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Abstract: Lyapunov methods have been successfully applied to compute the Region of
Attraction (ROA) of a system, i.e. the set of states that remain invariant for all time. A popular
method for constructing Lyapunov functions is the Sum of Squares (SOS) approach. Current
methods for determining stability of hybrid systems using SOS require either stability over the
entire hybrid guard or knowledge of the switching times, limiting the types of systems that
can be analyzed. In this paper, we introduce a new method to relax these constraints by only
requiring decrescence properties over the ‘active’ subsections of each guard. We introduce our
new formulation, explore useful modeling techniques, then apply them to five examples.

1. INTRODUCTION

Stability analysis and verification of hybrid systems often
involve finding Lyapunov functions as certificates of stabil-
ity or safety. For hybrid systems, stability must be defined
simultaneously over all modes rather than treating each
mode as a distinct dynamical system [Branicky, 1994].

One of the first results of applying Lyapunov theory to
hybrid systems was to find a common Lyapunov function
for a hybrid system [Liberzon and Morse, 1999]. Multiple
Lyapunov functions and piecewise Lyapunov functions
were also introduced as tools to determine the stability of
switched and hybrid systems [Branicky, 1998, Johansson
and Rantzer, 1998]. A survey of Lyapunov or Lyapunov-
like functions applied to hybrid systems can be found in
[Shorten et al., 2007].

Lyapunov conditions involving positive of functions are
generally NP-hard to test [Murty and Kabadi, 1987]. How-
ever, by looking over a polynomial vector fields and Lya-
punov functions, a function being Sum of Squares (SOS) is
a checkable condition for positivity. This can be tested us-
ing semidefinite programming for which many solvers exist
[Sturm, 1999, Lofberg, 2004, MOSEK, 2002, Parrilo, 2000].
For classical dynamical systems, SOS programming has
been widely applied to the synthesis of Lyapunov functions
for local stability analysis, region of attraction computa-
tion and robustness analysis [Papachristodoulou and Pra-
jna, 2002, Jarvis-Wloszek et al., 2005, Papachristodoulou
and Prajna, 2005, Tan, 2008].

Current approaches for hybrid system use SOS to find Lya-
punov functions for stability [Papachristodoulou and Pra-
jna, 2005, 2009, 2002], polynomial barrier certificates [Pra-
jna and Rantzer, 2007], stability of limit cycles [Manch-
ester et al., 2010], and control synthesis [Majumdar et al.,
2012]. [Posa et al., 2013] computed ROAs for hybrid

systems using the complimentary modeling framework.
However, these methods require either a common equilbra
across all of the modes, explicit knowledge of the switching
times of the system, or global decrescence over an entire
guard, restricting the applicability of these methods.

In this paper, we present a local Lyapunov theorem that
removes the necessity of a single common equilibria, knowl-
edge of the switching times and global decresence over
the entire guard. We describe a computational approach
using SOS programming to find local Lyapunov functions
to determine an inner-approximation of the ROA of hybrid
systems and apply this SOS program on several examples.

This paper is organized as follows. In Section 2, we present
some background on hybrid systems, stability and SOS. In
Section 3, we present a formulation for the local stability
analysis of hybrid systems. In Section 4, we present several
of the modeling techniques used. In Section 5, we present
several examples and conclude in Section 6.

2. PRELIMINARIES

In this section, we introduce notation used throughout the
remainder of the paper. We also include a brief introduc-
tion to hybrid systems, Lyapunov theory, SOS decompo-
sition, and the S-procedure. Throughout this paper, let
x ∈ D, where D is the space, usually Rn. Let R[x] be the
set of all polynomials in x and Σ[x] be the set of all SOS
polynomials in x and let R+ be the set of non-negative
real numbers.

2.1 Hybrid Systems

A hybrid system is a dynamical system which combines
both continuous and discrete dynamics. We first define
the type of hybrid system we consider in this paper:
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Definition 1. A hybrid dynamical system is a tuple H =
(Q, E ,D,F ,G,R) where:

• Q is a finite set of discrete states of H.
• E ⊂ Q×Q is a set of edges forming a directed graph

structure over Q.
• D = {Dq}q∈Q is a set of domains and for each q, Dq

is a subset of Rnq , nq ∈ N.
• F = {fq}q∈Q is a set of vector fields, such that each
fq : R×Dq → Dq is a vector field defined on Dq.
• G = {G(q,q′)}(q,q′)∈E is a set of guards where each
{x|G(q,q′)(x) = 0} defines a switching surface going
from discrete state q to q′.
• R = {R(q,q′)}e∈E is a set of reset maps where each
R(q,q′) : Dq → Dq′ defines a state transition from q
to q′.

