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Abstract: This paper presents a distributed consensus-based approach to solve the economic dispatch 
problem with power generator constraints and transmission losses. Buses and transmission lines in the 
power system are modeled as nodes and edges in a communication graph, respectively. Each node 
exchanges information with its neighbors and runs two consensus algorithms in parallel, without relying 
on a centralized decision maker. A consensus algorithm plus a correction term is run to reach consensus 
on a Lagrangian variable to satisfy the generation-demand equality constraint, while another consensus 
algorithm is used to estimate the power mismatch in the network. Thus, each generating unit computes its 
output power according to its cost function. Advantages and limitations of the proposed approach are 
discussed. Finally, the algorithm is validated by means of numerical simulations on several benchmarks. 
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1. INTRODUCTION 

The transformation of the legacy electric grid into a smart 
grid demands novel control techniques to solve both classic 
and emerging problems in power systems. One important 
challenge for power systems is the Economic Dispatch (ED) 
problem (Han et al. 2011) that deals with the allocation of 
power among the generating units, while minimizing the cost, 
matching the load demand and satisfying the operational 
constraints (Wood and Wollenberg 1996). A well-known 
centralized numerical method to solve the ED is the lambda-
iteration algorithm (Lin and Viviani 1984). When considering 
non-convex ED formulation with losses, valve-point loading 
effects and multiple-fuel options (Cai and Liu 2005; Min et 
al. 2008), optimization techniques such as genetic algorithms 
(Chiang 2005) and particle swarm optimization (Neyestani et 
al. 2009) leads to satisfactory solutions, as in many other 
engineering fields, e.g., the design of non-linear motor drives 
(Cupertino et al. 2003). 

Distributed algorithms are becoming increasingly important 
in the domain of intelligent decision-making and control  
to overcome the main drawbacks of centralized supervision 
in large scale systems (see, e.g., (Giordano et al. 2005)). 
Distributed approaches appear very promising also in the 
context of future power system since they can be more  
robust and immune to topological variations and can better 
accommodate the “plug-and-play” feature of the generating 
units and loads. However, it is more difficult to include the 
ED operational constraints in such a distributed formulation. 

Distributed consensus-based approaches have been proposed 
in recent literature to solve the ED, since it can be stated as 
the search of the value for a Lagrangian variable. Among the 

recent papers, Binetti et al. (2013a) propose a consensus 
approach for ED without losses and lower and upper power 
bounds, while Dominguez-Garcia and Hadjicostis (2011) 
propose a double-iteration algorithm considering also power 
bounds. The algorithm in (Zhang and Chow 2012) assumes a 
priori knowledge of the power mismatch to a leader unit, 
while a variant in (Zhang et al. 2011) uses an additional level 
of consensus to estimate the power mismatch in a distributed 
fashion. Mudumbai et al. (2012) present a distributed 
iterative procedure for load-frequency control and ED that 
requires adjusting some parameters with an initial centralized 
intervention. Finally, Lorenzen et al. (2013) present a 
distributed optimization algorithm based on the ideas of 
cutting-plane consensus algorithm and adjustable robust 
counterparts. The cited papers do not consider losses in their 
models and, to the best knowledge of the authors, no 
distributed approach has yet been proposed to solve the ED in 
the more realistic case with non-negligible losses. 

This paper proposes an approach to solve the ED problem in 
a distributed fashion, considering losses as well as lower and 
upper bounds for the generated power. The power system is 
supported by a sparse communication network, resulting in a 
more flexible, scalable, and reliable system. The proposed 
approach assumes that each node runs two algorithms in 
parallel. The first one is a first-order consensus algorithm 
designed to find the value of a Lagrangian variable that 
specifies the solution. A correction term is added to such 
algorithm to act as a proportional controller which drives the 
power mismatch to zero and fulfills the generation-demand 
equality constraint. The second algorithm is based on a 
consensus idea used for task allocation in multi-robot system 
(Binetti et al. 2013b), which relies on the association of a 
timestamp to the node state. This algorithm lets each node 
estimate locally the power mismatch in the system by storing 
the most up-to-date information about the other nodes. This work was supported in part by NSF grant ECCS-1137354, NSF grant 

ECCS-1128050, ONR grant N00014-13-1-0562, and ARO grant W911NF-
11-D-0001. 
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The rest of the paper is organized as follows. In Section 2, the 
ED is formulated and centralized solutions are discussed. 
Section 3 presents preliminaries of graph theory and basic 
consensus algorithms. In Section 4 the distributed approach is 
described. Several case studies in Section IV verify the 
effectiveness of the proposed approach. 

