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Abstract: Simultaneous methods based on numerical differentiation for process dynamic
optimization are discussed, and succinct variants of the full discretized models, which are
collocated by Lobatto methods, are proposed. With the same original dynamic problem, its
discretized models with different number of finite elements have good structural similarity, and
their optimal results can also fit well with each other. A novel solving idea is proposed that
the low-density discretized solution is interpolated as the starting point for solving high-density
discretized model, then the warm-start technology for the interior point method and the initial
value setting method of barrier parameter are integrated to develop a fast solving strategy for
dynamic optimization, named internal-growth approach. Finally, several test models, including
the crystallization process optimization problem, are solved by the proposed approach, and the
excellent solving efficiency is illustrated.

Keywords: dynamic optimization, differential-algebraic equation, orthogonal collocation
method.

1. INTRODUCTION

Dynamic is a general feature for chemical process systems,
covering from basic chemical reaction units to advanced
scheduling systems. According to the increasingly compet-
itive market economic environment as well as the rapid
development of computer technology, research and appli-
cation of dynamic optimization attract more and more at-
tention from the modern process industries. Currently, the
dynamic optimization has been used to solve many practi-
cal problems of process industries, such as optimal control
problem, nonlinear predictive control, dynamic real-time
optimization, and parameter estimation of process systems
(Kameswaran and Biegler, 2006).

Dynamic process systems mainly involve continuous phys-
ical variation, and are described commonly as differen-
tial equation models. A generalized differential system is
discussed in this study, called differential-algebraic equa-
tions (DAE) system, also known as implicit differential
equation system (Kunkel and Mehrmann, 2006). There-
fore, the dynamic optimization problems which based
on DAEs are called DAE optimization problems. Since
most of DAE optimization problems can not be solved
directly, a compared popular approach is converting DAE
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optimization problems to nonlinear programming (NLP)
problems, which can be handled by NLP solvers. The
methods that apply NLP solvers can be separated into
sequential and simultaneous strategies (Biegler et al., 2002;
Biegler, 2010). The sequential methods only discretize the
control variables, and use nested two-layer framework to
obtain the optimal control curves. In the nested frame-
work, the inner structure uses an initial value method to
simulate the DAEs, and the outer NLP solver adjusts the
iterative direction continuously by the inner results until
any terminal condition is satisfied. Sequential methods are
relatively easy to construct, but difficult to obtain accurate
gradient information, so that lead to poor convergence of
iteration and low solving efficiency (Biegler, 2007). The
simultaneous strategies discretize all continuous variables
and combine simulation and optimization into one layer to
calculate, thus they can achieve high efficiency. Therefore,
the simultaneous approach is current research hot-spot.

Although the simultaneous approach can dramatically im-
prove solving efficiency, it is still expected to achieve higher
accuracy and speed in the practical application. For a spe-
cial discretization method, there are two ways to improve
the solution accuracy, i.e. adopting the variable collocation
elements and increasing discretization segments. Despite
variable element methods have broad prospects for simul-
taneous strategy (Biegler, 2007, 2010), there still lacks
some efficient criterion to adjust the length of elements
during iteration process. In addition, unequal intervals can
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increase the condition value of discretized model, thence,
it means that the solving process is more expensive. This
study adopts conservative strategy yet with equal length
elements, but uses several techniques to improve solution
accuracy while ensuring the efficiency of results.

2. SIMULTANEOUS SOLVING FOR DAE
OPTIMIZATION MODELS

2.1 Standard description of DAE optimization problem

Consider DAE optimization problems in the following
form:

min
x(t),u(t),p

φ(x(tf )) (1a)

s.t. ẋ(t) = f(x(t), y(t), u(t), p), x(t0) = x0, (1b)

g(x(t), y(t), u(t), p) = 0, (1c)

h(x(tf )) = 0, (1d)

xL ≤ x(t) ≤ xU , yL ≤ y(t) ≤ yU , (1e)

uL ≤ u(t) ≤ uU , pL ≤ p ≤ pU , (1f)

where, differential variables (state variables) x(t) ∈ Rnx ,
algebraic variables y(t) ∈ Rny , and control variables u(t) ∈
Rnu are functions of time t ∈ [t0, tf ], as well as p ∈ Rnp is
time-independent parameters. Here, nx, ny, nu, np denote
the dimension of variables respectively. Obviously, the
equality constraints (1b)-(1c) are DAEs. Without loss of
generality, it is assumed that DAE constraints are index 1
(Biegler, 2007).

