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Abstract: The possible state space dimension increases exponentially with respect to the
number of qubits. This feature makes the quantum state tomography expensive and impractical
for identifying the state of merely several qubits. The recent developed approach, compressed
sensing, gives us an alternative to estimate the quantum state with fewer measurements.
It is proved that the estimation then can be converted to a convex optimization problem
with quantum mechanics constraints. In this paper we present an alternating augmented
Lagrangian method for quantum convex optimization problem aiming to recover pure or near
pure quantum states corrupted by sparse noise given observables and the expectation values of
the measurements. The proposed algorithm is much faster, robust to outlier noises (even very
large for some entries) and can solve the reconstruction problem distributively. The simulations
verify the superiority of the proposed algorithm and compare it to the conventional least square
and compressive quantum tomography using the Dantzig method.

Keywords: Quantum state tomography, ADMM, rank minimization, convex optimization and
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1. INTRODUCTION

The interests of applying control theory and signal pro-
cessing techniques to quantum mechanics have increased
dramatically in recent decades. One objective is to develop
a series of systematic methods for the active manipulation
and control of quantum systems. The foundation of such
theory lies in the fact that we are capable to prepare and
measure a given quantum state efficiently. It is not trivial
since the microscopic quantum systems have their unique
features, on account of which they significantly differ from
the classic world. In practice, people often use the mea-
surement data to estimate an unknown quantum state. In
mathematics, a quantum pure state |ψ⟩ can be described
as a vertical vector with the size d in a Hilbert space. This
vector is called a state vector and it theoretically contains
the statistical information about the quantum system. For
the mixed state that corresponds to a probabilistic mixture
of pure states, a state vector is not enough. It usually re-
quires a d×d density matrix ρ to depict the quantum state
by giving the probabilities in each possible state, which
implies that O(d2) parameters are needed to describe an
arbitrary quantum state in a d dimensional Hilbert space.
Various reconstruction algorithms have been proposed
and experimentally tested (Lvovsky and Raymer [2009],
Liu et al. [2012]), such as methods based on inverse lin-
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ear transformation, maximum-likelihood and maximum-
entropy.

However, in fact most states people are interested in real
life are nearly pure. Here nearly pure means the quan-
tum state is a mixed state that can be represented as
the probabilistic combination of equal to or less than r
pure states. Suppose that the unknown mixed state is
a probabilistic mixture of r ∼ O(1) pure states, then
it means that its density matrix ρ has rank not larger
than r. This prior information enables us to reduce the
number of parameters to identify a quantum system (Gross
et al. [2010]). By using a novel signal processing tech-
nique called compressed sensing (CS) (Donoho [2006])
that has been widely investigated in last a few years,
researchers are able to obtain good estimates of nearly
pure quantum states with O(rd log d) expectations and
corresponding observables (Gross et al. [2010], Liu [2011]).
Thus the required number of identifying a quantum state
can be reduced dramatically by solving an optimization
problem when d goes to large, and its effectiveness has
been verified by a series of experiments such as in Smith
et al. [2013]. While in current literatures of quantum state
tomography via CS, this problem cannot be efficiently
handled by generic optimization solvers because of the
large number of involving variables. For instance in Smith
et al. [2013] the authors summarized the estimation to a
least squares (LS) problem or a compressed sensing (CS)
problem, and solved them by using the prevalent convex
optimization toolbox. This paper addresses the problem of
state recovery using the low rank information. Our work is
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inspired by the alternating augmented Lagrangian method
(ADMM) which has received much attentions from the
optimization community (Boyd and Vandenberghe [2004],
Boyd et al. [2011]) though originally it was developed in
the 1970s. In this paper we reformulate the quantum state
tomography to an optimization problem and design a fast
algorithm based on ADMM where in each iteration we
try to optimize the density matrix and project it onto the
constraint set of quantum states according to the Karush-
Kuhn–Tucker (KKT) conditions, and the algorithm finally
reaches a solution with good accuracy. Due to the alternat-
ing properties of the proposed approach, we are able to run
it distributively, and normally obtain the quantum state
with most purified result by minimizing the nuclear norm
of the density matrix, which can be seen as a heuristic
for minimizing the rank (Candes and Plan [2011]). People
have proved that many matrices bases, including Pauli
matrices, satisfy the rank restricted isometry property
(RIP) introduced in Recht et al. [2007], hence by using
Pauli matrices as sensing matrices we are able to recover
the unique density matrix with sufficient measurements via
compressive sensing approach. This work can be deemed
as the reconstruction part of the compressive quantum
state tomography, which gives a solution to identifying the
density matrices accurately and efficiently for standard to-
mography as well as continuous tomography (Smith et al.
[2013]).