2. ECONOMIC DISPATCH PROBLEM 

In this section, the general formulation of the ED problem 
with both losses and generator constraints is introduced, and 
some aspects of centralized solutions are discussed. 

2.1) Notations 

To distinguish the variables available locally from those 
available centrally in standard ED approaches, the following 
notation is adopted in the paper: ix  denotes scalar x  for 

node i ; ix  denotes element i  of vector x ; ijX  denotes 

element ( ),i j  of matrix X ; ( ),i jx  denotes scalar x  whose 

meaning is related to the specific meaning of the pair ( ),i j ; 
[ ]ix  denotes scalar x  carried by node i ; [ ]ix  denotes vector 

x  carried by node i ; [ ]i
jx  denotes element j  of vector x  

carried by node i ; ( )x k  means that x  is function of variable 

k ; [ ]x k  refers to variable x  at discrete time k . 

2.2) Economic Dispatch Formulation 

The economic dispatch determines the output of a number of 
generating units matching the load demand at the lowest cost. 
Denote by GS , DS , and BS , the sets of generator buses, load 

buses, and all the buses in the power systems, respectively, 
with cardinality | |G Gn = S , | |D Dn = S , and | |B Bn = S . It 

results B G L= ∪S S S  and, without loss of generality, it is also 

assumed G D∩ = ∅S S . Each load bus i  is characterized by a 

local load demand Dip . 

Solving the ED problem requires to minimize the power 
generation cost given by 

 ( ) ( ) 
G

i Gi
i

f f p
∈

= ∑Gp
S

 (1) 

where 1, ,
G

T

G Gnp p =  Gp …  is the power vector with Gip  the 

power generated at bus i , and ( )i Gif p  is the cost function 

usually expressed (Wood and Wollenberg 1996) as 

 ( ) 2
i Gi i i Gi i Gif p p pα β γ= + +  (2) 

with iα , iβ , and iγ  the cost coefficients for generator i . 

The ED is subject to several operational constraints. The 
following generation-demand equality constraint 

 0
D G

Di L Gi
i i

p p p p
∈ ∈

∆ = + − =∑ ∑
S S

 (3) 

states that the sum of demand and losses, Lp , has to be equal 

to the generated power. Thus, p∆  denotes the total power 

mismatch in the system which ideally should be equal to 
zero. The losses can be expressed as 

 ( )2( , ) ( , )

( , )

/ 2
B B

i j i j
L

i j

p r ι
∈ ×

= ∑
S S

 (4) 

where ( , )i jr  is the line resistance between buses i  and j , 

and ( , )i jι  is the current flowing in the line between buses i  
and j  (with ( , ) 0i jι =  if there is no direct connection between 

the two buses). The power generator constraints 

 min max , Gi Gi Gip p p i≤ ≤ ∀  (5) 

state that the generated power Gip  has to be chosen in the 

range between minimum, min
Gip , and maximum, max

Gip , power 

limits for each generator i . 

It is possible to formulate the ED using the Lagrangian 
operator L  (Bronson and Naadimuthu 1997) such that 

 ( ) ( ) ( )
2

1

Gn
i i

i

L f pλ µ ψ
=

= + ∆ +∑Gp  (6) 

where λ  and ( )iµ ’s are the Lagrange multipliers associated 

with equality constraint (3) and inequality constraints in (5), 
respectively (Bronson and Naadimuthu 1997). Using this 
notation, the minimization of the Lagrangian operator also 
encompasses the satisfaction of the constraints. 

