where
the battery consumption is in general critical and trans-
missions should be minimized, seems to be promising. In
this context further developments should be carried out to
consider package losses, communication delay effects and
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Fig. 8. Evolution of the Lyapunov function.

noisy measurements in the dynamics of the closed-loop
system.

On the other hand, the extension of the approach to cope
with saturation effects and incorporate an anti-windup
compensation to the PI controller is an ongoing work. Also,
it seems to be possible the extension of the approach to
deal with plants presenting time-delays in order to consider
classical models arising in process control.
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