This paper is organized as follows. In Section 2, we will
explain the idea of quantum state tomography via com-
pressive sensing and the framework of ADMM. In Section
3 the compressive state tomography with quantum con-
straints is formulated formally, and the proposed algorithm
is introduced and analyzed in detail. Simulations verify the
effectiveness of the proposed approach in Section 4, and fi-
nally the conclusion is summarized in Section 5. Moreover,
some necessary supplementary knowledge is explained in
the Appendix.

Notation: Bold letters are used to denote a vector or a
matrix. For vectors, || · ||1, || · ||2 represent the l1, l2 norm,
respectively. For matrix, AT and A∗ denote the transpose
and Hermitian transpose of A, respectively. || · ||p denotes

the Schatten p-norm with ||A||p =
(∑

i σi(A
p)1/p

)
, where

σi(A) are the singular values of A. Specifically, || · ||∗
is the nuclear norm and || · ||F represents the Frobenius
norm. tr(·) is the operator to calculate the trace. vec(A)
represents the vertical vector concatenates A’s columns,
and “mat” is its inverse operator to convert a vector to a
matrix. Bra-ket notations |ψi⟩ are used to denote quantum
states. A ≽ 0 means A is a positive semi-definite (p.s.d)
matrix.

2. COMPRESSIVE QUANTUM STATE
TOMOGRAPHY AND ADMM

2.1 Quantum State Tomography Via Compressive Sensing

The task of quantum state tomography is to reconstruct
the quantum states processed and produced by physical
systems. Due to the special characteristics of the quantum
mechanics, a d × d, d = 2q density matrix ρ, a quantum-
mechanical analogue to a phase-space probability measure,
is used to describe a quantum system, where q denotes the

number of qubits under consideration. Since the degrees of
the freedom of ρ are d × d, usually people need the num-
ber of measurements increasing with exponential growth
regarding the state space dimension d in order to identify
ρ. If we make the measurements discretely and denote the
observable matrix Oi, the expectation of measurements
yi ∈ Rm, and measuring operator A : Cd×d→m, then

yi = (A(ρ))i + ei = c · tr(O∗
iρ) + ei, i = 1, · · · ,m, or

y = Avec(ρ) + e,
(1)

where A ∈ Cm×d2

is the normalized operator whose ith
row is the concatenation of O∗

i ’s rows, e ∈ Rm represents
the noise caused by the system or measuring process. c is
some normalized constant. If we set E(A∗A) = I where
E represents the expectation over all A, c would be d√

m
.

Conventionally, people use the least square approach to
estimate ρ

ρ̂ = argmin
ρ

∑
i

[yi − c · tr(O∗
iρ)]

2
,

s.t. ρ∗ = ρ, ρ ≽ 0, tr(ρ) = 1.

(2)

Because the degrees of freedom of ρ are O(d2), normally
O(d2) measurements are needed to identify the unique
state.