2.3) Centralized Solution of the ED 

A key concept of the centralized solutions for ED is the 
incremental cost, that is, the derivative of the cost function. 
When power generator constraints and losses are neglected, 
the Lagrangian operator provides a set of equations 

 
( )

0i Gi

Gi Gi

df pL

p dp
λ∂ = − =

∂
 (7) 

or, equivalently, 

 
( )i Gi

Gi

df p

dp
λ =  (8) 

Thus, the necessary condition for the existence of a 
minimum-cost operating point is that all incremental costs 
must be equal to λ . In this case, the optimal incremental cost 
and the output powers are given (Binetti et al. 2013a) by 

 
1

2 2
D G G

i
Di

i i ii i

p
βλ
γ γ∈ ∈ ∈

   
= +      
   
∑ ∑ ∑
S S S

 (9) 

 ( ) ( )2Gi i ip λ β γ= −  (10) 

When the generator constraints are considered, the necessary 
conditions for the existence of a minimum-cost operating 
condition may be expanded (Wood and Wollenberg 1996) as 

 

( )
( )
( )

min max

max

min

for 

for 

for 

i Gi Gi Gi Gi Gi

i Gi Gi Gi Gi

i Gi Gi Gi Gi

df p dp p p p

df p dp p p

df p dp p p

λ
λ
λ

= < <
≤ =
≥ =

 (11) 

This implies that all the generators operating within their 
bounds have the same incremental cost, while the other 
generators operate on the limits min

Gip  or max
Gip . 

When the losses are considered, the Lagrangian operator 
gives the set of equations 

 1i L

Gi Gi Gi

df pL

p dp p
λ
 ∂∂ = − − ∂ ∂ 

 (12) 
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or, equivalently, 

 
( )

1

1
i

L Gi Gi

df

p p dp
λ =

− ∂ ∂
 (13) 

where L ip p∂ ∂  is called the incremental loss for unit i , and 

( )1 1i L iPf p p= − ∂ ∂  is called the penalty factor for unit i . 

In this case, the ED problem becomes analytically intractable 
even with simplified cost functions (Mudumbai et al. 2012). 

3. GRAPH THEORY AND CONSENSUS ALGORITHMS 

In this section, some preliminaries of graph theory are 
recalled, and then the consensus algorithms used to design 
the proposed distributed solution are introduced. 

3.1) Graph Theory 

A graph is expressed as ( ), , A=G V E  with 1 2{ , , }, nv v v= …V  

the set of nodes, ⊂ ×E V V  the set of edges, and 

[ ] n n
ijA A R ×= ∈  the adjacency matrix. An edge from j  to i  

is denoted by ( , )j iv v , which means that node i  receives 

information from node j . ijA  is the weight of edge ( , )j iv v , 

and 0ijA >  if ( , )j iv v ∈E , otherwise 0ijA = . Node j  is 

called neighbor of node i  if ( , )j iv v ∈E . The set of node i  

neighbors, denoted by { | ( , ) }i j ij v v= ∈N E , has cardinality 

id . The in-degree id  of node i  is defined as the i -th row 

sum of A , i.e., 
ii j ijd A∈=∑ N . A path from i  to j  is a 

sequence ( ) ( ) ( ){ }, , , , , ,i k k l m lv v v v v v… . The distance ( , )i jl  

between nodes i  and j  is the number of edges in the 

shortest path connecting them. The graph diameter is the 
greatest minimum distance between any pair of nodes. 

3.2) First-order Consensus Algorithm 

Consider a group of nodes, distributed on a communication 
graph G , with identical dynamics. Suppose that each node 
has scalar discrete-time dynamics given by 

 [ ] [ ] [ ] [ ] [ ] [ ]1i i ix k x k u k+ = +  (14) 

where [ ] [ ],i ix u R∈  are the state and control input for node i . 

Assume the communication graph G  is strongly connected 
and satisfies the property of bidirectional equal-neighbor 
weight topology (Olshevsky and Tsitsiklis 2009), i.e., 

 ( , ) ,( , ) ( , )j j ii i iv v v v v v∈ ⇒ ∈ ∈E E E  (15) 

with the elements ija  of the adjacency matrix defined as 

 
1/ if  

0 if  
ii

j

i

i

d j
A i

j

= ∀
∈
∉

N

N
 (16) 

where iN  is the set of neighbors and id  is its cardinality. 

Note that each node has a loop such that ii ∈N . This 

topology for the graph G  results in an adjacency matrix that 
is non-negative (all its elements are non-negative), row-
stochastic (all row-sums are 1), irreducible (since the 
associated graph is strongly connected), and primitive (it has 
only one eigenvalue with maximum modulus). 

