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Abstract: In this paper, we present a novel method to supervise several discrete events and
continuous processes causing failures in a blood pump. These are potential hazards which
regularly cause problems in intensive care routine. We propose an indicator that considers the
nonlinear shear thinning flow properties of blood. Based on a threefold of physiological motivated
measures, we calculate an indicator which is not only able to detect ongoing events like gas in the
blood phase but also to predict upcoming events like the suction of the withdrawing cannula to
the surrounding vessel’s wall. We present an algorithm that is embedded in a distributed 32 bit
microcontroller network and holding hard real-time constraints. We were able to evaluate out
algorithms in-vivo. For this algorithm we analyzed online data of more than 140 hours of animal
experiments.

1. INTRODUCTION

In intensive care medicine, patients are increasingly
treated with extracorporeal organ support using extra-
corporeal blood circulation (cf. Paden et al. [2013], Cohn
[2003]). Insufficient physiological conditions of patients are
supported or even temporally replaced utilizing treatment
methods outside the human body. In these therapies the
focus is often on blood. Either, undesired substances are
eliminated (e.g., during dialysis), or needed substances
are fed (e.g., oxygen during lung assist). In this manner,
the blood circulation itself can be supported via, e.g., a
ventricular assist device or a cardiopulmonary bypass.

Blood, which is the medium of interest, adds the difficulty
of being a non-Newtonian fluid. The flow properties of
blood do not only depend on flow and pressure but also
on the varying viscosity. The viscosity of a shear thinning
fluid such as blood depends on the shear stress which it
is exposed to. There are existing models for calculating
the flow properties of blood, but these models need to
know the exact geometry of the whole piping system and
are generally solved using numerical techniques such as
the finite element method (Lou and Yang [1993], Johnston
et al. [2006], Nichols and O’Rourke [2011]).

Modeling of the whole extracorporeal circulation in in-
teraction with the human body in detail is still an unre-
solved problem. Measuring the conduit-structure of each
individual setup would be necessary due to the geometric
complexity of the cardiovascular system and unavoidable
variations in the extracorporeal tubing. Otherwise, the
parameterization of the subsidiary fluid dynamical models
would not be possible. Therefore, only very small volumes

are modeled in detail or approximations are used to de-
scribe the behavior.

For the design of a control or safety concept, there is
the need of a fluid-dynamical model of the system. Often
for simplification, a model with fixed viscosity is used.
Particularly for safety measures, this loss of accuracy is not
tolerable. Hence, we extended the model of a Newtonian
fluid with temporal bounded uncertainties in order to
consider the shear thinning properties of blood.

1.1 Worked example

In this work, we focus on a model-based safety concept
for a rotary blood pump (diagonal pump). This pump
is used as actuator during an extracorporeal lung assist
(ECLA) treatment. Here, a failure of the pump would be
life threatening. Using supervision of differences between
the model and the controlled system, we are able to
detect several discrete events like gas bubbles within
the transported blood or the suction of the withdrawing
cannula to the surrounding vessel, and the continuous
wearout of the pump due to the accumulation of blood
clots (coagulation). We also investigate on the performance
of the derived algorithms. The aim is to be able to
embed the algorithms to an embedded safety network of
microcontrollers.

2. NEWTONIAN FLUID-DYNAMICAL MODEL OF
THE BLOOD-PUMP

In general, a rotary blood-pump transfers energy, from
the rotation of a motor, to a blood-flow and a pressure
difference over the pump, respectively (Karassik et al.
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Fig. 1. Parameterized model of the characteristic curve
according to equation (1) of a Medos DP2 blood pump

[2001], Reul and Akdis [2000]). For the utilized diagonal-
pump – Medos DP2 – the generated pressure difference
over the pump transporting a Newtonian fluid can be
described as:

∆p(Q(t), ω(t)) = α1 ·Q(t) + α2 ·Q(t)
2

+ α3 · ω(t)2, (1)

where Q is the blood-flow and ω is the revolution speed of
the impeller. The coefficients α1, α2 and α3 can be identi-
fied depending on the pump geometry and the transported
fluid, especially the viscosity. There are other comparable
models presented in literature (Choi et al. [1997], Misgeld
[2007]).

All mentioned models have in common that only fixed
viscosity fluids are considered; this is not suitable for
blood. For closed-loop blood flow controller design, this
discrepancy can be neglected if there are no high dynamics,
such as pulsatile flow, in the system and the control
algorithm has no permanent deviation, e.g., due to an
integral term.

In Figure 1, the characteristic curve of the Medos DP2
diagonal blood pump for a water glycerol solution is given
for several rotational speeds. This fluid has flow properties
comparable to blood (dynamic viscosity of η = 3, 6 mPa
at a temperature of 37 ◦C). Each circle represents a
measurement point. The solid lines are generated by a
pump specific parameterization of equation (1).

