
Robust Manual Control of a Manufacturing
System using Supervisory Control Theory

Brian Bonafilia, Pontus Carlsson, Sebastian Nilsson,
Martin Fabian

Chalmers University of Technology, Göteborg, Sweden
{bbrian, cpontus, sebnil}@student.chalmers.se, fabian@chalmers.se

Abstract: There are many situations where manual intervention in automated systems, such as
flexible manufacturing systems, is inevitable. Commonly the control of a manufacturing system
is implemented in terms of operations, and sequences thereof, and these operations can typically
be run manually. However, running the operations in arbitrary order may lead to situations
such as blocking or collisions, from which it its hard or even impossible to recover or to resume
automatic execution. This paper describes an implementation of an operator interface for robust
manual control of a manufacturing system, where the operator is aided not to manually drive
the system into a state that breaches the system requirements. Hence, blocking and collisions
are avoided, and automatic mode can always be resumed. From a model of the manufacturing
system based on self-contained operations, each of which is identified in terms of events with
preconditions, a supervisor is calculated by use of the Supervisory Control Theory framework.
From this supervisor additional preconditions are extracted for each operation. The operations
with the extended preconditions are then ported to an operator interface which allows manual
control of the production cell by dynamically guiding the operator to only those operations for
which the extended preconditions are satisfied.

Keywords: supervisory control theory, operator interface, manual control, manufacturing
systems, extended finite state machines, human-machine interface

1. INTRODUCTION

Even in the most highly automated industrial system,
manual intervention is inevitable. Fault recovery is an ob-
vious case, but many other situations, such as training new
operators, may arise where an operator drives the system
manually. Typically the control system is implemented in
terms of operations and sequences thereof, which lends
itself to straightforward manual execution, especially if the
operations are self-contained (Bengtsson (2012)), meaning
that they only concern local execution restrictions. How-
ever, running the operations in arbitrary order may lead
to situations such as blocking or collisions, from which
it is hard or even impossible to recover or to resume
automatic execution. A means to guide the operator to
avoid manually driving the system into such situations
would be beneficial.
SCT (Supervisory Control Theory, Ramadge and Won-
ham (1987)) is a model-based approach to automatically
generate a supervisor for a discrete event plant so that
the closed-loop system fulfills a given required behavior,
the specification. The supervisor is a control function that
dynamically disables as few controllable plant events as
possible so that the closed-loop system remains safe, never
breaching the specification, and non-blocking, always able
to perform some desired task. Thus, if the system was
manually operated under such supervision, the operator
would be aided in avoiding bad situations while given the
maximum amount of freedom.
Miremadi et al. (2011) present a method of generating a
decentralized system of controllers by extracting from a

synthesized supervisor a set of preconditions, known as
guards, for each event. By inserting these preconditions
into the local execution restrictions of the operations,
this method allows a simple controller scheme to be
implemented that fulfills the given specifications with
reasonable memory and computation requirements.
This paper describes an implemented HMI (Human Ma-
chine Interface), which allows for robust manual control
of a manufacturing system. By imposing the guards ex-
tracted from the synthesized supervisor on each operation,
the HMI guarantees that an operator cannot manually
violate the system specification, such as drive the system
into a blocking state. This implementation also eliminates
the necessity of hard-coding the guards directly into the
controller that manages the system, replacing a time-
consuming manual process with an automated one.
Section 2 presents the background of the SCT and the
self-contained operations. Section 3 covers the process of
modeling and guard extraction. Section 4 discusses the
implementation of the HMI and automatic generation
of the control code from the supervisor. Results from
implementation on a physical robot cell are given in
Section 5. Conclusions and future work are discussed in
Section 6

2. PRELIMINARIES

The SCT is typically presented in a FA (Finite Automata,
Ramadge and Wonham (1987)) setting. However, EFA
(Extended Finite Automata, Chen and Lin (2000)) is a
more compact modeling formalism, though with equivalent
expressive power. As shown by Miremadi et al. (2011),

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 748

EFA can be transformed into equivalent FA, on which
supervisor synthesis can be performed and from which
guards can be extracted. These guards can then be added
to the original EFA to implement the supervisor. The self-
contained operations have straightforward interpretations
as EFA.