Yet if we assume that the underlying quantum system is
pure or nearly pure, ρ becomes a probabilistic weighted
combination of equal to or less than r rank-1 matrices
derived from a series pure states (see details in the Ap-
pendix). When r is small, people have suggested that
O(rd log d) settings would possibly suffice instead of d2.
Minimizing the rank of a matrix belongs to NP-hard
problems, so alternatively people pursuit the solution by
minimize the nuclear norm of the density matrix ||ρ||∗ =

tr (
√
ρ∗ρ) =

∑min{m,n}
i=1 σi, which is a convex function

that can be optimized efficiently. The nuclear norm has
been proved as the best convex approximation of the rank
function over the unit ball (Recht et al. [2007]), so mini-
mizing ||ρ||∗ is a heuristic for minimizing the rank (Gross
et al. [2010]). Thus ρ with low rank can be estimated by
compressed sensing approaches such as in Liu [2011]:

Dantzig with quantum constraints:

ρ̂ = argmin
ρ

||ρ||∗

s.t.
∑
i

[yi − c · tr(O∗
iρ)]

2 ≤ ϵ,ρ∗ = ρ, ρ ≽ 0, or

LASSO with quantum constraints:

ρ̂ = argmin
ρ

1

2
||yi − c · tr(O∗

iρ)||22 + µ||ρ||∗

s.t. ρ∗ = ρ, ρ ≽ 0,

(3)

where ϵ, µ are parameters. In this paper we develop a
convex optimization algorithm based on ADMM to solve
above problems corrupted by sparse outliers with quantum
constraints.

2.2 Alternating Direction Method of Multipliers (ADMM)

ADMM is an optimization method equipped with good
robustness and can support decomposition. Consider an
optimization problem:

minimize f(x) + g(z) s.t. Ax+Bz = c (4)
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for some variable x, z ∈ Rn, where f, g : Rn → R are
two convex functions. The augmented Lagrangian of (4) is
defined as:

Lλ(x, z,w) = f(x) + g(z)

+wT (Ax+Bz− c) +
λ

2
||Ax+Bz− c||22.

(5)

where λ > 0 is a tunable parameter. Then the kth iteration
of ADMM algorithm consists of three steps as follows:

1) xk+1 = argmin
x
Lλ(x, z

k,wk) // x-minimization

2) zk+1 = argmin
z
Lλ(x

k+1, zk,wk) // z-minimization

3) wk+1 = wk + λ(Axk+1 +Bzk+1 − c) // dual-update
(6)

From above steps one can see that if we minimize over x
and z jointly, the approach reduces to the classic method
of multipliers. Instead, people split the augmented La-
grangian and minimize over x with z fixed and vice versa.
The three steps are repeated until the convergence. Certain
stopping criteria is made to decide when the algorithm
is thought to achieve a convergence. For instance, the
algorithm is iterated until the primal and dual residuals
are bounded

||Axk +Bzk − c||22 ≤ εpri,

||xk − xk−1||22 + ||zk − zk−1||22 ≤ εdual,
(7)

where εpri > 0, εdual > 0 are tolerance parameters. For
more details and a complete convergence analysis, people
who have interests may refer to Boyd et al. [2011].

3. PROBLEM FORMULATION AND METHOD

In this section, we formulate the problem of the robust
quantum state tomography and derive an efficient opti-
mization algorithm using ADMM. Here “robust” means
the algorithm fits for the circumstance of the existence of
not only small random noises, but also sparse outlier noises
involved in the density matrix.

3.1 Robust Compressive Quantum State Tomography

During the measuring process of quantum state tomog-
raphy, noises are involved due to the system or mea-
surement errors. Normally we assume e satisfying certain
distribution (like Gaussian) and it can be minimized with
least square techniques (2), similar in Danzig or LASSO
(3). However there exist abnormal circumstances in the
measuring process that may cause the perturbation in the
density matrix, and it can be reflected by sparse outlier
entries in ρ and of course these outlier entries do not sat-
isfy the Gaussian distribution. We formulate these outlier
entries as a sparse matrix S ∈ Cd×d, then (1) becomes

yi = (A(ρ+ S))i + ei = c · tr(O∗
i (ρ+ S)) + ei,

i = 1, · · · ,m. (8)