Considering the local control algorithm 

 [ ] [ ] [ ] [ ] [ ] [ ]( )
i

i j i
ij

j

u k A x k x k
∈

= −∑
N

 (17) 

with ija  denoting the graph edge weights, the closed-loop 

system becomes 

 [ ] [ ] [ ] [ ]1
i

i j
ij

j

x k A x k
∈

+ = ∑
N

 (18) 

since 1
i

ijj
A

∈
=∑ N

 for the equal-neighbor weight topology. 

Considering the properties of the adjacency matrix A , note 
that it has right eigenvector 1  associated to the eigenvalue 

1 1λ =  since A =1 1  and ( ) 0I A− =1 . Moreover, by Perron-

Frobenious theorem, the dynamics (18) reach asymptotically 
consensus and the group decision value is 

 [ ] [ ]0i
c ii

x x=∑ w  (19) 

with w  the normalized left eigenvector associated to 1 1λ =  

(Jadbabaie et al. 2003; Olfati-Saber and Murray 2004). 

3.3) Consensus on the most up-to-date information 

Consider a group of nodes, distributed on a communication 
graph G , with identical dynamics. Suppose that each node 
has vector discrete-time dynamics represented by state vector 

[ ]i nR∈x  and timestamp vector [ ]i nR∈s . [ ]i
jx  and [ ]i

js  are the 

j -th element of [ ]ix  and [ ]is , respectively. The element [ ]i
ix  

is the node i  state evaluated by the same node with a local 

function, say ( )ig ⋅ , while the elements [ ]i
jx  are the most up-

to-date information that node i  has about the state of node 

j . Each element [ ]i
js  is the timestamp associated to the 

corresponding state information [ ]i
jx , that is, the instant time 

at which the state information was generated. Going into 
details, the node dynamics is given by 

[ ] [ ] [ ] [ ]
{ }

[ ] [ ]( )
[ ] [ ] ( ) [ ] [ ] [ ]

( )

\
1 1 1 max ,

1 1 ,

i

i

i i h
i j j

h i

ji i
i i j j

k k k k j i

k g k k j i

∈

 
 

+ = + + = ≠

+ = ⋅ + = ≠

s s s

x x x
ɶ

N
 (20) 

with 

 [ ]
{ }

[ ] [ ]( )( )

\
1 argmax

i

hi
j

h i
j k k

∈
+ = sɶ

N

 (21) 

Eq. (21) identifies node ( )ijɶ  in the neighborhood of node i  

with the most up-to-date information about node j  according 

to the timestamps. Node i  stores the information about node 

j  received by node ( )ijɶ  which is the node with minimum 

distance from j . Thus, the dynamics (20)-(21) lets each node 

update its state and save the states of all other nodes with a 
certain delay depending on the graph structure. The following 
Lemmas derive directly from (20)-(21). 

Lemma 1. Let the graph G  be strongly connected. Under 
algorithm (20)-(21) each node has 

 [ ] [ ] [ ] ( , )i j i j
j jk k l = − x x  (22) 

where ( , )i jl  is the finite distance between nodes i  and j . 
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Lemma 2. Let the graph G  be strongly connected. Assume 
that, under algorithm (20)-(21), after a certain time instant 

k  a node i  does not change its local value [ ]i
ix , that is, 

[ ] [ ]1i ig k g k+ =  for k k≥ . Then 

 [ ] [ ] [ ]j i
i ik k k k φ = ∀ ≥ + x x  (23) 

with φ  being the diameter of the communication graph G . 

Lemma 1 states that a node i  knows the state of the node j  

with a delay equal to the finite distance ( , )i jl , since the graph 
is strongly connected. Lemma 2 states that if a node i  does 

not change its local value [ ]i
ix , then all other nodes reach the 

consensus on such a fixed value [ ]i
ix  within a number of 

iterations equal to the communication graph diameter, φ . 

4. DISTRIBUTED SOLUTION 

The communication network supporting the power system 
has same topology of the power network. Based on this 
model, a distributed consensus-based solution is proposed to 
solve the ED with losses and power generator constraints. 

4.1) Distributed Algorithm 

The proposed method for the ED uses two consensus 
algorithms, running in parallel, to reach consensus on the 
Lagrangian variable λ  and to estimate the total power 
mismatch p∆ . 

