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Abstract: We propose a decentralized and non cooperative algorithm for estimation and control
in a multi-agent system of oscillators to achieve a balanced circular formation. Each agent
gathers an uncertain measurement of its phase distance from other agents only when they are in
its proximity. Based on this uncertain and intermittent data and on the a priori knowledge of the
nominal (e.g. uncontrolled) agent’s velocities, we employ an estimation method to reconstruct
the relative angular positions. Then, we develop a bang-bang controller to achieve a balanced
platoon formation. The novelty of the approach is that the balanced formation is achieved
by using proximity sensors rather than distance transducers. Moreover, the bang-bang control
strategy is designed so that the control goal is achieved even when the range of the sensors is
lower than the desired spacing distance. The effectiveness of the approach is illustrated through
extensive numerical simulations.

Keywords: Bang-bang control, estimation algorithm, oscillators, discontinuous control,
proximity measurements, multi-agent systems.

1. INTRODUCTION

Nowadays, proximity sensors are common devices in aero-
nautical, automotive, and manufacturing industry but also
in civil applications as in garage and elevator doors, gates,
vending machines, parking lots, ATMs. The widespread
use of this kind of devices is motivated by their com-
pactness, high reliability, and their suitability for harsh
environments. Based on different technologies (e.g. eddy
currents, Hall effect), they share the same functioning
mechanism: when the distance of the target from the
sensor’s head is lower than the so-called detecting distance,
a trigger signal is produced and is then passed through the
output conditioning circuitry to give a high or low output,
depending on the sensor application.

Coordination of multi-agent systems is a relevant issue in
a plethora of applications (Ren et al. (2005)). Examples
may be found in very diverse fields of science and engineer-
ing spanning from biology to robotics (Balch and Arkin
(1997); Warburton and Lazarus (1991); Martinez et al.
(2007)). Both in natural and artificial settings, proximity
plays a prominent role. In biological networks, collective
phenomena such as synchronization and consensus (Ren
et al. (2005); DeLellis et al. (2010); Pikovsky et al. (2001);
Mirollo and Strogatz (1990); DeLellis et al. (2013a)) are
observed, and formations are achieved on the basis of
proximity rules; this is the case, for instance, of migra-
tion phenomena, where the system moves towards a given
target or when toroidal behaviors around a common center
are observed (Couzin et al. (2002); Vicsek (2008)). These
biological phenomena constitute a source of inspiration for

designing the interaction rules for coordinating artificial
multi-agent systems (Vicsek et al. (1995); DeLellis et al.
(2013c)).

Controlling a system with intermittent data flow has mo-
tivated several researchers to investigate the paradigmatic
problem of state estimation based on fleeting data, see
(Le Bars et al. (2012)) and references therein. In the
recent literature on the problem of coordinating a multi-
agent system of oscillators to achieve a balanced circular
formation (see Chen and Zhang (2011); Marshall et al.
(2004) and references therein), a discontinuous control
law is proposed to solve the control problem when the
relative angular position between the agents is perfectly
known. To analytically guarantee the achievement of a
balanced circular formation, it is typically assumed that
the graph describing the information exchange among the
agents is connected or jointly connected. In this paper, we
rely neither on the measurement of the relative angular
position, nor on the agent’s connectivity, as we model the
case in which proximity sensors are used, whose range is
lower than the desired distance.

In control technology, proximity sensors are mainly used as
proximity switches, in combination with position control
loops which verify if the desired positions is reached. In
fact, their use in a feedback loop is limited as the data
are gathered by the sensors only when their distance from
the target is less than the detecting distance. For instance,
in a pursuit problem (Marshall et al. (2004); Smith et al.
(2005); Kim and Sugie (2007); Chen and Zhang (2013)),
the relative agents’ position needs to be measured, thus
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preventing the use of proximity sensors. In this paper, we
propose a decentralized estimation and control strategies
capable of coping with proximity measurements and of
achieving a cyclic pursuit of agents on a circle. Specifically,
to overcome this limitation and keep the loop closed even
when the measurements are intermittent, we propose a
model based estimator of the distance between the pur-
suer and his target, inspired by the estimation algorithm
proposed in DeLellis et al. (2013b). When no data from
proximity sensors are available, the estimation is made
only on the basis of the model, while the model predicted
estimation is corrected when a measurement is available.
Then, a control action is exerted based on the estimated
distance among the agents. Specifically, we propose a
bang-bang controller: based on the estimation algorithm,
each agent tries to identify its closest follower; then, the
bang-bang controller is activated and the distance from
the follower adjusted to obtain the desired spacing. The
estimation and control strategy is based on the fact that
each agent knows, with a certain degree of uncertainty,
the nominal (i.e. the uncontrolled) angular velocity of the
target. We emphasize that the controller is designed to
be effective also when the range of the sensors is lower
than the desired spacing. The validity of the approach is
illustrated through extensive numerical simulations.