Definition 2. (qe, xe) ∈ Rn is an equilibrium point for the
system H if fqe(t, xe) = 0 for all t.

Definition 3. xe ∈ Rn is a common equilibrium point for
the system H if for all q ∈ Q, xe ∈ Dq and fq(t, xe) = 0
for all t.

In this paper, we make the following assumptions on
hybrid systems.

Assumption 1. Each vector field fq is piecewise continuous
in its first argument and Lipschitz continuous in it second
argument.

Assumption 2. Each vector field fq, guardG(q,q′) and reset
map R(q,q′) are polynomials.

Assumption 1 ensures existence and uniqueness of the
solution of the differential equation for each discrete state.
Assumptions 2 ensures conditions in Equation (12) are
polynomials.

Assumption 3. One of the domains Dq contains the origin
and the origin is an equilibrium point.

If the equilibrium is not at the origin, a state change can be
performed to make the origin an equilibrium point. This
assumption is made to simplify presentation.

2.2 Lyapunov Techniques for Hybrid Systems

We assume the reader is familiar with Lyapunov theory
for continuous systems. An introduction can be found in
[Khalil, 2002, Sastry, 1999].

Definition 4. U is said to be invariant if all trajectories
that start in U stay in U for all forward time.

Existing theorems for Lyapunov theory for hybrid systems
have been studied in [Branicky, 1998, Cai et al., 2008,
Goebel and Teel, 2010, Papachristodoulou and Prajna,
2009, Shorten et al., 2007]. A classical theorem for Lya-
punov stability of hybrid systems involves finding a “com-
mon” Lyapunov function across all the discrete states:

Theorem 1. Consider a hybrid system H defined as in
Definition 1 where each Dq is a subset of Rn. Let xe be a
common equilibrium point and let R(q,q′) be the identity

map. If there exists a C1 function V : D → R such that:

(1) V (xe) = 0 and V (x) > 0,∀x ∈ D \ {xe}
(2) ∂V

∂x fq(x) ≤ 0, ∀x ∈ D, q ∈ Q

then xe is a stable equilibrium point of H. Moreover, if
∂V
∂x fq(x) < 0 ∀x ∈ D, q ∈ Q, then xe is an asymptotically
stable equilibrium point of H.

The proof can be found in [Liberzon and Daniel, 2003].
Finding such a V would show stability for arbitrary switch-
ing but is difficult to find. To address this issue, Branicky
introduced the idea of finding multiple Lyapunov func-
tions for a hybrid system [Branicky, 1998]. The multiple
Lyapunov function technique requires explicit knowledge
of the switching times. While there are approximation
techniques (i.e. backstepping) to determine the switching
times, the condition is not easy to impose algorithmically.
To develop a computationally tractable algorithm, [Pa-
pachristodoulou and Prajna, 2009] introduced the follow-
ing theorem:

Theorem 2. Consider a hybrid system H defined in Def-
inition 1 where each Dq is a subset of Rn. Let xe be a
common equilibrium point in all discrete modes. If for all
q ∈ Q, let Vq : Dq → R be a C1 function such that:

(1) Vq(xe) = 0 and Vq(x) > 0, ∀x ∈ Dq \ {xe}, q ∈ Q
(2)

∂Vq

∂x fq(x) ≤ 0, ∀x ∈ Dq, q ∈ Q
(3) Vq′(R(q,q′)(x)) ≤ Vq(x), ∀x ∈ {x|G(q,q′)(x) = 0}.

Then xe is a stable equilibrium point of H.

These Lyapunov theorems for hybrid systems either re-
quire the switching times of the system to be known or
require decresence over the entire guard.

2.3 S-Procedure

In this section, we introduce the S-procedure, which is used
to encode Lyapunov set containment conditions as an SOS
program. The S-procedure is a special case of the Pos-
itivestellenstaz theorem with only inequality constraints
[Jarvis-Wloszek et al., 2005].

Lemma 1. (S-procedure). Given {gi}mi=1 ∈ R[x]. If there
exist {si}mi=1 : Rn → R+ such that
−g0(x) +

∑m
i=1 si(x)gi(x) ≥ 0, then⋂m

i=1{x ∈ Rn|gi(x) ≤ 0} ⊆ {x ∈ Rn|g0(x) ≤ 0}.

To verify this, for all i = [1, . . . ,m], an arbitrary x such
that gi(x) ≤ 0 and positive si(x)’s, it must hold that
g0(x) ≤ 0.

We extend the S-procedure to include equality constraints.

Lemma 2. (Extended S-procedure). Given {gi}mi ∈ R[x]
and h ∈ R[x]. If there exist {si}mi : Rn → R+ and
r : Rn → R such that −g0(x) +

∑m
i=1 si(x)gi(x) +

r(x)h(x) ≥ 0, then
⋂m

i=1{x ∈ Rn|gi(x) ≤ 0} ∩ {x ∈
Rn|h(x) = 0} ⊆ {x ∈ Rn|g0(x) ≤ 0}.

