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Abstract: The aim of this work is to propose a method for the simultaneous state and parameter
estimation of the individual columns in the Simulated Moving Bed chromatographic process
based on concentration measurements only in the switched product outlets. The method exploits
the fact that the measurements switch from the inlets of the columns to their outlets sequentially.
The estimation problem is cast as a dynamic optimization problem where the prediction error
of the output profile is minimized. The initial concentrations in the individual columns and the
parameters of the columns are treated as degrees of freedom of the optimization problem. As
at each outlet the concentrations of one component are very small and therefore are subject
to large relative measurement errors for given expected absolute errors of the concentration
measurements, measurements for two different points in time, when the extract port and
when the raffinate port is at the outlet of the column under consideration are taken into
account simultaneously. The effectiveness of the method is demonstrated for the separation
of an isopropanolol racemic mixture.
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1. INTRODUCTION

The Simulated Moving Bed (SMB) process is a prepara-
tive chromatographic separation method which has gained
increasing importance in industrial sectors such as food,
fine chemicals and pharmaceuticals, due to its efficiency
in difficult separation tasks, such as the purification of
substances with similar thermodynamic properties, or of
temperature sensitive materials. The process is very effi-
cient, but it is highly sensitive to disturbances, making the
use of control schemes necessary for operating it reliably.
The control of the process is difficult because the process
shows large delays, and the availability of the measurement
information is very limited in typical installations. The
process performance is dependent on the process parame-
ters, which in practice are distinct for each column in the
plant, and which may change over time. For model-based
control as well as for process monitoring, the estimation
of the plant state and of process parameters is important.
For this task, several approaches have been proposed in
the literature. In Mangold et al. [1994] a simultaneous
state and parameter estimation scheme to estimate the
velocities of the components within the SMB plant by
means of a distributed Luenberger- like observer was pro-
posed. Similarly, in Kleinert and Lunze [2005] an estima-
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tion scheme which relied on a wavefront-based description
of the concentration profiles within the chromatographic
columns was developed, resulting in an observer of low
order. In Alamir and Corriou [2003] a strategy in which
the process was described by empirical functions, whose
coefficients were obtained by means of a moving horizon
estimator (MHE) was presented. In Kuepper et al. [2009]
a MHE approach based on a full rigorous model of the
SMB plant was proposed for the real-time simultaneous
estimation of the states and the isotherm parameters in
SMB processes.

A common feature of all aforementioned approaches is the
assumption of uniform properties that are shared by all
columns in the SMB plant. This however is not realistic,
as it implies that all columns are packed identically with
adsorbent, which is impossible in practice. In contrast,
in Küpper and Engell [2006] a state and parameter es-
timation scheme was proposed which, by means of de-
centralized Extended Kalman Filters (EKF), estimated
the adsorption isotherm parameters for each column sep-
arately. It was assumed that two measurements at the
product outlets and one measurement at a fixed position
in the SMB process are available. The EKF-based scheme
exploits the fact that the measurements in the product
stream move in the direction of the flow by using the
state that was estimated for the preceding column in the
prediction model for the current column. It was shown that
the scheme is able to estimate column parameters which
differ between the columns, however with a rather slow
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convergence to the true values.

In this contribution, an optimization-based scheme for the
estimation of the individual column states and parame-
ters is proposed. The measured concentration profiles that
entered the column during the previous period and that
leave it during the current period are used to estimate
the initial state and some key parameters of a column.
The paper is structured as follows: First, a brief descrip-
tion of the SMB chromatographic process is provided.
Next, the process model is introduced, followed by the
presentation and explanation of the proposed estimation
scheme. The performance of the estimator is demonstrated
by its application to the separation of the isopropanolol
racemic mixture. The results are compared to the results
obtained in Küpper and Engell [2006]. Finally, conclusions
are presented.