2.1 Supervisor Synthesis

An FA is a 5-tuple 〈Q,Σ, δ, qi, Qm〉, where Q is the finite
set of states, Σ the finite set of events, δ : Q × Σ → Q
a partial function describing the state transitions, Qm is
the set of marked states, and qi ∈ Q the initial state.
The marked states represent states desirable to reach, and
the supervisor must be such that at every state in the
closed-loop system some marked state is always reachable.
The supervisor does not have full influence over the events
generated by the plant, though; some events are regarded
as uncontrollable. Thus, while controlling the plant, the
supervisor must be such that it never tries to disable an
uncontrollable event.
Interaction between automata, as for instance the closed-
loop system of plant and supervisor, is modeled by syn-
chronous composition, where common events are enabled
by both systems or not at all. Formally we have that for
FA A and B, their synchronous composition is defined as
A ‖ B = 〈Q,ΣA∪ΣB , δ, 〈qAi , qBi 〉, Qm〉, with Q ⊆ QA×QB ,
Qm ⊆ QAm ×QBm, and

δ(〈qA, qB〉, σ) =

 δA(qA, σ)× δB(qB , σ) σ ∈ ΣA ∩ ΣB

δA(qA, σ)× {qB} σ ∈ ΣA \ ΣB

{qA} × δB(qB , σ) σ ∈ ΣB \ ΣA

(1)
Synchronous composition is trivially extended to simulta-
neous composition of any finite number of FA.
The (monolithic) supervisor synthesis process is a formal
method by which the plants and specifications are first
synchronized into a single automaton. From this single
automaton is then iteratively removed bad states, which
are states from which no marked state can be reached
or from which uncontrollable events lead to bad states.
It can be shown (Ramadge and Wonham (1987)) that
this iterative removal of bad states will terminate at a
fix-point, the minimally restrictive, controllable and non-
blocking supervisor, which when controlling the plant will
allow the plant the greatest possible freedom within the
specification while avoiding bad states and guaranteeing
that some marked state may always be reached.

2.2 Extended Finite Automata

EFA are automata extended with bounded discrete vari-
ables, and guard and action functions over these variables.

q0 q1

σa/x > 0/x := x− 1

σb//x := x+ 1

Fig. 1. Sample EFA with events, guards, and actions.

In Fig. 1, the event σa is disabled unless the guard x > 0 is
true. When the transition is executed, the action x := x−
1 is performed. The event σb is always enabled due to
lack of a guard, and the transition performs the action

x := x + 1. An EFA is described as a 6-tuple: 〈Q ×
V,Σ, G,A,→, (q0, v0)〉, where the Q is the set of locations
with q0 the initial location, V is the set of variables with
initial values v0, Σ is the set of events, G and A are the
sets of guards and actions, respectively, and → is the
transition relation. Note that the state of an EFA, such
as the initial state (q0, v0) above, is a tuple of a location
and the current values of the variables, Note also that
synchronous composition can be defined for EFA similarly
to FA (Miremadi et al. (2011)).

2.3 Self-Contained Operations

Bengtsson (2012) shows how to model a manufacturing
system as a set of self-contained operations. These opera-
tions store only locally relevant data, such as conditions for
initiation and current state of operation. No information
relating to any particular sequence of operations is stored
within or assumed by the operation itself; any sequencing
is managed by a controller that initiates the operations in
the correct order.
A self-contained operation can be represented as an EFA,
as operation Ok in Fig. 2. When the pre-condition rep-
resented by C↑

k is satisfied the start event O↑
k is enabled

from the initial location Oik and the operation can start.
When started the operation enters the execution location
Oek, from where the finishing event O↓

k is enabled when the
post-condition represented by C↓

k is fulfilled. Note that pre-
and post-conditions can include guards as well as actions.

