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Abstract: Power system dynamics change because of variations in distribution circuit, performance of 

power generation and behavior of load. An estimation of these dynamical behaviors can be achieved using 

mathematical models. Interconnected systems with shared state variables require specific models to 

demonstrate the influence of parameter variations on all areas. Estimation is particularly difficult when the 

system is influenced by random load variations such as moving plug-in hybrid electric vehicle (PHEV) 

loads. This paper introduces a new model-based estimation technique designed for large scale 

interconnected systems. This high performance state estimation demonstrated an accurate effective, real-

time and computationally efficient approach. State estimations and their transient behavior were 

successfully obtained for a power system with random loads as high as 327 level-1 charging vehicles at 

various storage device charge levels.  



1. INTRODUCTION 

Perturbations in Large-scale interconnected systems (e.g. 

electric power systems) are mainly the result of varying 

operating conditions, system dynamics, and failures. 

Parameter variations due to fault and noise in large-scale 

interconnected systems significantly affect their dynamic 

behavior. State estimation of the integrated systems requires 

an effective, real-time and computationally efficient 

technique. When the system parameters change as a result of 

system perturbations, the dynamic behavior can be 

represented as a new model. Multiple of these models can 

configure a set of possible scenarios.  

In Multiple model adaptive estimation (MMAE) technique, 

banks of Kalman filters run in parallel to detect dynamic 

variations of the system. Kalman filters are weighted by the 

likelihood of model correctness using probability density 

functions (Tjahyadi, Fangpo & Sammut, 2004; Maybeck & 

Hanlon, 1995; Menke & Maybeck, 1995, Maybeck, 1999).  

The probability evaluator, which generates the probability 

weights, operates based on measurement residuals. This 

method is a well-known technique and is used for variety of 

applications (Hanlon & Maybeck, 2000; Tjahyadi, Fangpo & 

Sammut, 2004; Boskovic & Mehra, 1999; Cezayirli & Ciliz, 

2004; Izadian & Famouri, 2010; Martin, Schneider & Smith, 

1987; Izadian, Khayyer & Famouri, 2009). 

In this paper, a state estimation technique for large-scale 

interconnected overlapping systems is presented using 

multiple model adaptive estimation technique. The Kalman 

filters are designed for modeling of noise and interconnected 

system parameter variations. The main parameter variation is 

considered as the load imposed by moving PHEVs on the 

power grid (Tuffner, Kintner-Meyer, 2011), (Kintner-Meyer, 

Nguyen, Jin, Balducci, Secrest, 2010), (Khayyer, Ozguner, 

2013). The estimation technique is used in solving the 

problem of frequency control of a large-scale interconnected 

power system. Various types of disturbances are applied as 

load. The benchmark power system selected for studies is a 

two-area power system with a tie-line interconnection 

(Khayyer, Ozguner, 2014). Several power generation units 

including wind and diesel backed by a battery storage unit 

exist in area 1. In area 2, a micro-hydro power generation unit 

feed loads. The tie-line interconnection between two systems 

and its parameters (e.g. transferred power) directly affect the 

power system operation, and more importantly, the power 

transient stability.  

2. SYSTEM DYNAMICS 

As stated earlier, the system studied in this paper is an 

interconnected two-area generation unit. Area 1 includes a 

hybrid wind-diesel backed by a battery storage that is 

connected to the network through a droop-based inverter, and 

area 2 is a micro-hydro generation unit that uses synchronous 

generators. Dynamic components of the overall system are 

linearized around the system’s nominal operating point for 

stability analysis (Kundur, 1994). Linear model of power 

system components are obtained in this section.  

 

2.1 Storage System Dynamics 

Figure 1 illustrates the overall schematic and small signal 

model of the Battery Energy Storage System (BESS). Power 

electronic droop (Guerrero, Berbel, Matas, et al.,2007), 

(Guerrero, Vasquez, Matas, 2009) , (Guerrero, Chandorkar, 

Lee, Loh, 2013) , (Guerrero, Loh, Lee, Chandorkar, 2013) 

and battery SOC level are taken into account in this storage 

modelling mainly for battery inverters in the system. 

 
Figure 1. Block diagram of battery energy storage modelling 
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In this model, battery dynamics is presented as a first order 

transfer function (Kottick, Blau, 1993), (Lee, Wang, 2008), 

(Bhongade, Tyagi, Gupta, 2011). 