In this case the result of the least square method in (2) will
change significantly sometimes because of the existence
of outliers. In addition, given the information that ρ is
relatively pure which implies that it has low rank, the
Dantzig/LASSO solver in (3) with low rank constraints
based on truncated Singular Value Decomposition (SVD)
might also fail because the sparse outliers effect the clas-
sic principle component analysis (PCA) dramatically in

the process of dimensionality reduction. To reduce the
influence of the noise to the rank estimation, we may
reformulate a robust Dantzig solver with sparse outliers
and quantum constraints to

minimize ||ρ||∗ + ||S||1
s.t. ||y −Avec(ρ+ S)||22 ≤ ϵ,ρ∗ = ρ, ρ ≽ 0,

(9)

where A is with the same definition in (1). The idea of
minimizing sparse noises can also be found in E. J. Candés
andWright [2011], Zhou et al. [2010], Kyrillidis and Cevher
[2012] and has many applications in the face recognition
area, etc. While in most previous papers the authors aimed
at solving a matrix completion problem however here
we want to recover the density matrix from observable
measurements with special constraints on ρ. To involve
the quantum constraints in ADMM, we rewrite (9) as

minimize ||ρ||∗ + IC(ρ) + ||S||1
s.t. ||y −Avec(ρ+ S)||22 ≤ ϵ,

(10)

where IC(ρ) is the indictor function on a convex set C
with IC(ρ) = 0 for ρ ∈ C, and IC(ρ) = ∞ for ρ /∈ C, C(ρ)
here is the Hermitian p.s.d. set whose entries satisfy ρ∗ =
ρ, ρ ≽ 0. So we have obtained two sets of variables with
separable objectives. Then the augmented Lagrangian can
be derived from (5) as

Lλ1(ρ,S,w) = (||ρ||∗ + IC(ρ)) + ||S||1
+wT (Avec(ρ) +Avec(S)− y)

+
λ1
2
||Avec(ρ) +Avec(S)− y||22,

(11)

where λ1 is a parameter that can effect the rate of
convergence and the number of iterations. Alternatively
we may combine the linear and quadratic terms in (11)
and it becomes
Lλ1(ρ,S,u) = (||ρ||∗ + IC(ρ)) + ||S||1

+
λ1
2
||Avec(ρ) +Avec(S)− y + u||22,

(12)

with u = (1/λ1)w.

3.2 ADMM Steps

We carry out the following steps in each iteration of the
ADMM algorithm to solve (10).

Step 1 In the ρ minimization step, we update the low
rank ρ matrix with fixed S,u:

ρk+1 :=argminρ {||ρ||∗ + IC(ρ)

+
λ1
2
||Avec(ρ) +Avec(Sk)− y + uk||22

}
,

(13)

where k is the number of iterations. First, we minimize
the unconstrained quadratic function in terms of ρ. The
analytic solution to the least square estimation can be
written as

ρk+1
1 = mat

(
(A∗A)

−1
A∗ (y − uk −Avec(S)

))
. (14)

Second, projecting ρk+1
1 on to the constraints set C at the

same time with low rank, and denoting the result as ρk+1
2 ,

i.e.
ρk+1
2 = ΠC(ρ

k+1
1 ), (15)

where ΠC denotes the Euclidean projection onto C and at
the same time with low rank. For the particular constraint
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set of quantum state, C is a proper cone of the Hermitian
p.s.d. matrices. We will show the projection process in
Section 3.3 with efficient approach.

Step 2 In the S minimization step, we update the sparse
matrix S with fixed ρk+1 = ρk+1

2 ,u.

Sk+1 :=argminS {||S||1

+
λ1
2
||Avec(ρk+1) +Avec(S)− y + uk||22

}
.