2. PROBLEM STATEMENT

Let us consider a multi-agent system of N oscillators with
natural angular velocity ω. The set of the agents of the
systems is denoted by V = {1, . . . , N}.The dynamics of
the angular position θi(k) of agent i are described by

θi(k + 1) = θi(k) + ω + ui(k), (1)

for i = 1, . . . , N , where ui(k) is the control input at time
k.

Introducing the relative angular position θij(k) := θi(k)−
θj(k), we can write

θij(k + 1) = θij(k) + uij(k), (2)

where uij(k) := ui(k)− uj(k).

Definition 1. We say that a control strategy ui, i =
1, .., N , asymptotically leads the multi-agent system (1)
towards a balanced circular formation if, for all θij(0),
i, j = 1, . . . , N, i 6= j,

lim
t→∞

θij(k) =
2π

N
:= ψ, (3)

for all (i, j) ∈ {(1, 2), . . . , (N − 1, N), (N, 1)}, and ψ is the
desired spacing distance.

Without loss of generality, in what follows we assume that
θij(0) ∈ [−π, π[ for all i, j = 1, ..., N .

From θij(k), it is possible to define the phase distance
αij(k) between two agents i and j as

αij(k) = d(θij(k)) := min{mod(θij(k)),mod(−θij(k))},
(4)

with mod(·) being the modulo function 1 . From αij , it is
possible to give the following definition

1 mod(a) := c is the remainder of a modulo 2π, where c is the unique
solution of the two equations c = a−qb and 0 ≤ c < |b|, with q being
a rational number.

Definition 2. Let

E(θmax, k) := {(i, j) : i, j ∈ V, αij(k) ≤ θmax} .
Then, the pair G(k) = {V, E(θmax, k)} is the proximity
graph associated to multi-agent system (1) at time k.

Notice that θmax > 0 in Definition 2 can be viewed as
the detecting distance of a proximity sensor. Notice that,
as the multi-agent systems evolves, the proximity graph
changes over time. Le us denote G(k, k + r), r ∈ N, the
union of all proximity graph across a nonempty finite time
interval {k, k+ 1, . . . , k+ r}, whose edges are the union of
the edges of the proximity graphs at every discrete-time
instants over this time interval, that is,

G(k, k + δk) :=
{
V,∪τ∈{k,k+1,...,k+δk}E(θmax, τ)

}
.

Now, we can give the following definition.

Definition 3. The multi-agent system (1) is jointly con-
nected over {k, k+1, . . . , k+ r} if G(k, k+ r) is connected.

In a continuous time setting, and assuming that the multi-
agent system was jointly connected for any k and δk, Chen
and Zhang (2011) proved analytically that a balanced
circular formation is achieved through the following class
of controllers:

ui(k) = ω0 +
∑

j∈Ni, j 6=i

β(αij(k))sgn+(sin(θij(k))), (5)

where β(·) belongs to the so called class S functions, see
Chen and Zhang (2011) for details, the function sgn+(x)
is defined as

sgn+(sin(x)) =

{
1 if x ≥ 0,

0 if x < 0,
(6)

and Ni is the set of neighbors of agent i.

The control law in (5) stabilizes the system towards the
balanced formation (3) moving at the reference speed
ωr = ω + ω0.

Differently from Chen and Zhang (2011), here we consider
a discrete time setting. Furthermore, we assume that only
cheap proximity sensors with limited range are available.
Mathematically, this implies that:

(a) We measure the phase distance αij(k) instead of
θij(k).

(b) For each pair of agents, the measurement yij(k) of
αij(k) is only available if αij(k) is lower than the
detecting distance θmax > 0 2 .