Oik Oek Ofk

O↑
k/C

↑
k O↓

k/C
↓
k

Ork/C
r
k

Ok

Fig. 2. Self-contained operation block and corresponding
EFA

This representation also allows for an optional reset event
Ork which returns the operation back to its initial state
Oik. Many resource operations can be reset, for example,
a robot may move back and forth as many times as
necessary, but most product operations can not.
As mentioned, each operation stores only locally relevant
data. The conditions for starting are found in the precon-
dition C↑

k and the outcome of the operation are in the
post-condition C↓

k . No global sequence is enforced by the
operation. However, in order to make sure that no arbi-
trary sequences of events are executed, a control scheme is
generated based on synthesis between the operations (as
plants) and procedural specifications. For example, it may
be necessary to place one workpiece in a fixture before
another. Such a specification is introduced in order to
guarantee that the workpieces are placed in the correct
order.
SCT is used to synthesize a controllable, non-blocking
supervisor for the system, such that all specifications for
the manufacturing process are satisfied.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

749

3. PROCESS MODELING AND GUARD
EXTRACTION

A laboratory robot cell was used as an application for
implementation of the robust manual control. The cell
consists of two industrial robots that can take pieces from
a storage and place them in a fixture in order to assemble
a model car.
3.1 Operations Modeling
The cell has almost 100 implemented operations, thus,
an FA representing the monolithic system has tens of
billions of discrete states. Though the synthesis approach
of Miremadi et al. (2011) can handle huge state-spaces,
it is sensitive to the number of variables in the model.
Locations are handled as binary variables, so replacing
locations with a variable of larger domain is beneficial.
To do this, abstraction techniques of Mohajerani et al.
(2011) can be applied. With careful modeling O↓

k can be
made local, meaning that it is only used by operation Ok.
Furthermore, O↓

k is naturally regarded as uncontrollable.
From Mohajerani et al. (2011) we then know that the Oek
and Ofk states can be merged so that O↓

k can be abstracted
away. Even more, careful modeling can also make the
completion of the reset event Ork be implied by the post-
condition C↓

k . Then the reset event transition can also be
abstracted away and the event O↑

k can be viewed as a self-
loop from the initial state, as shown in Fig. 3. Though very
simple, this model is useful in synthesizing a supervisor for
the example system.

Ok

O↑
k/C

↑
k/C

↓
k

Fig. 3. Self-contained operation in abstracted form

Note that the resulting C↑
k and C↓

k now include variables
with conditions to model location changes of the EFA.
This does not affect the synthesized supervisor, though.
A variable xi representing a location can be modeled as
automata sharing the event O↑

k with the self-contained
operations which include a change in xi as part of the
post-condition action C↓

k . Using these models synthesizes
the same supervisor as would using the original models.
3.2 Guard Extraction
Using the operation models of Fig. 3 as plants P together
with specifications for sequences and safety, K, the algo-
rithms of Miremadi et al. (2011) calculates a supervisor
S from P ||K. This supervisor will have the state-space
QS ⊆ QP ||K . From S, for each controllable event σ ∈ Σc
guards are then extracted.
Let Qσ be the set of states in P ||K that enable σ,
Qσ = {q ∈ QP ||K |∃q′ ∈ QP ||K , σ ∈ Σc, δ(q, σ) = q′}. (2)

Similarly, let QσS be set of states where S enables σ,
QσS = {q ∈ QS |∃q′ ∈ QS , σ ∈ Σc, δ(q, σ) = q′}. (3)

Let Gσ : Qσ → {true, false} be a guard such that

Gσ(q) =

{
true q ∈ QσS
false q ∈ Qσ \QσS

(4)

On each transition labeled by σ, Gσ is conjuncted with
the existing guard, to form the extended guard C̃↑

k that

defines when σ is enabled under control. Note that the
states outside of Qσ can be used to reduce Gσ, details are
given by Miremadi et al. (2011). Important here is that
each operation can now be considered individually, looking
only at the extended guard to determine if the initiating
event O↑

k (denoted as σ above), and hence the operation,
is enabled.