2. DESCRIPTION OF THE SMB PROCESS

The Simulated Moving Bed is a continuous preparative
chromatographic process for the separation of the compo-
nents of fluid mixtures. The separation takes place due to
the different adsorption affinities of the components to a
solid adsorbent material packed in a chromatographic col-
umn. The idea behind the SMB process is to perform the
continuous separation by approximating a counter-current
flow between the fluid mixture and the solid, as a true
counter-current operation is difficult to attain in practice.
The SMB process consists of a series of individual chro-
matographic columns connected in a ring. The mixture
and the solvent for recovering the most heavily adsorbed
component are fed continuously at specific nodes between
columns. Similarly, the resulting purified components are
removed continuously from the plant. These feed and prod-
uct ports are moved synchronously and periodically by
one column in the direction of the liquid flow. Typically,
a SMB plant is equipped with sensors for measuring the
concentrations at the product ports (the extract, rich in
the more strongly adsorbed component, and the raffinate,
rich in the less strongly adsorbed component). This sensor
configuration has been assumed in this work. A SMB
plant is divided in four zones: in Zone I (between the
solvent and extract ports) the more retained component is
recovered and the solid is regenerated; in Zone II (between
the extract and feed ports) the less retained component
is desorbed; in Zone III (between the feed and raffinate
ports) the more retained component is adsorbed and the
other component is recovered; and in Zone IV (between the
raffinate and solvent ports) the less retained component is
adsorbed and the solvent is regenerated. The process is
depicted in Figure 1.

Fig. 1. Schematic representation of the SMB process.

3. PROCESS MODEL

The SMB process can be modeled by a composition of
the individual chromatographic column models and the
material balances at the interconnection nodes between
the columns. In this work, the chromatographic columns
are modelled by the so-called General Rate Model (GRM),
which is comprehensively explained in numerous refer-
ences, such as Schmidt-Traub [2012]. The GRM consists
of two elements. The first one is a material balance for the
bulk liquid phase in the column in the axial direction:
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The second part of the GRM is a material balance of the
liquid in the adsorbent, in the particle radial direction:
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It is assumed that the liquid in the particle pores is in
equilibrium with the absorbed substance at the surface
of the adsorbent. This equilibrium relation relationship is
described by the so-called adsorption isotherm, which is
dependent on the mixture, the solvent and the packing.

The boundary conditions for the bulk and pore phase
material balances are shown in Eqs. 3 and 4:
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The model of the SMB process is completed by the
material balances at the column interconnection nodes:

0 = −QI +QIV +QDe

0 = −QII +QI −QEx

0 = −QIII +QII +QFe

0 = −QIV +QIII −QRa

0 = −C
b,i
out,IV QIV + C

b,i
in,IQI

0 = −C
b,i
out,IIQII − Ci

FQF + C
b,i
in,IIIQIII ,

i = {A,B} ,

(5)

where QI , QII , QIII and QIV are the flow rates of the
zones I, II, III and IV.

4. DIFFICULTIES OF THE ESTIMATION PROBLEM

The main difficulty of the estimation problem lies in the
scarcity of the available measurement information: the
concentration profiles are measured only at the outlet
ports in the raffinate and in the extract stream. In the
ideal situation of an SMB process with exactly identical
columns at the cyclic steady state, these profiles are the
same in each switching period, so no new information is
obtained after a switch of the ports. If the columns are
not identical or if the plant is operated in a transient
fashion, e.g. because of changes of the flow rate or in the
switching times, the profiles differ, but not by very much.
These small differences must be exploited to estimate the
individual column parameters. Additionally, at the two
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product ports the concentration of one of the substances
is very low, as a high purity of one component in each
port is the goal of the separation. This implies that the
relative error of the concentration measurement for this
substance will be high and that at very high purities,
practically no information about the polluting component
is obtained. In order to overcome these difficulties, a
tailored optimization-based scheme is proposed in the next
section.

5. A NEW METHOD FOR THE ESTIMATION OF
COLUMN STATES AND INDIVIDUAL COLUMN

PARAMETERS

The proposed estimation scheme considers a time horizon
composed of two stages. The first stage corresponds to the
interval in which the measurement position is located at
the column inlet, and the second stage corresponds to the
interval after the valve switching when the concentrations
are measured at the outlet. The unknown internal con-
centration profiles at the beginning of the first stage are
treated as degrees of freedom in the optimization problem,
and the measured inlet concentrations are considered as
inputs of the estimated column. It is well known that the
estimation of initial conditions leads to ill-conditioning.
To alleviate this problem, the estimated initial internal
profiles are regularized by penalizing their deviations with
respect to the values estimated one cycle before.