Each node runs the following consensus algorithms 

 [ ] [ ] [ ][ ] [ ] [ ]1 2
i

i j i
ij P i

j
Gk A k k iλ λ κ γ δ

∈
+ ∈+ = ∑

N

S  (24) 

 [ ] [ ][ ] [ ]1
i

i j
ij

j
Dk A k iλ λ

∈
+ ∈= ∑

N

S  (25) 

where A  is the adjacency matrix in (16), iγ  is the generator 

cost coefficient in (2) for bus i , Pκ  is a proportional control 

gain, and [ ][ ]i kδ  is the estimation of total power mismatch 

of bus i . The algorithm (24) for the generator buses is a first-
order consensus algorithm plus the correction term 

[ ][ ]2 i
P i kκ γ δ  that lets each generator bus i  change the 

Lagrange multiplier according to the estimation [ ][ ]i kδ  of 

the power mismatch. The algorithm (25) is a consensus 
algorithm for the load buses used only to propagate the 
information about the Lagrange multiplier in the network. 

The rationale of algorithms (24)-(25) is that the global 
dynamics of the system without correction term can be 
described by a marginally stable system with one pole 1z =  
in the z-plane (Jadbabaie et al. 2003; Olfati-Saber and 
Murray 2004). Therefore, the correction term in (24) acts as a 
proportional controller in closed loop and can effectively 
drive the power mismatch to zero. 

The local estimation [ ][ ]i kδ  of the total power mismatch is 

performed as follows. Consider that each bus i  can compute 

its local power mismatch [ ]ip k∆  at each time step as 

 [ ] [ ] [ ] [ ]i Di Li Gip k p k p k p k∆ = + −  (26) 

where the losses associated to each bus can be expressed by 

 [ ] [ ]( )2( , ) ( , ) / 2
i

i j i j
Li

j

p k r kι
∈

= ∑
N

 (27) 

and the generated power associated to each generator bus can 
be expressed by 

 [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]

[ ] [ ]

min max

min min

max max

2 2

,
2

2

i i
i i

Gi Gi
i i

i
i

Gi Gi Gi
i

i
i

Gi Gi
i

G

k k
p p

k
p k p p i

k
p p

λ β λ β
γ γ

λ β
γ

λ β
γ

 − −
< <


 −= <

 − >


∈



S  

  (28) 
 [ ] 0,Gi Dp k i= ∈S  (29) 

In Eq. (28) the generator buses fulfill also the constraints on 
minimum and maximum output powers, while in Eq. (29) the 
load buses set the output power to 0. In Eq. (27), each bus is 
required to know the resistances ( , )i jr  of the transmission 
lines with its neighbors, which is local information, and the 
current ( , )i jι  flowing in such lines, which can be locally 
obtained by the protective relay devices (Perez et al. 1994). 
Thus, the local power mismatch ip∆  in (26) is actually local 

information. 

Assume now that each node carries two vectors to perform 
the estimation of the power mismatch: the vector of local 
power mismatches, [ ] Bni R∈x , and the timestamp vector, 

[ ] Bni R∈s . Each bus runs the following consensus algorithm 
on the most up-to-date information: 

[ ] [ ] [ ] [ ]
{ }

[ ] [ ]( )
[ ] [ ] [ ] [ ] [ ] [ ]

( )

\
1 1 1 max ,

1 1 1 ,

i

i

i i h
i j j

h i

ji i
i i j j

k k k k j i

k k k k jp i

∈

 
 

+ = + + = ≠

+ + = ≠∆+ =

s s s

x x x
ɶ

N
 (30) 

with 

 [ ] [ ]( )( ) [ ]1 argmax
i

i h
j

h
j k k

∈
+ = sɶ

N

 (31) 

Then, the estimation of the total power mismatch at each bus 
i  is defined as 

 [ ] [ ][ ] [ ]

1

Bn
i i

j
j

k kδ
=

=∑x  (32) 

Each generator bus can use the above estimation to apply the 
correction in (24), modify the local Lagrangian variable, and 
drive the power mismatch to zero. 

4.2) Heuristics for Proportional Gain Design 

Considering the consensus procedure in (24)-(25), note that 
the parameter Pκ  has a similar role to learning rates in 

iterative algorithms used for adaptive or learning control 
schemes, which can trigger oscillations or even instability 
when set too high. Thus, the parameter Pκ  should not be set 

too large to avoid excessively fast updates of the local iλ ’s. 