4. IMPLEMENTATION

The HMI for robust manual control based on an operations
model of the plant with guards extracted from a supervisor
was implemented on a physical robot cell in the Production
Systems Laboratory at Chalmers University of Technology.
Here, only a brief description will be given, for details
see Bengtsson (2012).

4.1 Previous Work

The cell consists of two robots, a fixture, a “wagon” acting
as workpiece magazine, and a PLC (Programmable Logic
Controller) that checks for safety conditions and sends
commands to the robots. The PLC is set to receive inputs
from and send signals to an OPC server (Leitner and
Mahnke (2006)). The robots, the OPC server, and the PLC
were programmed by undergraduate students (Börjesson
et al. (2013)) and implement all operations in the cell. The
PLC restricts operations based only on safety (e.g. avoids
collision) and physical limitations (e.g. parts cannot be
picked if the wrong tool is equipped); it does not guarantee
absence of blocking.

4.2 Interface Structure

The structure of the interface is shown in Fig. 4. The
work behind this paper focused on the generation of a
supervisor for the system and the programming of the
interface client and server. The web-server is programmed
using the programming language Scala, and the interface
uses HTML5 and AngularJS (JavaScript) and is shown in
Fig. 5. The interface generates a list of possible operations
from the information loaded in with the supervisor data,
consisting of the list of operations and associated guard
conditions. The interface contains a local OPC client which
continuously fetches the current state from the PLC via
the OPC server. The state is defined by the variables in
the system.
The PLC works with two types of variables. Internal
variables are set and stored in the PLC while external
variables are sensor inputs read from the production cell.
Examples of external variables are locking conditions of
the fixtures and wagon, while internal variables include
part positions that do not have associated sensors, such as
the count of pieces available on the wagon or the position
of the robots. Both types are sent to the OPC server from
the PLC, so the interface treats different types of system
variables the same.
The extended guards associated with each event are passed
as an XML file to the HMI. Standard tools are used to
parse the XML file to generate the pre-conditions as logical
statements comparing the variable set from the OPC
server with the states where each operation is enabled.
The HMI client then filters the available operations based
on whether their pre-conditions are fulfilled. In normal
(non-debug) mode, the operator is presented with and can

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

750

choose from only the currently enabled operations. The
operator chooses to execute an operation by clicking the
“Go!” button, see Fig. 5.
Information about which operation was manually chosen
to be executed is sent to the server, which then sends a
command to the PLC via the OPC server. Finally the PLC
activates the operation at the hardware level. When the
operation is complete, the set of sensor data coming from
the cell will have changed. Thus, the PLC will send values
of the variables via the OPC server to the interface. The
system variables, the list of operations, and their guards
are transmitted to the client where the operator is then
presented with a new set of enabled operations based on
the current state.

Decentralized
Supervisor

Interface
HTTP
Server

Client for
Manual
Control
(Web

Browser)

OPC Client OPC Server

Resource
Control
(PLC)

Production
Cell

Operations
Model

Supervisory
Synthesis
(Suprem-

ica)

Guard
Extraction

Implementation

Existing System

Fig. 4. Implementation and information chain

4.3 Supervisor implementation

The resource operations and physical limitations are
extracted and programmed into the software package
Supremica (Supremica (2013)) in their abstracted form,
similar to Fig. 3. Supremica allows for conditions and
actions to be set using variable expressions. From the vari-
able expressions, corresponding automata are generated
(see Fig. 6) and SCT is used on the entire system based
upon the general algorithms and definitions of Section 2.
Supremica then generates extended guards for the pre-
conditions for each operation as discussed in Section 3.
Thus, there is no need to express the supervisor as a single
monolithic automaton.