2.2 Discretization of DAE optimization models

Discretization is the key step in the solving process of
simultaneous strategy, since an incorrect discretized model
must get wrong result, no matter any powerful solver
is used. The orthogonal collocation on finite elements
(OCFE) method, which is developed by Biegler et al.
(2002), is the most popular discretization method, and dis-
cretizes a DAE optimization problem to a NLP model. The
discretized model can approximate the original problem
very well, and has high sparse structure apt to be solved.
The basic principle of OCFE is implicit Runge-Kutta
methods, and this method is also called IRK discretization
method.

In order to discribe the discretization of the system (1)
more clearly, new symbol w(t) is introduced to replace
ẋ(t), then the differential constraint (1b) become an alge-
braic one

w(t) = f(x(t), y(t), u(t), p),

and a new relationship need be supplemented as follows

ẋ(t) = w(t). (2)

Divide optimization domain [t0, tf ] into n finite elements,
then get a time series

ST = {t0, t1, · · · , tn},
where, the terminal time tf = tn. The duration of each
element can be denoted as

hi = ti − ti−1, i = 1, 2, · · · , n.
This study considers only equidistant discretization, and
all elements have the same duration h = (tf − t0)/n.

For general collocation methods, assume that each element
has m collocation points, the relative position of each
point can be recorded as cj ∈ [0, 1], j = 1, 2, · · · ,m.
In the i-th finite element, discretized variables at the j-
th collocation point are denoted as xi,j and wi,j , which
are corresponding to x(t) and w(t) respectively, and ζi
denotes the right endpoint about x(t). Discretize (2) by
IRK formulas (Hairer et al., 1993; Ascher and Petzold,
1998), obtain the following equations:

xi,j − ζi−1 = hi

m∑
k=1

aj,kwi,k, j = 1, 2, · · · ,m (3a)

ζi − ζi−1 = hi

m∑
k=1

bkwi,k, i = 1, 2, · · · , n (3b)

where

aj,k =

∫ cj

0

m∏
i=1,̸=k

c− ci
ck − ci

dc, bk =

∫ 1

0

m∏
i=1,̸=k

c− ci
1− ci

dc.

There are three orthogonal collocation methods most com-
monly used: Gauss method, Radau method and Lobatto
method. According to the solving feature of the simul-
taneous method, if the collocation points coincide with
the endpoint of element, the discretized model can be
simplified further. For example, both the first and the
last collocation points of Lobatto method coincide with
the front and rear endpoints of elements respectively, so
connect equations can be omitted, and the continuity of
derivative functions also are ensured after be discretized.

For m-Lobatto orthogonal collocation method, exist

ζi−1 = xi,1 = xi−1,m, wi,1 = wi−1,m, i = 1, 2, · · · , n.

To state the discretized formula more succinct, the coinci-
dent collocation points are considered to one point. After
rearrange all collocation points, the total number of points
is N = (m−1)·n (except the initial value point). Equation
(3a) is rewritten as the following single subscript form:

xi − xi−j = h ·
m∑

k=1

aj,kwi+k−j−1, (4)

where

j =
(
(i− 1) mod (m− 1)

)
+ 1, i = 1, 2, · · · , N.