(c) The measurement yij , when available, is affected by a
bounded uncertainty νij(k).

(d) the detecting distance θmax is lower than the desired
spacing distance ψ.

Assumptions (a)-(c) can be summarized into the following
output equation for system (2):

yij(k) =

{
αij(k) + νij(k) if αij(k) ∈ [0, θmax] := I,

no measure otherwise,
(7)

where νij(k) is the measurement noise, with |νij(k)| ≤ ϕ,
for all i, j = 1, . . . , N . We emphasize that, even in absence
of noise, θij could not be directly computed from yij , as

2 Note that the phase distance is biunivocally related to the magni-
tude of the linear distance, and to the absolute value of the relative
orientation. Hence, different sensors can be employed in different
application areas.
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the inverse of the function d defined in (4) is a multivalued
function such that:

(1) if y is a scalar, d−1(y) is the infinite set {(−y+z2π)∪
(y + z2π), z ∈ Z},

(2) if y is an interval, d−1(Y ) is the infinite multi-interval
set {[Y, Ȳ ] ∪ [−Ȳ ,−Y ] + z2π, z ∈ Z}.

Assumption (d) implies that, when the desired spacing ψ is
achieved, the proximity graph is not connected. Therefore,
in our estimation and control design we are not going to
rely on connectivity.

3. STRATEGY FOR ESTIMATION AND CONTROL

For the multi-agent system discussed in the previous sec-
tion, we propose a decentralized estimation and control
strategy capable of achieving a balanced circular forma-
tion. As distance measurements do not provide any in-
formation on the signs of the relative angular positions
(d−1(·) is multi-valued and non-smooth), and the measure-
ment noise is bounded, we employ an estimation algorithm
inspired to that proposed in DeLellis et al. (2013b), which
is based on a technique known as Interval State estimation
(Raissi et al. (2012)). Such strategy is then complemented
with a bang-bang control law capable of equispacing the
agents on the circle.

3.1 Estimation strategy

The estimation strategy combines in a non conventional
way the information on the dynamics of the system, de-
fined in equation (2), with that coming from the proximity
measurements, defined in equation (7). Specifically, the
idea is to predict the interval to which the true value
of θij(k) belongs by means of the state equation, and
then reduce its width by intersecting it with the intervals
obtained from the inversion of the output equation. Notice
that local linearization-based approaches are inapplicable
since the output function of the multi-agent system, that
relates the states to the measurements, is non-smooth and
non-injective. In our estimation strategy, we first exploit
the information that each measure yij(k) brings on the
phase distance αij(k). Namely, at each time instant k, we
know that

αij(k) ∈


Υij(k) := [max{yij(k)− ϕ, 0},min{yij(k) + ϕ,

θmax}] ⊆ I if a measure is available,

Ic :=]θmax, π] otherwise.
(8)

Now, as θij(k) is related to αij(k) through function d(·), at
each time instant k, d−1(Υij(k)) defines an infinite multi-
interval set in which θij(k) falls. Our strategy limits such
infinite number of intervals by intersecting d−1(Υij(k))
with the finite multi-interval computed from the a priori
knowledge on the dynamics of agents i and j. To illustrate
this point, consider the time instant k = 0 in which we first
perform the estimation. In this case, the a priori knowledge
is represented by the assumption that the initial conditions
θij(0) belong to the interval [−π, π[ for all i, j = 1, ..., N .
Hence, at time k = 0 we know that

θij(0) ∈ J ij(0) =

{
−Υ(0) ∪Υij(0) if a measure is available

−Ic ∪ Ic otherwise.
(9)

Then, for all k ≥ 0, we project all the intervals of the
set J ij(k) to time k + 1 by means of equation (2), thus
building what we call a priori uncertainty set J ij(k +
1|k) on the relative angular position of agents i and j.
To recursively reduce such uncertainty, we then compute
the a posteriori uncertainty set J ij(k + 1) by intersecting
J ij(k + 1|k) with d−1(Υij(k)) if a measure is available,
or with d−1(Ic), otherwise. As a result of the estimation
strategy, at each time instant, we know that θij(k) belongs
to the multi-interval J ij(k). In DeLellis et al. (2013b),
such estimation strategy is shown to be convergent, i.e.
the multi-interval J ij(k) reduces to a singleton, under
quite mild assumptions on the angular velocity of the
oscillators. We remark that, in the application considered
in this paper, the estimation strategy would require the
knowledge of uij(k) to compute the a priori uncertainty
set J ij(k+ 1|k) by means of equation (2). In what follows,
we show that our selection of the control law facilitate
the estimation algorithm. In fact, in the assumption that
all the agents share the same type of control law, it is
possible to define an interval in which uij(k) falls, allowing
to perform an interval prediction of θij(k).