4.4 Performance of the HMI

The implemented HMI fetches all variables to evaluate the
guards once per second. Thus, the requests from the client
to the web-server including any calculations on the client
needs to be done in less than one second. Different factors
affect the calculation time such as client hardware, number
of variables and operations, and size of guard expression.
For an ordinary laptop, evaluation of 3675 if-statements
corresponding to guard expressions of up to 250 terms
required roughly 35 ms, scaling linearly with the number
of expressions and operations.
The PLC implements only hardware safety functions and
does not guarantee non-blocking. Interacting directly with
the PLC, the operator can thus manually run the sys-
tem into a blocking state. Interacting through the HMI,

though, the system is non-blocking; the extended guards
prevent the operator from choosing operations in an order
that leads to blocking, or otherwise forbidden states. At
the same time it is guaranteed that it is always possible
to properly assemble a car. Also, the system is minimally
restrictive, so the operator is never unnecessarily hindered
from running a specific operation.
As an example, in addition to preventing operation se-
quences that would attempt the robots to build the car
in the incorrect order, the guards prevent sequences of
operations where the robots would pick workpieces in the
incorrect order, as there are no operations programmed
into the robots to put parts back once they have been
picked.

5. APPLICATION

As mentioned above, the application for this implemen-
tation is a model car factory where two robots, R1 and
R2, assemble a car from a number of different parts.
The interface was programmed with a complete set of
guards for assembling the whole body of the model car.
For illustration though, the implementation of extended
guards for a subset of the complete system will be focused
on here, Table 1. These operations place the floor on the
fixture (fix4.Ri, with i = 1, 2), locks the fixture, (lock),
and then mounts the roof (pos14.Ri).
The operations to place the floor on the fixture, and
to mount the roof, are made up of sub-operations, as
illustrated by Fig. 7. First, either robot has to pick up
(pickUp4.Ri) and place (place4.Ri) the floor-part on the
fixtur. Then, after the fixture has been locked, either robot
must pick up (pickUp1.Ri) and place (place1.Ri) the roof-
part on the fixated floor.
Note that some of those sub-operations, marked in the
“Pre” column in Table 1, are pre-operations that can
occur before the condition of their respective operation
is satisfied. For example, it is acceptable for R2 to pick up
the roof before R1 has laid the floor. However, as one can
easily imagine, this can lead to a deadlock if R1 has already
picked up a roof in anticipation that R2 was going to lay
the floor. In the original operations model in Bengtsson
(2012), which presupposed an automated sequence that
determined ahead of time which robot would do which
tasks, there is no guard against this condition.

Table 1. List of Operations

Operation Pre
fix4.R1 Place the floor with R1
fix4.R2 Place the floor with R2
lock Lock the fixture
pos14.R1 Mount the roof with R1
pos14.R2 Mount the roof with R2
pickUp4.R1 Pickup the floor from the wagon x
place4.R1 Place the floor on the fixture
pickUp4.R2 Pickup the floor from the wagon x
place4.R2 Place the floor on the fixture
pickUp1.R1 Pickup the roof from the wagon x
place1.R1 Place the roof on the floor
pickUp1.R2 Pickup the roof from the wagon x
place1.R2 Place the roof on the floor

When the place1.Ri operations are completed, a variable
Fixture.HAS_FLOOR is updated to indicate that the
fixture has had a floor added.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

751

HMI for PSL by CC Cowboys (index.html)

Polling timer: 90102

Execution time [ms]: 0 , 28 , #Guards: 3675

Operations

Search: PreTrue: Don't care State: Executable: Don't care

Sort by: Name asc

Name Pretrue State Executable Guards JS Guards Eval Execute Reset

Fixture_close false 0 true Fixture.close == 0 $scope.plcVariables['Fixture.close'] == 0 true Go! Reset!

Fixture_open false 0 false Fixture.open == 0 $scope.plcVariables['Fixture.open'] == 0 false Reset!

Operator_mount_hybrid false 0 false Reset!

R1_equip_gripper false 0 false Reset!