 

𝐺𝐵𝐸𝑆𝑆(𝑠) =
𝐾𝐵𝐸𝑆𝑆

1+𝑠𝑇𝐵𝐸𝑆𝑆
                             (1) 

where 𝐾𝐵𝐸𝑆𝑆 is the plant gain and 𝑇𝐵𝐸𝑆𝑆  is the time constant 

of storage system. Droop consideration reduces battery power 

contribution when the SOC level is low. The droop modeling 

is shown in equation (2) (Guerrero, Vasquez, Matas, 2009) , 

(Guerrero, Chandorkar, Lee, Loh, 2013), (Guerrero, Loh, 

Lee, Chandorkar, 2013).  

 

𝜔 = 𝜔∗ − 𝑚(𝑃 − 𝑃∗) − 𝑚𝑑
𝑑(𝑃−𝑃∗)

𝑑𝑡
 .              (2) 

where 𝜔 is the frequency of inverter and 𝜔∗ is the frequency 

at no-load. (𝑃 − 𝑃∗) represents 𝛥𝑃𝐵𝐸𝑆𝑑𝑟𝑜𝑜𝑝 in this system and 

𝑚𝑑 and 𝑚 represent droop coefficients. Variable droop 

coefficient is adjusted according to the battery SOC and is 

calculated as (Guerrero, Vasquez, Matas, 2009), 

 

𝑚 =
𝑚𝑚𝑖𝑛

𝛼
                                  (3) 

where 𝑚𝑚𝑖𝑛 is the default minimum droop coefficient and 𝛼 

is equal to 1 when battery is fully charged (SOC=100%) and 

is equal to a lower saturation bound when battery is empty.  

 

2.2 Overall two area system model 

Overall generation system is made up of two sub-area 

generation systems. Small-signal block diagram of the first 

sub-area (hybrid generation system of wind, battery, and 

diesel) is presented in Figure 2 (Bhatti, Al-Ademi, Bansal, 

1997), (Bansal, Bhatti, 2008).  

 

 
Figure 2. Block diagram of hybrid generation system (first 

generation area) 

 

The second-generation sub-area is considered as a micro-

hydro generation unit. Figure 3 illustrates small-signal 

dynamic model of the micro-hydro generation unit (Kundur, 

1994). 

 
Figure 3. Dynamic model of the hydro generation unit (Kundur, 

1994) 

 

Considering the overall system as the hybrid wind-battery-

diesel and micro-hydro system, state variables of the overall 

system are: 
 

𝑋 = [𝛥𝐹𝑠1, 𝛥𝑃𝐺𝐷 , 𝛥𝑋𝐸𝐷1, 𝛥𝑋𝐸𝐷2, 𝛥𝐹𝑇 , 𝛥𝑋𝑃𝐶1, 𝛥𝑋𝑃𝐶2, 𝛥𝑋𝑃𝐶3, 
 𝛥𝑃𝐵𝐸𝑆, 𝛥𝑃𝐵𝐸𝑆𝑑𝑟𝑜𝑜𝑝, Δ𝑃𝑡𝑖𝑒 , 𝛥𝐹𝑠2, 𝛥𝑃𝐺𝐻 , 𝛥𝑃𝑅𝐻, 𝛥𝑋𝐸𝐻 , 𝛥𝑃𝑟𝑒𝑓𝐻] 

where 𝛥𝐹𝑠1 is frequency of the first area (hybrid system), 

𝛥𝑃𝐺𝐷 is fluctuation in the diesel generator power, 𝛥𝑋𝐸𝐷1,
𝛥𝑋𝐸𝐷2 are diesel generator governor valves position, 𝛥𝐹𝑇 is 

the wind turbine frequency, 𝛥𝑋𝑃𝐶1, 𝛥𝑋𝑃𝐶2, 𝛥𝑋𝑃𝐶3 are wind 

turbine pitch control actuators, 𝛥𝑃𝐵𝐸𝑆  is the battery power, 

𝛥𝑃𝐵𝐸𝑆𝑑𝑟𝑜𝑜𝑝 is the battery droop power, Δ𝑃𝑡𝑖𝑒  is the tie-line 

power between the two areas, 𝛥𝐹𝑠2 is frequency of the second 

area (micro hydro unit), 𝛥𝑃𝐺𝐻  is the fluctuation in turbine 

generated power, 𝛥𝑃𝑅𝐻  is the mechanical power from water 

flow, 𝛥𝑋𝐸𝐻 is the hydro unit governor valve position and, 

𝛥𝑃𝑟𝑒𝑓𝐻  is the variable achieving integral control. The system 

has one shared (overlap) state variable (Δ𝑃𝑡𝑖𝑒) between two 

areas.  

In large-scale power systems, where electric power 

generation is shared by two or more generators, speed of 

power generators directly influences active power flow. 