Moreover, the larger is the network diameter, the slower is 
the information propagation for the consensus algorithm in 
(30)-(31). Thus, smaller networks can use larger Pκ  without 

causing undesired oscillating behavior. This suggests to 
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design Pκ  as a function of the topological properties of the 

communication graph. A possible heuristic candidate is 

 1P Bnκ =  (33) 

where Bn  is the number of buses in the power system. Each 

bus can locally compute Bn  as the size of timestamp vector 

exploiting the property of the consensus on the most up-to-
date information. This heuristic choice will be shown in the 
following sections to be an effective choice for both small 
and large scenarios. 

5. NUMERICAL RESULTS 

In this section, two case studies with 6 and 300 buses show 
the effectiveness of the proposed algorithm on a small and a 
large network. 

5.1) Simulation Setting 

The 6-bus system is described in the book of Wood and 
Wollenberg (1996), while the details of the standard IEEE 
300-bus system can be found in the archive of Matpower 
(Zimmerman et al. 2011). The simulations have been run in 
Matlab and the current values for the losses computation have 
been estimated by running the power flow routine of 
Matpower (Zimmerman et al. 2011).  

5.2) Case Study with 6 buses 

In this case study, the initial load demand is 210 MW, with 
three loads of 70 MW for each load bus. At the time step 

50k =  and 100k = , all the loads are first increased by 20%  
and then reduced by 10% , respectively. This simulation 
considers an initial output power distribution with all the 
generator buses providing their minimum output power with 
the corresponding local incremental cost. Fig. 1 shows that 
the system responds automatically to all the changes in the 
load demands and converges to the new solutions. Fig. 1(d) 
shows also that the algorithm can properly handle the power 
generator constraints; in fact, the minimum output power 

min
1 50Gp = MW for generator 1 is active for both the first and 

third total load demand during the simulation. The Lagrange 
multiplier is updated according to the estimation of the power 
mismatch and the consensus is reached after a few iterations. 
The total power mismatch goes to zero and the generation-
demand equality constraint is satisfied. Finally, note that the 
losses in the system are properly considered in Fig. 1(c), 
where the generated power is greater than the demanded 
power to take into account for the losses. 

5.3) Case Study with 300 buses 

In this case study, the IEEE 300-bus system is considered to 
show the effectiveness of the proposed approach for a large 
network. The simulation starts with the initial condition given 
by the Matpower case study (Zimmerman et al. 2011) and a 
total load demand of 23526 MW. Then, at the time steps 

400k =  and 800k = , the total load demand is first increased 
by 20%  and then reduced by 10% , respectively. As shown 
in Fig. 2, the proposed algorithm converges automatically to 
a new solution, fulfilling the generation-demand equality 
constraint including the transmission losses. Moreover, each 
iteration requires about 0.007 seconds per bus running on a 

Personal Computer with a Core2 Duo processor (3 GHz) and 
4 GB RAM. Since the algorithm converges in a few hundred 
iterations, assuming a conservative time step of 0.02 seconds 
for a practical application, the algorithm converges in a few 
seconds. Thus, the algorithm is sufficiently fast and suitable 
for actual implementation considering that the deployment 
time for the ED solution is usually from 5 to 15 minutes. 

CONCLUSIONS 

The economic dispatch problem is addressed in a distributed 
fashion considering losses and power generator constraints. 
The communication network has same topology of the power 
system, resulting in a sparse graph. The proposed solution is 
based on consensus algorithms that let each generating bus to 
decide autonomously its output power in response to load 
demand changes. The effectiveness of the proposed algorithm 
to properly handle losses and power generator constraints has 
been verified in simulation on both small and large networks. 
Moreover, the proposed algorithm converges in times that  
are suitable for actual implementation. Some heuristic design 
guidelines for the main algorithm parameter, namely the 
proportional gain, have been discussed. However, the 
theoretical characterization of the proportional gain limits 
corresponding to good performances will be the main focus 
of future research. 
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Fig. 1. Case study with 6 buses: (a) Lagrange multiplier, 
(b) power mismatch estimation, (c) demand, generation, and 
consumption, (d) output power. 
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Fig. 2. Case study with 300 buses: (a) Lagrange multiplier, 
(b) power mismatch estimation, (c) demand, generation, and 
consumption. 
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