As only one of the ports (extract or raffinate) can be at
the outlet of a column at one point in time, the sensors
of each of the ports are expected to report relatively low
concentrations of one of the components of the mixture
due to the separation, i.e. there is little measurement
information about these components. This is particularly
true for high purity separations, and constitutes a problem
for the estimation of the parameters that are strongly
associated to that component. To overcome this difficulty,
it is proposed that the measurement information obtained
for each of the two sensors is combined in the optimization
problem in order to estimate the states and the parame-
ters of a given column. As the column is connected to
the sensors at different points in time, the corresponding
measurement data and the internal column concentration
profiles at each of these time intervals are different. It is
proposed to model the dynamics of the column at each
of these time periods as decoupled columns (one for each
port) sharing the same parameter set which must be fitted
to describe the measured outlet profiles corresponding to
that time interval.

The objective function which results from these consid-
erations is:
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where p̂
i
is the vector of estimated parameters of the

column i, x̂i is the vector of state estimates, ui is the

vector of inputs applied to the column i, and ŷj
i
and

yj
i
are the simulated and the measured concentrations of

component j at the outlet of the column i, respectively.
The superindex Π represents the number of columns that
separate the raffinate and extract ports, and it is equal to
the sum of the lengths of the zones I and IV of the SMB
plant. The input term Ĉ

γ
out,i−1 deserves special attention.

It represents the concentrations at the inlet of the column
the parameters of which are estimated during the second
stage. As these concentrations are unknown, they are cal-
culated by simulation of the columns prior to the estimated
ones during the second stage. This has been implemented
by considering an arrangement of two decoupled pairs of
columns. The columns at the front are the estimated ones,
and their dynamics are considered during both time stages,
while the columns at the rear are only simulated during the
second stage in order to provide the input concentrations
of the estimated columns. The arrangement of decoupled
columns corresponding to the estimation of the parameters
of a column i with measurement positions at its inlet
during T k−Π−1 < t < T k−Π and T k−1 < t < T k and at its
outlet during T k−Π < t < T k−Π+1 and T k < t < T k+1 is
illustrated in Figure 2.

The first term in Eq. 6 provides the regularization of the
estimated parameters in order to avoid abrupt changes in
their values. The second term corresponds to the state
regularization. The third term is the conventional squared
residual error between the simulated and the measured
concentrations at the column outlets. The states and pa-
rameters estimated by minimizing Eq. 6 correspond only
to the column with a measurement position at its outlet at
the two different intervals considered. The states of the rest
of the SMB plant are calculated by dynamic simulation,
replacing the simulated values of the concentrations at
the outlet of the columns with the product ports by the
measured values. The parameters of the simulation are
updated once the optimization is finished.
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Fig. 2. Arrangement of decoupled columns used in the esti-
mation of the parameters of a column j. The columns
considered in the objective function are encircled.

6. RESULTS

The performance of the proposed estimation scheme has
been tested for the case of the separation of an iso-
propanolol racemic mixture in a six-column plant with a
1/2/2/1 zone distribution. The adsorption behavior of the
mixture is described by an extended Langmuir isotherm:

qj = H
j
1C

p,j +
HA

2 Cp,j

1 +KACp,A +KBCp,B
, j = {A,B}

(16)

The adsorption isotherm parameters HA
1 and HB

1 , to-
gether with the individual column states were chosen as
the variables to be estimated. Two scenarios were con-
sidered as test cases. The first scenario corresponds to
the tracking of a step change of one of the adsorption
parameters in one of the columns, starting from CSS
conditions in a SMB plant with originally equal parameters
in all columns. The second scenario corresponds to the
estimation of the adsorption parameters in a SMB plant
with different parameters in the columns, starting from
the corresponding CSS conditions. In all cases, a sampling
rate of 21 measurements per period is considered. The
switching of the valves is assumed to be synchronous. The
measurements are assumed to be contaminated with white
noise with a standard deviation of 0.1138 g l−1. In the two
test cases, the estimator was activated after 10 periods
of operation. The inputs corresponding to the operating
point are CA,feed = CB,feed = 7.25 g l−1, QF = 0.31
ml s−1, QD = 2.75 ml s−1, QRe = 4.80 ml s−1, QEx =
1.94 ml s−1, QRa = 1.12 ml s−1 and τ = 2.05 min. The
partial differential equations of the General Rate Model
have been discretized with the Finite Element Method in
the fluid phase, and with Orthogonal Collocation in the
solid phase, as described in Gu [1995]. For each column, a
total of 25 nodes were chosen for the fluid phase, and 1 col-
location point for the pore phase, leading to a total of 400
state variables in the dynamic optimization problem. The
estimator was parametrized with a measurement standard
deviation σm = 0.0447 g l−1, a state regularization σx =
0.1 g l−1 and with parameter regularizations σp = {0.0514,
0.0402}. This parametrization was found to provide the
best compromise between the speed of convergence and
the robustness against noise of the estimated parameters.