Therefore, disturbance in one generation area affects the 

voltage frequency in other areas. In such occasions, 

frequency is restored through droop control of power 

generation units (Boldea, 2005), (Xu, Mathur, Jiang, et al, 

1998) also known as Automatic Generation Control (AGC) 

of alternating current (AC) power system (Kundur, 1994), 

(Bergen, Vittal, 1999). In a disturbance event, electrical 

frequency of an interconnection must be maintained close to 

its nominal level (e.g. 60 Hz). Area control error (ACE) is 

considered as 

𝐴𝐶𝐸𝑖 = 𝐵𝑖∆𝐹𝑖 + ∑ 𝑎𝑖𝑗∆𝑃𝑡𝑖𝑒,𝑖𝑗
𝑚
𝑗=1  ,                 (4) 

where 𝐵𝑖  is the frequency bias factor of area 𝑖, ∆𝐹𝑖 is the area 

frequency error from nominal value (60 Hz), 𝑎𝑖𝑗  is the 

operator depending on per unit base difference of two 

subsystems, and ∆𝑃𝑡𝑖𝑒,𝑖𝑗  is the tie-line power interchange 

between areas 𝑖 and 𝑗. For detailed model dynamics, refer to 

(Khayyer, 2013) and (Khayyer, Ozguner, 2014). 

One of the major applications of overlapping 

decompositions is in Automatic Generation Control (AGC) 

(Kundur, 1994), (Bergen, Vittal, 1999) of alternating current 

(AC) power system. In overlapping decomposition technique, 

shared state variables between subsystems is considered in 

design of controller. In the next section, state estimation 

technique for large-scale interconnected overlapping systems 

is presented using multiple model adaptive estimation 

technique. 
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3. LARGE-SCALE POWER SYSTEM PHEV LOAD ESTIMATION 

In field implementation of control systems, the original 

system 𝑆 is subject to system and measurement noise, which 

can be represented as: 

 

𝑆: {
�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐿𝑤
𝑦 = 𝐶𝑥 + 𝑣

,                                          (5) 

where 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚 𝑎𝑛𝑑 𝑦 ∈ ℝ𝑙 are states, input and 

output vectors of system 𝑆, 𝐿 is the input noise matrix (𝑛 ×
𝑠), (𝑠 < 𝑛), 𝑤 is the zero mean system noise, and 𝑣 is zero 

mean output measurement noise. The system noise variance, 

𝑄𝑐, and measurement noise variance, 𝑅𝑐, have zero 

correlation, i.e. independent values. In large-scale 

overlapping system estimation, first the system is expanded 

into a large space and then decomposed into disjoint 

subsystems (Iftar, Ozguner, 1987), (Iftar, Ozguner, 1989), 

(Iftar, Ozguner, 1998), (Iftar, Ozguner, 1990), (Siljak, 1991). 

The expanded system is expressed as: 

 

�̃� : {
�̇̃� = �̃��̃� + �̃��̃�

�̃� = �̃��̃�
, (6) 

where �̃� ∈ ℝ�̃�, �̃� ∈ ℝ�̃� and �̃� ∈ ℝ𝑙 as states, input and output 

vectors of system �̃�. It is assumed that 𝑛 ≤ �̃�, 𝑚 ≤

�̃� and, 𝑙 ≤ 𝑙. For 𝑖 = 1: 𝑁, 𝑁 subsystems in the expanded 

space are presented as: 

 

�̃�𝑖 : {
�̇̃�𝑖 = �̃�𝑖�̃�𝑖 + �̃�𝑖�̃�𝑖 + �̃�𝑖𝑤𝑖

�̃�𝑖 = �̃�𝑖�̃�𝑖 + 𝑣𝑖

                                        (7) 

 𝑓𝑜𝑟 𝑖 = 1, … , 𝑁 

For detailed extension transformations refer to (Iftar, 

Ozguner, 1987), (Iftar, Ozguner, 1989), (Iftar, Ozguner, 

1998), (Iftar, Ozguner, 1990), (Siljak, 1991). 

The expanded subsystem, 𝑆, is decomposed into disjoint 

subsystems which Kalman based state estimation is designed 

for. Kalman filter minimizes the estimation error covariance, 

defined as follows:  

 

𝑃 = lim
𝑡→∞

𝐸[(𝑥 − �̂�)(𝑥 − �̂�)𝑇],                                  (8) 

where 𝑃 is a posteriori error covariance matrix. Algebraic 

Riccati equation (8) generates the optimum covariance matrix 

as follows: 

 

�̇� = −𝑃𝐶𝑇𝑅𝑐
−1𝐶𝑃 + 𝐴𝑃 + 𝑃𝐴𝑇 + 𝑄𝑐 .                       (9) 

 

Observable time invariant or slowly time variant systems 

generate a steady state (finite) covariance matrix (Simon, 

2006 and Izadian, Khayyer & Famouri, 2009).  