Full discretized by Lobatto collocation method, model (1)
can be described as the following form:

min
xi,ui,p

ϕ(xN ) (5a)

s.t. wi = f(xi, yi, ui, p), (5b)

xi − xi−j = h
m∑

k=1

aj,kwi+k−j−1, (5c)

g(xi, yi, ui, p) = 0, (5d)

h(xN ) = 0, x0 = x(t0), (5e)

xL ≤ xi ≤ xU , yL ≤ yi ≤ yU ,

uL ≤ ui ≤ uU , pL ≤ p ≤ pU . (5f)

Furthermore, the continuity of the optimal control law
need to be satisfied in many practical problems. If u(t) is
derivable, then a new equation can be established, that
is u̇(t) = v(t). Ordering that v(t) is constant in every
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collocation element, the control variables need satisfy the
following equations:

ui − ui−j = hvi−j

m∑
k=1

aj,k. (6)

The scale of model (5) is proportional to the total number
N of collocation point. If the collocation elements grow
in number, there will be a large scale problem. Solving
such problems by earlier NLP solvers most likely lead to
memory overflow or system crash, due mainly to dense ma-
trix calculation. Some new solvers, such as IPOPT, adopt
the algorithms based on sparse matrix, which reduces the
storage space of the gradient matrix (Jacobian and Hessian
matrix) greatly, and are able to handle very large scale
problems.

In this work, the process dynamic models are first principle
models, and exist second-order partial derivatives for all
variables. IPOPT is not only able to receive accurate
Hessian Matrix, but also has flexible solution options.
According to the specific situation of the exact problems,
the users are able to set the solver flexibly and pertinently
to accelerate the convergence speed and increase the
success rate of solving (Chen et al., 2011).

3. THE INTERNAL-GROWTH SOLVING STRATEGY

3.1 The principle of fast solving strategy

For the iterative optimization algorithm, it is helpful to
save solving time if the optimal solution can be estimated
good enough and the estimation result is regarded as the
starting point of solving (Seborg et al., 2004). This type of
starting points are called advanced starting points (ASP)
(Wu and Debs, 2001).

In practical applications, some systems parameters fluc-
tuate continuously, therefore, their optimization models
must be solved quickly to adapt to these real-time distur-
bances. If the adjustment of the parameters are small at
each time, the last optimal result can be regarded as the
current ASP, and it is called hot-start. However, the opti-
mal solution of the preceding problem is usually on or near
the boundary of the feasible set, making it a particularly
difficult starting point for IPM (Gondzio, 1998; Gondzio
and Grothey, 2008). This numerical difficulty promotes the
search for an alternative starting point, which is not opti-
mal but close to the optimal and is sufficiently far from the
boundary of the feasible region. The improved approach
is called warm-start (Wu and Debs, 2001; Polyak, 1992;
Wright, 1997). IPOPT has the warm-start option and the
initialization subprogram, which modify the starting point
to satisfy the boundary conditions, i.e. IPOPT simplifies a
warm-start interface to a hot-start interface, so it is applied
by many optimization studies.

Unlike parametric NLPs, general DAE optimization prob-
lems can not obtain outside ASPs to promote solving
process, but their particular discretization properties con-
tribute to solving. The structure of discretized model likes
digital photo, different segments can affect the clarity of
details but not change the overall layout. Since the optimal
solutions of discretized models can be used to approximate
the original ones, the low-density discretized solutions

can be used to approximated high-density solutions for
the same reason. Moreover, if the number of discretized
segments is small, the discretized NLP will have small
scale and can be solved very quickly. Thus, the internal-
growth solving strategy is proposed: discretize the model
in low-density and use IPOPT to solve it, then interpolate
the optimal solution with the high-density, at last using
the interpolation results as ASP to solve high-density
discretized NLP again.

3.2 Integration of ASP strategy and IPOPT

Good starting point does not guarantee good solving
effect, but also need suitable solver options. Consider
IPOPT to solver NLPs of the form

min
x∈Rl

f(x)

s.t. c(x) = 0,

xL ≤ x ≤ xU ,

(7)

where x denotes the vector composed of all discretized
variables, l is the total number of all variables.