The applicability of the presented model is shown in
Figure 2. The plot shows the pressure difference generated
over the blood-pump during a porcine animal experiment
versus the calculation based on equation (1). In general,
a good correlation is shown. In detail, there is a too
low predicted pressure difference around 1:00 PM and a
too high pressure difference at about 1:15 PM. At 1:10
PM and 1:22 PM, instationarity in the measured pressure
difference can be recognized; they are caused by changes in
the blood flow and the accompanying change in viscosity.
This variation of viscosity is disregarded in the presented
model. At large, the error of the model highly depends on
the operating point of the blood-pump and can be positive
or negative, respectively.

In this section, a well known model for the pressure
difference generated by a diagonal blood-pump was pre-
sented. The characterization only holds for Newtonian
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Fig. 2. Preasure difference model and archieved values by
the blood pump during an animal experiment

fluids, which yet is sufficient in most cases of blood flow
controller design.

3. FUZZY MODELING OF THE CONVEING
NON-NEWTONIAN FLUIDS

The mathematical model presented in Section 2 only holds
for fixed viscosity fluids. Blood is, as already illustrated,
a shear thinning fluid. Hence, equation (1) only holds for
massively restricted conditions.

In literature, several models for the non-Newtonian blood
flow were presented (Lou and Yang [1993], Johnston et al.
[2006], Nichols and O’Rourke [2011]). All of them base
on the Navier-Stokes equations. Hence, the mathematical
modeling could be extended for non-Newtonian fluids.
Therefore, the exact geometry of the whole setup needs
to be parameterized and one will need exact information
about the velocity vector field of the fluid. This class of
models is in general only solved using numerical approx-
imations such as CFD (Computational Fluid Dynamics).
These models usually are computationally complex. Thus,
CFD is used for geometric improvements but neglected for
safety supervision.

For the blood pump supervision, an adequate precise but
low computational-effort model is needed. In this section,
we will present a physiological motivated set of parameters
to supervise. These parameters enable the needed fuzziness
to take account for the shear thinning properties of blood.

3.1 Flow impedance

In analogy to the electrical impedance, the quotient of
pressure difference and blood flow is defined as flow
impedance:

ZF (t) =
∆p(t)

Q(t)
. (2)

This parameter describes the flow impedance observed
by the blood pump. It adds up all tubing, cannulas,
the patient and, if existing, any additional extracorporeal
treatment devices. Thus, ZF combines all variations in
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rigidity — including compliance of the patient’s vessels.
During an extracorporeal treatment, varying factors can
influence ZF . Hence, it cannot be regarded as constant.
We assume that all regular causes of a change in flow
impedance have slow dynamics.

This leads to the analysis of the variation of the flow
impedance in a time window with a width of 10 seconds.
Thereby, we linearize ZF in the actual operating point of
the pump. The flow impedance, as described in equation
(2), is derivated and folded with a Hamming window
with a width of 10 seconds. In order to emphasize higher
variations, this result is squared.

Z̃ ′F (t) = c1 ·
(
wHam,10 s ∗

dZF (t)

dt

)2

(3)

With this measure Z̃ ′F (t), the variable physiology of the
patient is aggregated, but discrete events to the tubing,
e.g., bended tubing, can be determined.

3.2 Deviation of pressure model

In Section 1, we already introduced the varying flow
properties of blood. These properties lead to a noticeable
chance of a permanent deviation between the measured
pressure difference and the model-based calculated one.
Therefore, we only consider a lightly weighted squared
relative error:

Ep(t) = c2 ·
(

∆pmeasured(t) − ∆pcalculated(t)

min (∆pmeasured(t),∆pcalculated(t))

)2

. (4)

By squaring the calculated error, we not only avoid neg-
ative errors but also award an upcoming error with an
increased interest.

3.3 Homogeneity of alteration rate

In contrast to the relative error Ep (cf. Section 3.2),
the relative changes within the measured and calculated
pressure differences should be comparable. Consequently,
an increasing ∆pmeasured(t) should be accompanied by an
increasing ∆pcalculated(t) and vice versa.

As a last measure, the derivation of both pressure differ-
ences are compared as a squared difference. In order to
consider the transient properties, we use the 10 seconds
window again (cf. Section 3.1).

Eh(t) = (5)

c3 ·
(
wHam,10 s ∗

(
d∆pmeasured(t)

dt
− d∆pcalculated(t)

dt

))2

3.4 Resulting indicator

These three measures as defined in (3), (4) and (5) were
combined to a single indicator by weighted summation.
As motivated, the deviation of the pressure model to the
measurements was taken into account only marginally.
The sum is normalized by choosing the constants c1, c2
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Fig. 3. Exemplary analysis of animal experiment data

and c3 in such a way, that an indicator of 1 or more
can be regarded as a detected fault. This fault detection
threshold is highlighted in each plot as a red dashed line.
The normalization and determination of the constants was
performed empirically, based on the data of porcine animal
experiments. Therefore, we need further investigation on
the transferability of the constants to humans.