For the system studied in this paper, the Kalman filter 

estimation is formulated within the context of Inclusion 

principle (Khayyer, 2013). In this case, Riccati equations are 

solved in the expanded space for each subsystem and 

multiple model Kalman based estimators are derived for each 

subsystem (Tjahyadi, Fangpo & Sammut, 2004; Maybeck & 

Hanlon, 1995; Menke & Maybeck, 1995, Maybeck, 1999). 

Therefore, state estimated model j for each subsystem i of the 

expanded system is presented as: 

�̇̂̃�𝑖𝑗 = �̃�𝑖 �̂̃�𝑖𝑗 + �̃�𝑖�̃�𝑖𝑗 + �̃�𝑖𝑗[�̃�𝑖 − �̃�𝑖 �̂̃�𝑖𝑗].                           (10) 

𝑓𝑜𝑟 𝑖 = 1, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1, … , 𝑀                                   

Based on system real-time measurement, the model 

correctness weights are assigned by a probability evaluator to 

each multiple model. Figure 4 presents the overlapping 

multiple model adaptive estimation scheme for decupled 

expanded subsystem 𝑖 with 𝑀 Kalman based estimated 

models. Detailed mathematical formulation and theories of 

this technique are represented at (Khayyer, 2013). In the next 

section, this technique is applied for a two-area power system 

experiencing variations in PHEV load level. 
 

 
Figure 4. Overlapping multiple model adaptive estimation scheme 

for decupled expanded subsystem 𝑖 with 𝑀 Kalman based estimated 

models.  

4. CASE STUDIES 

Disturbances applied to the system is in the form of load 

variation uncertainties e.g. PHEV load migration from one 

area to the other. To consider real-world implementations, 

inherently existing measurement noise and system noise were 

applied to all the system operation scenarios.  

To decouple the large-scale interconnected systems, the 

overlapping decomposition theory was applied. Decoupled 

sub-systems consist of several models of the desired 

operating conditions. A system contingency estimator using 

multiple model adaptive estimator was used to generate the 

probabilities associated to each subsystem’s contingency 

models. Table 1 presents a summary of the four case studies 

presented in this paper. 
 

Table 1. Case studies for subsystems I and II, Base Power 100 MW 

Case 

Study 

Subsystem I and II 

Battery 

SOC 

Moving Load 

Level/Factor 

# PHEVs 

in Charge 

Level 1 

# PHEVs in 

Charge 

Level 2 

1 90% 1 
155 31 

2 35% 1 

3 90% 2 
327 66 

4 35% 2 

 

In the first case, system state estimation for different 

scenarios is performed when the size of moving loads varies 

and the stationary battery is charged up to 90%. In first three 

steps of operation scenario, the loads of subsystem I are 

varied without any effect on subsystem II (varying under two 

scenarios). However, the loads are considered moving from 

subsystem I to subsystem II in operation scenarios 4 and 5. 

Overall relation between subsystems I & II load variation 

scenarios are presented in Figure 5. 
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Figure 5. Relation between subsystems I & II load variations 

scenarios 
 

Figure 6 shows the probabilities associated to each 

operation scenario. As the figure demonstrates, the shift in 

probabilities are accurate to detect the appropriate system 

operation. A mismatch occurred at the transition from model 

3 to model 5. However, the system is quickly recovered and 

the probability is set to the right system.   

Figure 7 demonstrates the probabilities of subsystem II. As 

the figure shows, the probabilities are associated to the 

correct model in each contingency. In the first part of the 

graph, although the moving loads are not shifted to 

subsystem II, the effect of load change was observed on this 

subsystem operation through a tie-line. When the moving 

loads migrated to the subsystem II, the probabilities shifted to 

the second model with smooth transition. 

  
Figure 6. Probability values associated with multiple models 

in subsystem I in case 1. 

  
Figure 7. Probability values associated with multiple models in 

subsystem II. The models show the load shift in case 1.  