R1_equip_sucker false 0 false Reset!

R1_fixture_to_home false 0 false R1.POS_FIXTURE == 1 $scope.plcVariables['R1.POS_FIXTURE'] == 1 false Reset!

R1_fixture_to_tool false 0 false Reset!

R1_fixture_to_wagon false 0 false R1.POS_FIXTURE == 1 $scope.plcVariables['R1.POS_FIXTURE'] == 1 false Reset!

R1_home_to_fixture false 0 false R1.POS_HOME == 1 $scope.plcVariables['R1.POS_HOME'] == 1 false Reset!

R1_home_to_get_floor_to_home false 0 false Reset!

R1_home_to_leave_floor_to_home false 0 false Reset!

R1_home_to_tool false 0 false Reset!

R1_home_to_wagon false 0 false R1.POS_HOME == 1 $scope.plcVariables['R1.POS_HOME'] == 1 false Reset!

Fig. 5. The operator interface shown in debug mode. The extended guards are shown in the “Guards” column, while
the “JS Guards” column shows their coding as the executed JavaScript.

0HAS_FLOOR 1

place1.R1, place1.R2

Fig. 6. Automata representing variable change through
shared events.

The variable Fixture.HAS_FLOOR can be represented
as an automaton which shares events with the place1.Ri
operations, as in Fig. 6. By marking the value of ’1’ for
this and all similar Fixture.HAS... variables, a marked
state representing the assembled car appears in the final
supervisor. This allows the rejection of any states that
cannot reach the final marked state of a completed car.
The guard conditions on the operation pickUp1.R1 before
the guard extraction are given by:
C↑
pickUp1.R1 =

(R1.POS_WAGON = 1 ∧R1.HAS_FLOOR = 0∧
R1.HAS_ROOF = 0 ∧Wagon_HAS_ROOF > 0)

C↓
pickUp1.R1 = (Wagon_HAS_ROOF −= 1;

R1.HAS_ROOF := 1)

Initially the conditions of the operations are basic physical
requirements, the robot is at the wagon to do the picking,
the robot has an empty tool, and the part is present on
the wagon.

pickUp4.R1

place4.R1

fix4.R1

pickUp4.R2

place4.R2

fix4.R2

lock

pickUp1.R1

place1.R1

pos14.R1

pickUp1.R2

place1.R2

pos14.R2

Fig. 7. Sequence of operations to assemble floor and roof.
Hatched lined operations are pre-operations.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

752

When R1 has picked the roof, the variables are updated
by C↓

pickUp1.R1, the wagon has one less roof part, which is
now held by R1.
After guard extraction a more complicated condition
emerges which dictates that the robot may not pick up
the part if doing so will lead to a blocking state that will
prevent the robots from reaching the marked state and
thus completing the car. In this case the extended guard
becomes:
C̃↑
pickUp1.R1 =

(R1.POS_WAGON = 1 ∧R1.HAS_FLOOR = 0∧
R1.HAS_ROOF = 0 ∧Wagon_HAS_ROOF > 0∧
(R2.HAS_ROOF = 0 ∨ Fixture.HAS_FLOOR = 1))

In addition to the previous physical requirements, the first
robot may only pick up the roof if the second robot has
not already done so (R2.HAS_ROOF = 0) or the floor is
already in place (Fixture.HAS_FLOOR = 1). Of course,
a similar extended guard will be generated for robot R2.
The 208 blocking states avoided make a rather trivial
example that it is imaginable that an engineer could have
foreseen when programming the PLC. But with larger,
more complex systems, it is impossible to foresee all
potential blocking situations or the conditions which may
invariably lead to blocking. For the complete cell, the
number of states reaches into the tens of billions with
multiple unforeseeable blocking situations. Furthermore,
the complexity of the extended guards that must be
implemented to be both non-blocking and maximally
permissive range into the hundreds of terms in each guard
expression. Implementing this manually would be very
time consuming, difficult to verify, and prone to errors.