If IPM is used to solve problem (7), the problem is
transformed to a sequence of barrier problems

min
x∈Rl

f(x)− µ
∑
i∈IL

ln(x(i) − x
(i)
L )− µ

∑
i∈IU

ln(x
(i)
U − x(i))

s.t. c(x) = 0,
(8)

for a decreasing sequence of barrier parameters µ converg-

ing to zero, where IL = {i : x(i)
L ̸= −∞}, IU = {i : x(i)

U ̸=
∞} (for more details, please refer to the section 2.1 and
3.4 of Wächter and Biegler (2006)).

Equivalently, barriers problems (8) can be interpreted as
applying a homotopy method to the primal-dual equations

∇f +∇cλ− zL + zU = 0, (9a)

c = 0, (9b)

(x(i) − x
(i)
L )z

(i)
L − µ = 0, i ∈ IL, (9c)

(x
(i)
U − x(i))z

(i)
U − µ = 0, i ∈ IU , (9d)

with the homotopy parameter µ, which is driven to zero.
Here, ∇f denotes ∇xf(x), ∇c denotes ∇xc(x), λ, zL and
zU represent the Lagrangian multipliers for the equality
constraints, the lower boundary and the upper boundary,
respectively.

According to Lemma 3.13 in Forsgren et al. (2002), it
is proved that for the NLP model (7), if the objective
function f(x) and the equality constraints c(x) have the
continuous second-order derivatives and the boundary
conditions xL ≤ x ≤ xU are satisfied strictly, then

∥χ− χ∗∥ = O(µ), (10)

where χ represents (xT , zTL , z
T
U )

T .

For IPOPT, the barrier parameter is updated by

µk+1 = max
{ϵtol
10

,min
{
κµµk, µ

θµ
k

}}
, (11)

where, κµ ∈ (0, 1) and θµ ∈ (1, 2) are constants, the
subscript k denotes the sequence number of current itera-
tion, and ϵtol denotes the expectation tolerance (Wächter
and Biegler, 2006). For any given initial barrier parameter
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µ0, there exists a decreasing sequence {µk} corresponding
to the given updating criterion. Hence, the decreasing
sequence for a same model can be expressed by

M(µ0) = {µ0, µ1, . . . , µk, µk+1, . . . , 0}.

Assuming that a given starting point x0 is the solution
of a sub-problem (8) and is close to the optimal solution
x∗ enough, µ0 can be set a small value accordint to the
principle (10). Given that the decreasing sequence of µ
determines the outer iteration steps, a smaller µ0 means
fewer iterations under a certain updating criterion.

The monotone updating option can be set when IPOPT
runs with ASP strategy. There exists another barrier
parameter updating criterion in IPOPT, i.e. adaptive
criterion. This criterion is suitable to solve NLP as random
starting points. During the application of internal-growth
solving strategy, adaptive criterion should be adopted at
the first solving, since there is no ASP in the beginning,
and the monotone criterion should be used at next solving
process with ASP, as well as µ0 should be set small enough.

3.3 Interpolation for high-density ASP generation

Interpolation methods is needed to generate high-density
starting points from low-density optimal results in the
internal-growth approach. For using IPOPT to solve
the model (5), the optimal result can be denoted as
(X∗, Z∗

L, Z
∗
U ), where

X∗ = {x∗
i , w

∗
i , u

∗
i , v

∗
i , y

∗
i , p

∗|i = 1, 2, · · · , N},
and the elements in Z∗

L and Z∗
U are the optimal value

of Lagrangian multipliers for the lower boundary and the
upper boundary with the elements inX∗. Except p∗ and its
Lagrangian multipliers, every discritized variables should
be interpolated.

In order to maximize the reuse of data, the interpolated
results are the integer multiple of original collocation
points in this study. For example,

{x∗
i |i = 1, 2, · · · , N} interpolation−−−−−−−−→ {x0

j |j = 1, 2, · · · ,mN},
where, m is integer. How to decide a perfect value of m is
under research, but from our practical experience, m = 4
is a excellent setting.

There are lots of interpolation methods can be used to
obtain high-density ASPs. But for good approximate ef-
fect and avoidance of Runge’s phenomenon, the piecewise
polynomial interpolation is used. Figure 1 illustrates the
interpolation principle, where o-points are orthogonal col-
location points from low-density optimal results, and x-
points are requested interpolation points.