(16)

It is a conventional LASSO problem and can be solved
by iterations. However here we avoid solving it by a
sequence of convex programs and adopt a shrink operator
to calculate a solution efficiently. In detail, the least square
estimate S can be approximated by

Sk+1
1 = mat

(
(A∗A)

−1
A∗ (y − uk −Avec(ρk+1)

))
,

(17)
and then we shrink the magnitude to achieve a sparse
solution

Sk+1
2 = Sτ ′(s) = sgn[s]max(|s| − τ ′1,0) (18)

where S is the shrink operator which is also adopted
in Section 3.3, s = vec(Sk+1

1 ), τ ′ is a shrink parameter
depends on the sparsity level of S.

Step 3 At last we proceed the dual update step:

uk+1 = uk + (y −Avec(ρk+1)−Avec(Sk+1)). (19)

This step is to record the alternative update direction and
prepare for the next step.

Stop Criteria and Parameter Settings The algorithm
follows the steps 1-3 to carry out the updating informa-
tion iteratively. In practice, relatively small numbers of
iterations, like 30-40, are sufficient to achieve a good accu-
racy. There are several stopping criterions, e.g., adopting
bounds in (7) we have

||y −Avec(ρk + Sk)||22 ≤ ε1||y||2,
||ρk − ρk−1||2 ≤ ε2, ||Sk − Sk−1||2 ≤ ε3.

(20)

where ε1, ε2, ε3 are parameters need to be tuned. Some
methods of tuning parameters of alternating direction
methods are indicated in Yuan and Yang [2009], E. J. Candés
and Wright [2011].

3.3 Projection onto the Constraint Set with Low Rank

We utilize a positive eigenvalue thresholding operator Dτ

to calculate ρk+1
2 . Let Sτ : Rd → Rd denote the shrink

operator such that

Sτ (x) = sgn[x]max(|x| − τ1,0) (21)

where 1 is a vector with all elements 1. The definition also
can be extended to the matrix form. Then the positive
eigenvalue thresholding operator Dτ is defined as

ρk+1
2 = Dτ (ρ

k+1
1 ) = VSτ (Σ

+)V∗ (22)

where Σ,V are obtained from the eigenvalue decomposi-

tion of a symmetrized matrix 1/2(ρk+1
1 + ρk+1

1

∗
),

VΣV∗ = 1/2(ρk+1
1 + ρk+1

1

∗
), (23)

Σ+ only keeps the positive part of the eigenvalues where
Σ+ = max(Σ,0), Sτ (Σ

+) is a shrink operator on the

diagonal matrix Σ+ which has eigenvalues as entries, τ =
1/λ1. This approach can be derived from its Karush-Kuhn-
Tucker (KKT) conditions of the optimal projection from

ρk+1
2 to set C with least square errors. Taking the indicator

function IC(ρ) for instance, under mild assumptions on a
proper cone C, the KKT conditions of

minimize ||ρ̄− ρ||22
s.t. ρ̄ ∈ IC

(24)

are given by

ρ̄ ∈ IC , ρ̄− ρ = θ,

θ ∈ IC , θ∗ρ̄ = 0.
(25)

The third term is because the positive semidenite cone is
self-dual. Then the Euclidean projection can be derived
by decomposing ρ into the difference of two orthogonal
elements: one with nonnegative eigenvalues and one with
negative part. After that the shrink operator leads to a
solution satisfying low rank constraints. In addition, if
given the information that the objective quantum state is
the probabilistic linear combination of less than or equal
to r pure states, we may project ρ to the set of r-rank
matrices by selecting the maximum r positive eigenvalues
in Σ+ in (22). For the details of the derivation the readers
may refer to (Boyd and Vandenberghe [2004]).

Remark:
1) Regarding the convergence of ADMM and error bounds
of recovering low rank matrix from its measurements the
readers may refer to Boyd and Vandenberghe [2004], Boyd
et al. [2011], J. Wright and Ma [2013], Lin et al. [2011].
If there is no analytical solution to (6), we may also use
the semidefinite programs. Details and the software can be
found in Sturm [1999].