6. DISCUSSION AND FUTURE WORK

This paper describes an application of the supervisory
control theory where the supervisor is used to guide an
operator that manually controls a manufacturing system,
so that blocking and other breaches of the system re-
quirements are avoided. The supervisor works as a safety
device that observes the system and disables actions that
would invariably lead to bad situations. In this way, this
is a canonical use of a supervisor as originally described
by Ramadge and Wonham (1987).
The implementation was successful for the completion of
the body of the model car. As the complexity of the
extended guards increases, their processing and conver-
sion times also increases. For the entire production cell,
including tool switching, internal part placement, and the
available manual assembly options, the extended guard
expressions become extremely large. While evaluation time
is currently well within the one second window, for other
systems of industrial scale the processing time may be
problematic. Other methods of distributing the workload,
such as several clients each devoted to one area of the
production system, may need to be explored.
The PLC software was pre-programmed with the set of
operations available to the cell. The structure of the op-
erations in the PLC program was similar to the form
presented in Bengtsson (2012), with state outputs, pre-
and post-conditions, and start and reset events. The model
in Supremica was forced to follow the same naming conven-
tions and structure as in the PLC program. This presents

two problems: (a) there is a potential for mismatch and
(b) implementation of the code at the PLC level is not
automatic. Addressing both of these issues may be worth-
while.
Furthermore, the filtration of enabled operations was done
at the client level in this implementation. For systems in
which multiple clients communicate with the same server
it may be more desirable to have the operation set filtered
at the server level and then only enabled operations sent
to the client, in order to prevent overlap of any sort. Also,
multiple operator interfaces of different priorities could be
imagined, where higher priority operators have a larger,
or different, set of operations available for manual control.
This would probably require adjusting the existing SCT
approaches.
Supervisory control of this nature operates on the assump-
tion that the supervisor and the physical system function
synchronously. The delay between operation initiation and
retrieval of a new state set is less than a second with the
current implementation. Potential problems are avoided
by reducing the set of enabled operations to an empty set
immediately after an operation has been initiated and then
waiting until a new set of variables has been received. This
keeps the list of enabled operations “current”. However,
this does not address the possibility that the PLC internal
variables become out of sync with the physical system. For
truly robust manual control, the interface would need to
include additional guarantees that the production cell is in
the state expected by the supervisor. Research is ongoing
in this direction. However, this is outside the scope of this
implementation.

REFERENCES

Bengtsson, K. (2012). Flexible design of operation be-
havior using modeling and visualization. Ph.D. thesis,
Chalmers University of Technology.

Börjesson, T., Kjerstadius, S., Eliasson Lilja, C., Larsson,
A., Grönbäck, M., and Noresson, O. (2013). Design
och styrning av tidseffektiv tillverkningscell. Chalmers
Tekniska Högskola.

Chen, Y.L. and Lin, F. (2000). Modeling of discrete event
systems using finite state machines with parameters.
In Control Applications, 2000. Proceedings of the 2000
IEEE International Conference on, 941–946.

Leitner, S.H. and Mahnke, W. (2006). OPC
UA–service-oriented architecture for industrial
applications. Softwaretechnik-Trends, 26(4). URL
http://pi.informatik.uni-siegen.de/stt/26_4.

Miremadi, S., Akesson, K., and Lennartson, B. (2011).
Symbolic computation of reduced guards in supervisory
control. Automation Science and Engineering, IEEE
Transactions on, 8(4), 754–765.

Mohajerani, S., Malik, R., Ware, S., and Fabian, M.
(2011). Compositional synthesis of discrete event sys-
tems using synthesis abstraction. In Chinese Control
and Decision Conference CCDC, 1549–1554. IEEE.

Ramadge, P. andWonham, W. (1987). Supervisory control
of a class of discrete event processes. SIAM Journal on
Control and Optimization, 25(1), 206–230.

Supremica (2013). A tool for verification and synthesis of
discrete event supervisors. URL www.supremica.org.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

753