3.4 Procedure of the internal-growth approach

The following steps describe how to implement the
internal-growth strategy to solve a DAE optimization
problems in AMPL environment:

(1) Use Lobatto-IIIA method to discretize the original
dynamic model and get discretized NLP model in
forms like (5).

(2) Set a small number of discretized elements, e.g.
N = 50 in this study, and set IPOPT options, es-
pecially updating strategy of the barrier parameter
(mu strategy) as “adaptive”, then run solving.

i : 
j : 

k+1 k+2 k+3 k 
4k 4k+1 4k+2 4k+3    …   4k+6     …      4k+9       …    4k+12  

real optimal result 

interpolation 
curve 

Fig. 1. Using 4 times collocation points to generate ASP

(3) If solve successfully, save the optimal solution and
Lagrange multipliers of the corresponding boundary
constraints.

(4) Increase the amount of elements, e.g. N = 200 in this
study, and interpolate the recorded data by the new
amount.

(5) Adjust IPOPT options, set warm-start option as
“yes”, µ update policy as “monotone”, and µ initial
value (mu init) as a very tiny value, in this study it
is 1× 10−10.

(6) Import the interpolation result from step 4 as the
ASP, and solve again.

4. NUMERICAL EXPERIMENTS

4.1 Crystallization process

To illustrate the effectiveness of internal-growth solving
strategy, a more complex example is considered as follows.
The dynamic optimization model of crystallization pro-
cess was developed by Lang et al. (1999), and adopted
by several research as test case (Biegler, 2007, 2010).
Conventional crystallization kinetics are characterized in
terms of two dominant phenomena: nucleation and crys-
tal growth. Both competing phenomena consume desired
solute material during the crystallization process. To ob-
tain larger (and fewer) crystals, nucleation needs to be
minimized, and the goal of the optimization is to find
operating strategies that will allow researchers to minimize
this phenomenon. To do this, a profile for the cooling jacket
temperature is determined, and described by differential
constraints as follows:

L̇s = KgL
0.5
s ∆T 1.1, Ls(0) = 0.0005,

Ṅ = Bn∆T 5.72, N(0) = 0,

L̇ = N · L̇s + L0Ṅ , L(0) = 0,

Ȧ = 2αL · L̇s + L2
0Ṅ , A(0) = 0,

V̇c = 3βA · L̇s + L3
0Ṅ , Vc(0) = 0,

Ṁ =
3Ws0

L3
s0

L2.5
s L̇s + ρV · V̇c, M(0) = 2.0,

Ċ = −Ṁ

V
, C(0) = 5.4,

Ṫ =
KcṀ −Ke(T − Tj)

W · Cp
, T (0) = 75.

(12)

The objective function is to maximize Ls(tf ). All of
the definitions of variables and parameters are reported
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Fig. 2. Optimal control laws under different discrtization
elements

in Lang et al. (1999). The following algebraic equation
constraints are also need to be satisfied:

∆T = max(0, Tequ − T ), Cw =
100C

1.35 + C
,

Tequ =
4∑

i=1

aiC
i−1
w , Talw =

4∑
i=1

biC
i−1
w ,

(13)

where, Talw ≤ Tj ∈ [10, 100], and polynomial coefficients
of correlation are

a = [−66.431, 2.8604,−0.022579, 6.7117× 10−5],

b = [16.088,−2.7083, 0.067069,−3.5685× 10−4].

This is batch process, and set tf = 25h.

According to the difference of the discretization density,
four groups of the optimal control variable (i.e. the tem-
perature curves of the cooling water jacket) corresponding
to the different N are compared in figure 2. It is shown
that the overall trends are consistent even though the
different segments. The optimal solution of the problem is
a curve with discontinuous point, and it is approximated
by continuous function during the discretization process.
Hence, the sudden change can not be illustrated by the
low-density discretization. Unless segmented enough, the
solution curve with the discontinuous or dramatic changes
can not be fitted sufficiently.