An exemplary analysis is shown in Figure 3. The upper
diagram shows the measured and the calculated pressure
difference (cf. Figure 2). The lower diagram shows the
progression of the introduced indicator. One can see peaks
of up to 0.5, but during the observed period, no fault
occurred, so the indicator stays silent.

4. EVALUATION

For evaluation of the proposed indicator, first of all, the
model as stated in equation (1) needed to be parame-
terized. Therefore, we conducted an in-vivo experiment
during which the speed of the pump motor was varied. We
repeatedly recorded the range from 1000 rpm to 10000 rpm
in 10 steps. Additionally, multiple speed jumps (step re-
sponses) were traced.

By this original data (28 minutes of measurement), we pa-
rameterized the coefficients α1 to α3 in equation (1). The
resulting mean error over the calibration is −11.02 mmHg
with a standard deviation of 24.51 mmHg.

In the following, three representative events are exem-
plarily shown. In general, we evaluated this indicator
against about 140 hours of data, collected during ani-
mal experiments conducted with 15 midi-pigs (ø-weight
50 kg, cf. Stollenwerk [2013]). All experiments were con-
ducted according to ethical principles of laboratory animal
care (approved by the appropriate governmental animal
care committee (LANUV, NRW, Germany)). The animals
were treated according to experimental protocol defined in
Kopp et al. [2011].

The implementation of the algorithms according to equa-
tions (3), (4) and (5) was conducted in MATLAB (Re-
lease 2012b, The MathWorks, Natick, MA). Subsequently,
these algorithms were cross-complied to C-code in order
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Fig. 4. Injection of 0.5 ml of air in the extracorporeal blood
circulation (at a blood flow of 3.3 L/min)

to embed them to a distributed microcontroller network
(cf. Stollenwerk et al. [2011b]).

4.1 Event: Gas bubbles in blood tubing

The first evaluated event was the presence of gas bubbles in
the blood tubing. If the volume element containing the gas
bubbles would be supplied to the patient, infarctions like
stroke or heart attack might be a consequence. Therefore,
no matter what the gas bubbles have to be detected and
the patient needs to be guarded against the introduction of
gas bubbles. In order to simulate such an event, we injected
different volumes of air at the withdrawal cannula. This
gas volume was transported through the tubing into the
blood pump. The corresponding pressure plot is given in
Figure 4. The dashed purple line indicates the point in time
when the gas was injected (6:28:58 PM). Subsequently the
gas bubble needed about 35 seconds to move through the
tubing (approx. length 115 cm) until it reaches the pump.

Initially, the injection of gas changes the flow impedance by
lowering the density of the transported fluid. This results
in a slight raise of the introduced indicator. Nevertheless,
this discrepancy does not have the sufficient significance,
since it is in the same magnitude as caused by the
measurement error and the influence of the non-Newtonian
flow properties of blood. When the gas bubbles approach
the pump, the perfusion behavior of the pump is changed
over all three parameters such that this event can be
dependably detected. With gas volumes of a sufficient size,
already the injection can be detected. Unfortunately, we
only injected volumes between 2.0 ml and 0.5 ml into
the circulation. Therefore, we cannot draw a lower bound
beneath which injected gas cannot be detected anymore.
This is one aspect which should be evaluated in the future.

4.2 Event: Sensor failure

Another addressed problem by the indicator is sensor
failure. The measurement plot shown in Figure 5 was
falsified by the maloperation of a three-way stopcock.
After the withdrawal of a blood gas analysis specimen the
cock was not set back to the correct position.
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Fig. 5. Failure of the pressure sensor due to incorrect
operation (at a blood flow of 1.3 L/min)

One of the used pressure sensors was connected via this
three-way stopcock to the blood tubing system. This cock
enables interaction with the tubing, e.g., drawing of blood
specimen or delivery of drugs without additional tapping.

Due to the maloperated cock the measured pressure dif-
ference trended to a pressure difference of 0 mmHg. By
the means of the introduced indicator, this failure could
be detected after 15 min; before this behavior could cause
any harm to the patient.

4.3 Event: Suction of withdrawing cannula

A last example for a detectable discrete event is shown
in Figure 6. During the operation of an extracorporeal
circulation, it might occur that the withdrawing cannula
sucks too much blood out of the vessel. Then, the tip of
the cannula is occluded by the wall of the surrounding
vessel. This results in an instantaneously drop of the blood
flow. The causing physiological conditions can, e.g., be
dehydration of the patient.

Since the only chance to reestablish the extracorporeal
circulation after such an event is to shut down and restart
the whole circulation, it should be avoided in any case.
The discontinuation of the extracorporeal treatment of the
patient regularly is accompanied by a serious hazard for
the patient’s life.