2) In practice, the observable Oi is not necessary the
tensor product of Pauli matrices. For instance, in Smith
et al. [2013] the author developed a device to proceed the
quantum state tomography by continuous measurements
where Oi is affected by outer radio frequency magnetic
fields. In this case we can still use the proposed algorithm
to recover the quantum state, as long as that Oi satisfy
the rank RIP and number of measurements are sufficient
large. Regarding the details of rank RIP and the mea-
surement number of the compressive quantum tomography
approach, please refer to the Appendix.

3) If the dataset is large, our algorithm equipped with
ADMM technique can be extended to a distributed man-
ner as a consensus optimization problem. AssumeN agents
can communicate with each other, and denote each cost
function fi(·), i = 1, 2, · · · as in (1), in this case (6) turns
to

xk+1
i =

argminxi

(
fi(xi) + yk

i

T
(xi − x̄k

i ) +
λ

2
||xi − x̄k

i ||22
)
,

yk+1
i = yk

i + λ(xk+1
i − x̄k+1

i ),
(26)

where x̄k
i = 1/ni

∑ni

i=1 x
k
i represents the average of n

neighbours of agent i. Generally speaking, we gather xk
i

from outside and scatter x̄k to processors, then update
xi,yi in each processor locally in parallel. Finally each
agent can achieve a consensus about the quantum state.
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See details of consensus optimization via ADMM in Boyd
et al. [2011].

4. NUMERICAL EXAMPLES

In the following we demonstrate the reconstruction per-
formance of the proposed algorithm for quantum state
tomography. Two experiments are carried out to show the
superior of the proposed algorithm. Consider a quantum
state consisting of q = 5 qubits, its density matrix ρ has
size d× d, d = 25. Let the true quantum state as ρ∗, ρ∗ is
generated from normalized Wishart random matrices with
form as (Zyczkowski et al. [2011])

ρ∗ =
ΨrΨr

∗

tr(ΨrΨr
∗)
, (27)

where Ψr is a complex d × r matrix with i.i.d. complex
random Gaussian entries, the denominator is constructed
due to the trace 1 constraint of the density matrix. We
construct A as a M × d2 sampling matrix whose M rows
are chosen randomly without replacement from an d2×d2
matrix whose rows are the set of all vecterized tensor
product of Pauli matrices. Maltab R2012b version is used
to run the numerical simulations and each data in figures
is recorded after averaging 200 experiments.

At first we consider the scenario when the system has
small random noises. Here we set ei in (1) satisfies random
Gaussian distribution N (0, 0.001||ρ||2). In this case there
are two terms in (10) without S, then the problem is
simplified to

minimize||y −Avec(ρ)||2 + IC(z),

s.t. ρ = z,
(28)

where C represents the low rank Hermitian p.s.d. matrix
set. We may update the quadratic term and IC(ρ) itera-
tively using ADMM. Specifically, the iteration steps are

ρk+1 = mat
(
argminρ

{
||y −Aρ||22 + λ/2||ρ− zk + uk||22

})
,

zk+1 = ΠC(ρ
k+1 + uk),

uk+1 = uk + (ρk+1 − zk+1).
(29)

The ρ updating step can be completed by calculating its
analytic solution,

ρ = (A∗A+ λI)
−1 (

A∗y + λ(zk − uk)
)
. (30)

The projection process in step 2 follows the explanation in
Section 3.3 that exploits the shrink or truncated eigenvalue
decomposition as formulated in (22) (23). In addition,
we set rank r = 2 in the generation of true state ρ in
(27), λ = 1 in (29). The reconstruction performances are
evaluated by the error defined as

error =
||ρ∗ − ρ̂||22
||ρ∗||22

, (31)