Furthermore, as our control strategy only requires infor-
mation on phase differences ϑij(k) := rem(θij(k)) and not
relative angular positions, we define the interval

Hij(k) :

inf
x
{x ∈ rem(J ij(k))},

sup
x
{x ∈ rem(J ij(k))}, (10)

which represents an overestimate of the uncertainty on
ϑij(k). Finally, as a scalar estimate is required by our
control law, we define it as

ϑ̂ij(k) =
H̄ij(k)−Hij(k)

2
. (11)

3.2 Bang-bang controller

As in Chen and Zhang (2011), we design our control
strategy so that each agent is pushed by its followers.
Specifically, in our case, each agent i is only influenced
by its nearest follower i− 1, defined as

i− 1 :

{
Hi,i−1 > 0

H̄i,i−1 < Hij
l ∀j, l|H

ij
l > 0, j 6= i− 1

(12)

Furthermore, each agents is labeled, as is the case when, for
instance, proximity measurements are made by means of
RFID technology (Want (2006); Sanpechuda and Kovavis-
aruch (2008)). The agent L, which is randomly picked and
denoted as the leader, which adopts the following control
law:

uL(k) =ω0, (13)

while the control law of the remaining agents is described
by

ui(k) =
(
ω0 +Ksgn+(ψ −mod(ϑ̂i,i−1(k)))

)
I(i), (14)

where I(i) is the following indicator function:

I(i) =

{
1 if i− 1 is univocally determined,

0 otherwise,
(15)

for all i = 1, . . . , N , i 6= L. Notice that the selected control
strategy is totally decentralized and non-cooperative as
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the action exerted by each agent depends only on the esti-
mated distance from its closest follower. The key point of
the proposed control law is that the bang-bang controller
(14) is triggered only once the estimator determines the
identity of the follower. ambiguity on the identity of the
follower has been solved by the estimator. However, the
selected control law facilitates the estimator, as it implies
that

uij(k) ∈ {−ω0 −K,−ω0,−K, 0,K, ω0, ω0 +K}, (16)

allowing to compute J ij(k + 1|k) from J ij(k) as

∪
λ

[J ijλ (k)− ω0 −K, J̄ ijλ (k) + ω0 +K]. (17)

Nevertheless, to improve the performance of the estimator,
it is possible to further restrict the set of allowed values for
uij(k) for selected cases of interest. To clarify this point, let
us consider a generic agent i 6= L and its follower i− 1, as
the control law ui only requires information on the relative
angular position of this pair of agents. In this case, we
know that, before that agent i identifies its follower,

ui,i−1 ∈ {−ω0 −K,−ω0,−K, 0} (18)

Furthermore, we observe that agent i may identify its
follower only at a time instant k̄i in which a measurement
is available, and therefore ui−1(k̄i) cannot be zero. Given
the previous considerations, as at time k̄i the two agents
perceive each other, and as θmax < ψ, we know that
ui(k̄i) = ω0 + K. Furthermore, as we pointed out that
ui−1(k̄i) 6= 0, we know that the control law of agent i− 1
has already been triggered. Hence, we have

ui,i−1 ∈ {0,K}, ∀k ≥ k̄i. (19)

Finally, if at time k̃i > k̄i agent i is able to push agent i−1
outside of its visual cone, then ui,i−1(k̃i) = K. This would

imply that, at time k̃i, agent i − 1 has already reached
the desired spacing with agent i − 2, and its estimate

ϑ̂i−1,i−2(k) of the angle ϑi−1,i−2(k) is greater than or equal

to ψ. Therefore, ui−1(k) = ω0 for all k ≥ k̃i. Then, for all

k ≥ k̃i, agent i can estimate ϑi,i−1(k + 1) on the basis of
a scalar and unambiguous ui,i−1(k).