In order to illustrate the solving effect of the internal-
growth strategy sufficiently, let N = 200, and use IPOPT
to solve under different options. The relevant statistical
data is displayed in table 1. By comparing data in the
table, it is shown that the algorithm employing ASP has
relatively higher efficiency than the situation without ASP.
If no ASP, the adaptive option is suitable for barrier
parameter updating strategy; if with ASP, monotone up-
dating strategy matching with the smaller µ0 will achieve
better calculation efficiency. For this experiment, it costs
38.53s at least to obtain optimal solution by ordinary
strategy, but internal-growth strategy with best option
spends only 6.63s to complete solving, which is no more
than 1/5 of the former.

The data in table 1 and above analysis sufficiently illus-
trate the feasibility of the internal-growth strategy, but
the reliability of the strategy still need to be verified. The
solving principles usually assume that the optimal solution
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Fig. 3. Optimal control laws by three solving settings when
N = 200

exists and is unique. However, it can not be guaranteed
that NLPs are always convex in practical application,
so the solutions obtained by the solvers like IPOPT are
local optimums actually. There often exists difference for
the results solved by different strategies, since different
starting points and parameter settings lead to the changes
of convergence path. But the deviation is tiny and will
not affect consistency of the optimal solution. Figure 3
compares the optimal control curves under three solving
setting when N = 200. The three settings are the internal-
growth strategy, the common method with monotone µ
updating criteria, and the common method with adaptive
µ updating criteria. Obviously, the three results are con-
sistent, and the result from the internal-growth strategy is
very close to the solution from the adaptive common strat-
egy. The consistency of the solutions certifies sufficiently
that the internal-growth strategy is reliable.

4.2 More tests

In order to test the scalability of the internal-growth strat-
egy, we select five typical dynamic optimization problems
from Rutquist and Edvall (2010), i.e. (1) hang glider, (2)
Goddard rocket, (3) Lee-Ramirez bioreactor, (4) Park-
Ramirez bioreactor, and (5) batch production. Figure 4
displays the comparison of the results. The solving envi-
ronment is same as the previous example. For each test
case, the bar above indicates solving time by using the
internal-growth strategy, which includes two steps; the bar
below indicates solving cost with common program. The
figure illustrates the internal-growth strategy is valid for

Table 1. Data statistics of the crystallization
model under different solving options

N warm-start µ-update µ0 iters CPU-time(s)

50 off adaptive – 240 +5.28

200 on adaptive – 21 7.61(2.33)
200 on monotone 1E-01 61 11.03(5.75)
200 on monotone 1E-08 24 7.80(2.52)
200 on monotone 1E-10 14 6.63(1.35)

200 off adaptive – 492 46.09
200 off monotone 1E-01 422 38.53
200 off monotone 1E-08 782 68.71
200 off monotone 1E-10 1005 105.46

Note: The solving platform is HP Z820 Workstation with Intel Xeon
CPU E5-2680.
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Fig. 4. Time consuming comparison of five examples for
using the internal-growth strategy

all cases, especially the more complicate ones. However,
the application effects are not distinct for some problems,
the reason requires the further research on convergence
mechanism to find out.

5. CONCLUSION

This work has analyzed the feature of OCFE discretiza-
tion with the Lobatto collocation pattern for the DAE
optimization models, and the discretized NLP can be
described more concisely due to the coincidence of the
finite element endpoints and collocation points. Since the
discretization model is an approximation of the original
problem, higher solving accuracy requires the more seg-
ment elements. However, the more finite elements will
generate a larger scale problem, which will consume more
computer resource on solving. According to the structural
similarity under different discrete segments, the optimal
solution with low-density is analogous as the high-density
result. Integration of structural similarity, the warm-start
technology for IPM and suitable barrier parameter updat-
ing criterion can bring out the internal-growth strategy to
achieve the fast solving of dynamic optimization.

There exist some theoretical research works need to be
enriched, especially the assessment of convergence caused
by error from warm-start interpolation. In future work, we
are also looking for the integration of the internal-growth
strategy into IPM solvers.
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