The two-stage dynamic optimization problem was solved
with the multiple shooting method implemented in the

software Package MUSCOD-II v.6. (Leineweber [2003]).
Under this approach, the stages of which the time hori-
zon is composed are divided into the so-called shooting
intervals. The dynamic equations of the system are in-
tegrated over each interval with the differential equation
solver DAESOL, using the states at the beginning of
each interval as initial conditions. These are treated as
degrees of freedom. The discretization of the states and
of the inputs leads to casting the dynamic optimization
problem into a large scale non-linear programming task.
The continuity of the states between the shooting intervals
(20 per stage in this work) is specified as a constraint
of the optimization problem, which is enforced only at
the solution in order to improve the convergence of the
optimization. The resulting problem is solved by means
of a tailored Sequential Quadratic Programming (SQP)
algorithm, for which a Gauss-Newton approximation of
the Hessian matrix, and a trust region globalization for
the calculation of the SQP correction steps were chosen for
the solution of the estimation problem. The concentrations
measured at the inlet of the estimated column during
the first stage of the time horizon were parametrized as
piecewise continuous linear inputs. All the other inputs
are constant.

6.1 Tracking of a step change of a parameter in a column

For this test case, two different scenarios were chosen.
In the first scenario, a step change of 20% in the value
of the Henry coefficient of column 3 with respect to its
reference value (HB

1 =2.2) was introduced after 10 peri-
ods of operation, while the plant was operating at CSS
conditions. At this moment the estimator was activated,
and its performance was observed during a time period of
90 periods (i.e. 15 cycles) in order to verify its long term
behavior. The time profiles of the estimated parameters
are shown in Figure 3. It can be seen that the estimated
value of HB

1 converges quickly to the real value. The
parameter reaches its true value less than 30 periods after
the start of the estimation. During the whole time horizon,
the estimated values of HA

1 in all columns and of HB
1 in

the rest of the plant fluctuate around their corresponding
true values. The same occurs with HB

1 in column 3 once
it has attained its real value, showing that the estimator
delivers unbiased parameter estimates.

In the second scenario, a step change of 20% in the value of
the parameterHA

1 of column 3 with respect to its reference
value (HA

1 =2.68) was simulated, also after 10 periods of
operation, while the plant was at CSS conditions. The time
evolution of the estimated parameters is shown in Figure
4. It can be seen that, similarly as in the case of HB

1 , the
parameterHA

1 reaches its true value in less than 30 periods
of operation. In both cases, the parameter estimates re-
main unbiased, showing deviations around their true value
of +2% or less. The convergence of both parameters can
be accelerated by assigning lower weights to them, at the
expense of a more fluctuating behavior.

6.2 Estimation of the parameters in a SMB plant with
different column properties

For this case, it is assumed the true values of the parame-
ters HA

1 and HB
1 of all columns in the plant deviate from
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Fig. 3. Ratios between the estimated and the real values
of HA

1 (above) and HB
1 (below) for all columns after

a step change of 20% of HB
1 in column 3 after period

10.

Fig. 4. Ratios between the estimated and the real values
of HA

1 (above) and HB
1 (below) for all columns after

a step change of 20% of HA
1 in column 3 after period

10.

their reference values (HA
1 =2.68, HB

1 =2.2) as described in
Table 1, and that the plant is at the CSS conditions cor-
responding to this new parameter set when the estimator
is activated.

The time profiles of the estimated parameters are shown
in Figure 5 for a time horizon of 90 periods after the acti-
vation of the estimator. It can be observed that the scheme
proposed in this work manages to bring the estimated

Column 1 2 3 4 5 6

∆H
A

1
+8% +8% -18% +10% -7% +4%

∆H
B

1
+14% +9% -9% +27% +9% -9%

Table 1. Deviations of the real parameters of
the columns with respect to their reference

values (HA
1 =2.68, HB

1 =2.2).

values of HA
1 close to their true values approximately 40

periods after its activation. The estimated values of HB
1

require a similar amount of time to converge to the actual
values of the plant. The results show once again that the
estimator presented in this work is able to provide bias-
free parameter estimates.