 

In the second case, system state estimation for different 

scenarios is performed when the size of moving loads 

changed with a minimally charged battery (SOC of 35%). In 

first three steps of operation scenario, the loads of subsystem 

I were varied without any effect on subsystem II. However, 

the loads were considered moving from subsystem I to 

subsystem II in operation scenarios 4 and 5. Figure 8 shows 

the probabilities associated to each operation scenario. As the 

figure demonstrates, the shift in probabilities accurately 

detected the appropriate system operation. A mismatch 

occurred at the transition from model 3 to model 4. However, 

the system was quickly recovered and the probability was set 

to the right system. Figure 9 demonstrates the probabilities of 

subsystem II. As the figure shows, the probabilities were 

associated to the correct model. Similar to case 1, in the first 

part of the graph, although the moving loads were not shifted 

to the hydro power plant, the effect of load change was 

observed on the system operation as the two systems were 

connected through a tie-line. When the moving loads 

migrated to the subsystem II, the probabilities shifted to the 

second model. Some transitions were observed in the second 

model. The transitions might have been generated from the 

fact that the dynamics of two models were similar. The 

battery was depleted and the moving load level matched with 

that of observed in subsystem II.  

  
Figure 8. Probability values associated with multiple models in 

subsystem I in case 2. 

  
Figure 9. Probability values associated with multiple models in 

subsystem II. The models show the load shift in case 2.  
 

In order to evaluate the system performance under higher 

load levels, a load factor of 2 was considered for case studies 

3 and 4. System conditions of case study 3 was similar to 

case 1 with the exception that now the load level for case 3 

was doubled compared to case 1. Similar relationship was 

true between cases 2 and 4. In order to obtain the desired 

level of load migration, the noise input matrix L was directly 

scaled. 

In this case, the system transient moving loads were 
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limited to 472 kW in addition to the base load. The system 

experienced a ±472 kW load change and was required to 

control the frequency drop or increase as a result of the load 

change. This level of load transient translated to 327 PHEVs 

at charging level 1 or 66 PHEVs at charge level 2 for a base 

power of 100 MW as shown in Table 1. Subsystems I and II 

experienced this load change differently. In first three steps 

of operation scenario, the loads of subsystem I were varied 

without any effect on subsystem II. However, the loads were 

considered moving from subsystem I to subsystem II in 

operation scenarios 4 and 5. 

Figure 10 shows the probabilities associated to each 

operation scenario. As the figure demonstrates, the shift in 

probabilities were accurate to detect the appropriate system 

operation. A transient mismatch occurred at the transition 

from model 3 to model 4. However, the system was quickly 

recovered and the probability was set to the correct system.   

Figure 11 demonstrates the probabilities of subsystem II. 

As the figure shows, the probabilities were associated to the 

correct model. In the first part of the graph, as the moving 

load variation level was increased in subsystem I, the effect 

of load change was observed for longer time on the first part 

of the probabilities in subsystem II. The load power was 

shared through tie-line from subsystem II to subsystem I. 

When the moving loads migrated to the subsystem II, the 

probabilities shifted to the second model with smooth 

transition.  

  
Figure 10. Probability values associated with multiple models in 

subsystem I in case 3. 

  
Figure 11. Probability values associated with multiple models in 

subsystem II. The models show the load shift in case 3.  
 

As stated earlier, case study 4 is similar to case 2 except 

that in case 4 the load factor was increased to 2. Figure 12 

shows the probabilities associated to each operation scenario 

for the first area. As the figure demonstrates, the shift in 

probabilities were accurate to detect the appropriate system 

operation. Except for a small delay in transition from model 2 

to 3, no mismatch occurred at the transition among models.  

Figure 13 demonstrates the probabilities of subsystem II. 

As the figure shows, the probabilities were associated to the 

correct model. In the first part of the graph, although the 

moving loads were not shifted to the hydro power plant, the 

effect of load change was observed on the system operation 

as the two systems were connected through a tie-line. When 

the moving loads migrated to the subsystem II, the 

probabilities shifted to the second model. Some transitions 

were observed in the second model mainly due to higher 

noise levels. 

  
Figure 12. Probability values associated with multiple models in 

subsystem I in case 4 

  
Figure 13. Probability values associated with multiple models in 

subsystem II. The models show the load shift in case 4.  

 
As it was shown in all four case studies, correct model 

representation of the system under different load levels can 

be detected using the MMAE technique for the decentralized 

subsystems. Small transients associated with model detection 

were mainly the result of system noise level and system 

dynamics.  

5. CONCLUSION 

In this paper, multiple model adaptive estimation technique 

was implemented for state space estimation of large-scale 

interconnected power systems. In a two-area power system, 

load power variation was considered as noise in the system 

and was modeled to a high extent using Kalman filters. 

MMAE provided a platform in which the desired modes of 

operation and operating conditions was properly estimated.  
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