Summing up, when the detecting distance is lower than the
desired spacing distance, and therefore, after the transient,
the controller push the pairs of consecutive agents outside
their mutual detecting distance, and the estimate must
rely only on the predictive component of our estimator.
For that reason, we choose an extremely simple control
law, as the bang-bang action described in equation (14),
so that the estimation of ϑij(k) is complemented with a
simple estimator of uij(k), see the estimation and control
scheme depicted in Figure 1.

4. NUMERICAL RESULTS

To validate our estimation and control strategy, we per-
formed extensive numerical simulations. In all experimen-
tal conditions, we set

(a) the number of agents N = 6. Hence, the target spacing
between consecutive agents is ψ = 2π/N ;

(b) ω0 = 0.01;
(c) the simulation time T = 3000.

We test the effectiveness of our approach for different
values of the detecting distance θmax, the bound of the

Pi−1

Pi d(·)

νi,i−1(k)

θi−1(k + 1)

αi,i−1(k)

yi,i−1(k)

θi(k + 1)

C

E2 E1

ûi,i−1(k)

θ̂i,i−1(k)

+

ui(k)

ui(k − 1)

Fig. 1. Schematic of the estimation and control strategy:
Pi is the i-th agent and Pi−1 its follower; E1 is the
estimator of the relative control input ui,i−1; E2 is
the estimator of the relative angular position θi,i−1;
C is the bang-bang controller.

modulus of the measurement noise ϕ, and the control gain
K. Specifically,

(a) θmax is varied between 0.18ψ and 0.9ψ with step 0.18ψ;
(b) for each value of θmax, ϕ is varied between 0.04θmax

and 0.20θmax with step 0.04θmax;
(c) for each combination of θmax the control gain K is

varied between 0.002 and 0.010 with step 0.002.

The result of this scheme is a total of 125 parameter
combinations. For each parameter combination, we con-
sider the same set of R = 100 randomly selected initial
conditions for the angular positions. We remark that, in
the parameter selection, we take ψ < θmax to remove the
assumption of jointed connectivity. Moreover, we select ϕ
as a function of θmax as it is typically related to the sensor’s
range. For the sake of clarity, we restrict the analysis to
the case where the agents cannot overtake each other. Ac-
cordingly, the initial conditions for θij , i, j = 1, . . . , N , are
selected in the interval [2ϕ, π]. As we took the same set of
R initial conditions for each of the 125 simulated scenarios,
the previous condition must be fulfilled considering the
maximum value of ϕ, that is, 0.036ψ.

To test the performance of the algorithm, we introduce the
definition of practical convergence. Namely, we say that
the algorithm practically converges if there exists a time
instant kc ≤ T such that (1/N)

∑
i |ϑi,i−1(k)− ψ| ≤ δ for

all k ≥ kc
3 , and we say that kc is the convergence time.

For our simulations, we set δ = 0.05ψ = 0.0524rad, and we
say that kc(Ki, ϕj , θmax,m, s) is the convergence time of the

3 We remind the reader that the follower of agent i is labeled as
i− 1. The follower of agent 1 is obviously agent 6.
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s-th repetition of parameter combination corresponding to
the i-th values ofK, the j-th value of ϕ, and them-th value
of θmax, for i, j,m = 1, . . . , 5, and s = 1, . . . , R.

Let us now describe the numerical results. Firstly, we un-
derline that only in two simulations the specified tolerance
was not fulfilled, and practical convergence is achieved in
the 99.9984% of the runs. As for the convergence time kc,
its average

〈kc〉 =
1

125R

5∑
i,j,m=1

R∑
s=1

kc(Ki, ϕj , θmax,m, s),

computed on the basis of all 12500 simulations, is 735 time
instants. To have a fist insight on the effect of K, ϕ, and
θmax, we evaluated

〈kc(K)〉 =
1

25R

5∑
j,m=1

R∑
s=1

kc(K,ϕj , θmax,m, s),

〈kc(ϕ)〉 =
1

25R

5∑
i,m=1

R∑
s=1

kc(Ki, ϕ, θmax,m, s),

and

〈kc(θmax)〉 =
1

25R

5∑
i,j=1

R∑
s=1

kc(Ki, ϕj , θmax, s).