The performance of the proposed optimization-based
method can be compared to the EKF-based approach
presented in Küpper and Engell [2006]. Figure 6 shows
the estimates of HA

1 and HB
1 reported in the reference for

the same model-plant mismatch scenario, starting from
the instant when the estimation scheme is activated. It
can be seen that HA

1 converges relatively slowly, requiring
up to 50 periods to attain the real values of the plant.
In the case of HB

1 , the convergence to the actual values
takes between 10 and 20 periods. This is comparable with
the convergence rate obtained with the optimization-based
approach. However, it must be taken into account that
in Küpper and Engell [2006], besides the measurements
at the extract and raffinate ports, a fixed measurement
position is also considered. Additionally, a higher sampling
rate (100 samples per period, Küpper [2011]) is assumed.
Both factors can be expected to improve the performance
of the estimator.

Fig. 5. Ratios between the estimated and the real values of
HA

1 (above) and HB
1 (below) for all columns for the

case of constant different column parameters.

Figure 7 shows the evolution of the accumulated state
estimation error for the whole SMB plant at each sampling
instant, defined in Eq. 17:

ê =

√

√

√

√

Nx
∑

i=1

(x̂(i)− x(i))
2
. (17)

In Figure 7 it can be seen that the accumulated error,
which originally fluctuates in a range between approx-
imately 18 and 20 g2 l−2, rapidly decreases once the
estimator has been activated. The estimator manages to
reduce the error to less than 5% of its initial value after
approximately 50 periods of operation.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9380



Fig. 6. Time evolution of the estimates of HA
1 (black

lines) andHB
1 (gray lines) obtained with the approach

proposed in Küpper and Engell [2006]

Fig. 7. Time evolution of the accumulated state estimation
error for constant individual column parameters as
indicated in Table 1.

7. CONCLUSIONS AND FUTURE WORK

In this work, a new optimization-based scheme for the
estimation of the states and of the parameters of the
individual columns in a SMB plant has been proposed. The
scheme exploits explicitly that the measurement informa-
tion at both the inlet and outlet of the columns is available
due to the port switching, an intrinsic property of the SMB
process. The proposed estimator was tested under the
scenarios of tracking of step changes of individual column
parameters and of state and column parameter estimation
for a SMB plant with different adsorption parameters in
all columns, showing in both tasks that the method is able
to provide unbiased estimates at a reasonable speed of
convergence.

The scheme presented here uses less measurement informa-
tion than our previous work (Küpper and Engell [2006])
and is relatively easy to tune. In contrast to state and
parameter estimation schemes for the whole SMB process,
we propose a decentralized scheme in which only two
columns are considered simultaneously which considerably
reduces the computational effort and can handle the real-
istic situation of different parameters in all columns easily.

Future work includes the development of optimal exper-
imental design strategies which enable the reliable estima-
tion of parameters with minimal experimental effort.
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Appendix A. NOMENCLATURE AND PROCESS
PARAMETERS

Ci Concentration of i g cm−3

D Column diameter 1.0 cm
Di

ax Axial dispersion coefficient cm2 s−1

(see Kuepper et al. [2009])
Di

p Particle diffusion coefficient 1x10−3 cm2 s−1

H
A,B
1 Henry coefficient of A, B (1) 2.68, 2.2

H
A,B
2 Henry coefficient of A, B (2) 0.9412, 0.4153

KA Isotherm coefficient of A 340 cm3 g−1

KB Isotherm coefficient of B 262 cm3 g−1

kAl Mass transfer coefficient: A 5.6 s−3

kBl Mass transfer coefficient: B 3.3 s−3

L Column length 10 cm
Nx States in the SMB plant 600
qi Concentration of i (solid) g cm−3

Qi Flow rate in the zone i cm3 s−1

r Radius cm
rp Particle radius 0.002 cm
u Interstitial velocity cm s−1

ǫb, ǫp Porosity: column, particle 0.4, 0.5
ν Viscosity 6.85x10−4 P
ρ Density 1.0 g cm−3

τ Period length 123 s
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