where ρ∗ and ρ̂ denote the true state and the estimate
state, respectively. The error is calculated verses the in-
creasing measurement rate η = M/d2. Fig.1 depicts the
reconstruction errors with increasing η. From Fig.1 one
can observe that given the low rank information as priori
knowledge, the number of measurements is dramatically
reduced. Specifically the Dantzig using cvx performs better
than the least square approach, and our simplified algo-
rithm using ADMM has smaller errors comparing to the
Dantzig given the same number of measurements M .
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Fig. 1. The comparison of reconstruction performances
of different algorithms, including the least square
method in (2) using cvx toolbox, compressive quan-
tum tomography solving Dantzig in (3) using cvx tool-
box, and compressive quantum tomography solving
(28) using ADMM.
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Fig. 2. The comparison of reconstruction performances
with sparse outlier noises, including the least square
using cvx toolbox, Dantzig using cvx toolbox, and
compressive quantum tomography using ADMM.

In the second simulation we add the outlier noises in the
density matrix. We set the measurements y = A(ρ+S)+
e where S ∈ Cd×d has (0.01d2) nonzero values located
uniform randomly with magnitudes satisfying Gaussian
distribution N (0, 0.1||ρ||2). If the error is larger than 1,
we record it as 1. The results are demonstrated in Fig. 2.
Fig. 2 shows that the Dantzig approach fails under such
scenario since the nuclear norm minimization is influenced
significantly by the large outliers, however the proposed
method may overcome this shortage and still lead to a
recovery much better than the result of the LS method.
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5. CONCLUSION

After reviewing several existing algorithms of the compres-
sive quantum state tomography and the ADMM method,
this paper proposed an alternating augmented Lagrangian
method for quantum convex optimization problem aiming
to recover pure or nearly pure state with sparse outlier
noises. The algorithm updated the density matrix and the
sparse estimate noises iteratively and finally obtained a
reconstruction result efficiently. Simulations showed that
the proposed algorithm achieves a better recovery ac-
curacy comparing to the conventional least square and
compressive Dantzig method with the same number of
measurements. For the case of existence of sparse outlier
noises, the proposed algorithm beat the Dantzig method
due to the fact that the influence of outliers had been
reduced. In the future, we will test our algorithm in the
real experiment and upgrade our computation capability
to deal with more qubits e.g., 8-10 qubits.

6. APPENDIX

Proposition 1. When the quantum state consisting of q
qubits is the probabilistic combination of r pure states,
then its density matrix ρ with size d × d has rank not
larger than r, d = 2q.

Proof: The proof is simple however it seldom appears in
literatures and it lays the foundation of the compressive
quantum tomography, so we give a proof here. Suppose
the quantum state under consideration

ρ̂ =

r∑
i=1

pi|ψi⟩⟨ψi|, (32)

which means the quantum system may be found in state
|ψi⟩ with probability pi, i = 1, 2, · · · , r. If we concatenate
the column vectors |ψi⟩ as a matrix, then (32) is equivalent
to

ρ̂ = Ψr ·Ψr
∗,where

Ψr = [
√
p1|ψ1⟩,

√
p2|ψ2⟩, · · · ,

√
pr|ψr⟩] ,

(33)

Ψr is of size d× r. Thus the density matrix ρ̂ has rank at
most r due to the rank property of multiplication of two
matrices.

Definition 1. (Rank RIP). Recht et al. [2007], Liu [2011]
The A satisfies the rank restricted isometry property
(RIP) if for all d× d X, we have

(1− δ)||X||F ≤ ||A(X)||2 ≤ (1 + δ)||X||F (34)

where some constant 0 < δ < 1.

Proposition 2. When we formulate the measurement pro-
cess as equations in (1), and the observable Oi are the
tensor/Kronecker product of a series of complex and uni-
tary elemental 2 × 2 Pauli matrices Pi chosen from the
four possibilities randomly,

I2 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
,

σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

(35)

Then the sampling operator A satisfies the rank RIP and
we are able to recover the rank-r density matrix ρ by using
number of measurementsm ≥ c·rd log6 d for some absolute
constant c with high probability.

Proof: The details of the proof can be found in Gross
[2011], Liu [2011].
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