As expected, increasing the control gainK the convergence
time decreases, see Fig. ??, while an increase of the
measurement noise ϕ produces a slight increase in the
convergence time, see Fig. ??. Finally, increasing θmax, we
experienced a steep increase in 〈kc(θmax)〉, as depicted in
Fig. ??.

To delve into the statistical significance of the observed
variations, we performed a three-way ANOVA (analysis
of variance), whose results are reported in Table 1. Such
analysis tests the null hypothesis that each factor has no
influence on the convergence time kc. Hence, a low p-value
implies that the null hypothesis must be rejected. The
lowest p-value of 0 is obtained for the detecting distance
θmax and the control gain K, while the null hypothesis
may not be rejected for the effect of ϕ on kc, as the p-
value is 0.62. To further discuss the lack of significance
of the variation of the convergence time as a function of
ϕ, in Fig. 2 we display a box plot for a representative
simulation scenario: as a result, the variability induced
by ϕ, which is represented by the difference between
the medians of the distributions (red horizontal lines)
is negligible if compared to the natural variability of kc
(the width of the blue boxes). Therefore, we can conclude
that the inter-class sampled variance is much smaller than
the intra-class sampled variance. This means that the
effect of measurement noise ϕ on kc is too small to be
statistically significant, if compared to the effect of the
other parameters, and to the natural variability of kc.

Finally, to further test the effectiveness of our control
strategy, we consider the case in which the inertia is
not negligible and the approximation of instantaneously
switching the angular velocities is not acceptable. To
model this scenario, we modify equation (1) and obtain
the following expression for the dynamics of each agent:

θi(k + 1) = θi(k) + ωi(k) (20)

where ωi(k) is

Factor degrees of freedom p-value

K 4 0
ϕ 4 0.62

θmax 4 0

Table 1. Three-way ANOVA to test the influ-
ence on kc of the factors K, ϕ, and θmax.

0.0151 0.0302 0.0452 0.0603 0.0754
500

550

600

650

700

750

800

ϕ

k
c

Fig. 2. Box plot of kc as a function of ϕ for θmax = 0.3770,
K = 0.008. The central mark are the medians, the
edges of the boxes are the 25-th and 75-th percentiles,
the whiskers extend to the most extreme data points
not considered outliers, and outliers are plotted indi-
vidually.{

ω0 + min{ωi(k − 1) + α1, ui(k)} if ui(k) ≥ ωi(k − 1)

ω0 + max{ωi(k − 1)− α2, ui(k)} if ui(k) < ωi(k − 1),
(21)

and ωi(0) = ω. The parameters α1 and α2, possibly differ-
ent, account for the inertias of the multi-agent system. In
our preliminary analysis, based on a set of 100 simulations,
with the same set of initial conditions considered above,
and where we set θmax = 0.5864 and K = 0.01, our
approach successfully achieved practical convergence in all
the repetitions.

5. CONCLUSIONS

In this paper, we tackled the problem of coordinating a
multi-agent system of oscillators to achieve a balanced
circular formation. Differently from the existing literature,
we did not rely on the exact knowledge of the relative
angular positions between the agents. This is motivated by
the fact that, in many fields of application, the accuracy
of the measurements is limited due to physical or econom-
ical constraints. Hence, we considered intermittent, uncer-
tain and ambiguous measurements as those performed by
cheap proximity sensors. Furthermore, we assumed that
the sensor have a limited detecting distance, lower than
the desired spacing among the agents. To cope with this
reduced level of information, we developed a decentralized
strategy for estimation and control. Inspired by the al-

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5788



gorithm presented in DeLellis et al. (2013b), we proposed
an estimator capable of reconstructing the relative angular
position from the intermittent distance measurements. Im-
plementing an appropriately designed bang-bang control
law, each agent is capable of univocally identifying its clos-
est follower and achieves an appropriate spacing from it.
Extensive numerical simulations illustrated the effective-
ness of the approach: the desired equispaced configuration
is achieved and the convergence speed can be regulated
with the control gain and is not significantly affected by the
measurement noise. Moreover, preliminary results show
how the approach can be successfully applied when the
inertia is not negligible and the switches prescribed by the
bang-bang control law cannot be instantaneous. A formal
proof of convergence of the estimation and control strategy
is subject of ongoing research.
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