The pressure plot in Figure 6 shows a spontaneous drop
at 1:09:30 PM, which is the moment the flow grinded to
a halt. Already some 90 seconds prior to the occlusion
an abnormal behavior of the pressure signal can be rec-
ognized. The introduced indicator exceeds the limit about
50 seconds before the drop of the blood flow, which regu-
larly is sufficient for the intensive care physicians to take
the correct actions, e.g. supply saline solution. Anyhow,
we were able to develop another model based measure
dedicated to cannula occlusion, which is able to predict
the drop of the blood flow up to 90 seconds in advance (cf.
Stollenwerk et al. [2011a]).
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Fig. 6. Suction of the tip of the withdrawal cannula to the
surrounding vessel

4.4 Continuous processes

During two of the conducted experiments, mechanical
stress within the bearing of the impeller caused significant
coagulation. During the experiments, the indicator con-
stantly rose. After the experiments the whole tubing was
washed and the clot could visually be validated within the
pump.

Since we cannot state anything about the intermediate
status of the clot, a direct mapping from the indicator to
the clot’s size is not possible at this moment. Therefore,
we want to establish a model for generating clots of
controlled sized and evaluate the phenomenon separated
in-vitro. Using this model, we expect to be able to better
fit the algorithms to the behavior during clotting and
state the detection probabilities for clotting in the blood
pump related to clot size, respectively. Nevertheless, the
correlation between the risen indicator and clotting in the
tubing in general proves the applicability.

Besides bending of the tubing, also leakages can be de-
tected. We lead a part of the blood flow into a reservoir.
The leakage resulted in a change of flow impedance, which
could be detected in specific cases. Further experiments
have to point out the lower bound of the ratio of blood
flow to leakage that can be detected with certainty.

4.5 Worst-case execution time and real-time properties

The whole algorithm was run on an ARM7 microcon-
troller. A formal analysis of the software showed, that one
iteration of the algorithm results in a worst-case sum of
6633 cycles. This leads to a CPU time of 0.138 milliseconds
on the utilized Atmel AT91SAM7 hardware with a clock
speed of 48 MHz. Hence, the presented algorithm is ap-
propriate for application in an embedded hardware en-
vironment. Real-time calculation of the indicator can be
guaranteed utilizing our hard- and software architecture
(cf. Stollenwerk [2013], Stollenwerk et al. [2011b]). The
worst-case execution time analysis was conducted using
aiT for AMR7 version 11.08 build 166667 from AbsInt (cf.
Ferdinand and Heckmann [2004]).

5. CONCLUSION

We introduced an indicator that adds a new keystone
towards sound operation of extracorporeal circulation. By
the application of model-based safety measures, we are
able to detect various discrete events such as gas bubbles
in the extracorporeal circulation, sensor failure, or cannula
suction, as well as continuous processes such as coagulation
or leakages. Naturally, these continuous processes can only
be addressed after exceeding a certain threshold. This
especially holds for the detection of leakage. Very small
amounts of lost blood like occasional drops cannot be
detected by the measures presented in this paper.

The achievements shown were conducted by fuzzy mod-
eling of the conveying non-Newtonian fluids. In contrast
to earlier attempts, we took the sheer thinning proper-
ties of blood into account, which enabled us to establish
physiological motivated models with higher specificity and
sensitivity.

We were able to show the applicability of our model-based
indicator by in-vivo experiments with broad base data.
Events, regularly causing hazards in clinical routine, like
suction of cannula or infarction causing gas bubbles within
the blood, could be detected reliably.

6. OUTLOOK

With reference to the monitored continuous processes, we
are elaborating more fine-grained methods to supervise
processes like coagulation within the pump. This shall
improve the prediction and modeling of these processes.

In the proposed algorithm, the fuzziness is not depen-
dent of the operating point of the system. We want to
investigate whether such a dependency would enable us
to increase the specificity of detecting different or even
additional hazards.

In Section 4, we were able to show that the introduced
indicator is able to detect volumes of down to 0.5 ml of
gas within the blood tubing. This evaluation should be
extended to even smaller volumes in order to determine a
lower bound for which volumes can be detected reliable.

The used constants within the formulae were empirically
fitted to 140 hours of porcine experiments. A rule of
derivation for these constants should be elaborated based
on a broader data base, which should enable the parame-
terization of other blood pumping devices in addition. This
should enable a more general assessment of the indicator
and its application. In addition, the transition to human
blood properties should be investigated.

An additional metered parameter in the system is the en-
ergy consumption of the blood pump. According to the law
of conservation of energy, we are able to also consider these
parameters. If no improvement of the existing algorithms
could be achieved, one should at least be able to addition-
ally monitor the hypovolemia caused by hyperthermia.
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