To verify this, for all x such that h(x) = 0, this reduces
to Lemma 1. By adding the polynomial r, the constraint
matters only when h(x) = 0. When h(x) 6= 0, r(x) can be
set to a value to make the entire equation positive.

2.4 Sum of Squares Programming

SOS refers to way of representing a given polynomial in
the form:

p =

N∑
i=1

g2
i (1)
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where {gi}Ni ∈ R[x] is a set of polynomials . If a polyno-
mial is SOS, it is non-negative everywhere. We can check if
a polynomial is SOS using semidefinite rogramming (SDP)
solvers [Prajna et al., 2004, Lofberg, 2009]. It is important
to note that requiring a polynomial to be SOS is more
restrictive than just requiring positivity.

We can encode the S-procedures in Lemmas 1 and 2 by
making s, r and the inequality be SOS. For example, a
continuous time dynamical system with vector field f :
Rn → Rn and equilibrium point xe, the local Lyapunov
conditions are [Vidyasagar, 1993, Lemma 40]:

V (xe) = 0

V (x) > 0 ∀x ∈ U \ {xe}
∂V

∂x
f(x) ≤ 0 ∀x ∈ U

(2)

where U is a level set of V and inner-approximation of the
ROA of f . This can be written using the S-procedure as:

−∂V
∂x

f(x) + s(x)(V (x)− γ) ∈ Σ[x] (3)

where s ∈ Σ[x] and γ is the level set of V which defines U .
This can be formulated as an LMI feasibility problem and
solved with SDP solvers [Boyd and Vandenberghe, 1994].

3. STABILITY ANALYSIS

In this section, we present a local Lyapunov theorem and
formulate it as an SOS optimization problem.

3.1 Problem Formulation

Instead of requiring decresence over the entire guard or
knowledge of the switching times, we ensure that stable
regions in mode q reset into the ROA of the next mode q′.

Theorem 3. Consider a hybrid system H defined in Def-
inition 1. For all q, let Uq be a set in Dq and let U be
the set defined by U =

⋃
q Uq. Given an equilibrium point

xe ∈ U in mode q?. For all q ∈ Q \ {q?}, suppose there
exist functions Vq : Dq → R such that:

(1) Vq(x) > 0 ∀x ∈ Uq

(2)
∂Vq

∂x fq(x) ≤ 0 ∀q s.t. x ∈ Uq

(3) R(q,q′)(x) ∈ Uq′ ∀(q, q′) s.t. x ∈ Uq and G(q,q′)(x) =
0

and for q?

(1) Vq?(x) > 0 ∀x ∈ U?
q

(2) Vq?(xe) = 0

(3)
∂Vq?

∂x fq?(x) ≤ 0 ∀x ∈ Uq?

then U is an invariant set. Moreover, if
∂Vq

∂x fq(x) <
0 ∀(q, x) ∈ U with all trajectories not visiting a discrete
state more than once, then (q?, xe) is locally asymptoti-
cally stable in U .

Proof 4. Consider a hybrid system with a limit cycle
transversing three discrete modes {1, 2, 3} with guards
{G(q1,q3), G(q2,q1), G(q3,q2)}. Uq1 is either invariant (by the
standard Lyapunov proof [Khalil, 2002]) or contains tra-
jectories that reset into Uq3 , by condition 3. Likewise, Uq3
is either invariant or contains trajectories that reset into
Uq2 and Uq2 is either invariant or contains trajectories that

reset into Uq1 . Therefore, Uq1 ∪Uq2 ∪Uq3 is invariant. This
extends to systems with 2 or more discrete modes.

Assume
∂Vq

∂x fq(x) < 0 ∀(q, x) ∈ U with all trajectories
not visiting a discrete state more than once. Consider a
hybrid system with two modes with G(q2,q1) and let q1

be the discrete state with equilibrium point xe. By the
proof in [Khalil, 2002], Uq1 is invariant. Now, we prove
that trajectories in Uq2 reset into Uq1 . Assume not. Let
x0 be an initial condition of H starting in Uq2 . Since
∂V2

∂x f2(x) < 0, there exists a T ∈ R+ such that V2(x(T )) =

V2(x0)+
∫ T

0
∂Vq

∂x f2(x)dx = 0. However, this contradicts the
assumption that V2(x) > 0 for all x ∈ Uq2 . Therefore, the
trajectory must reach guard g1,2. Therefore, Uq1 ∪ Uq2 is
invariant. This extends to more discrete states. 2

3.2 SOS Formulation

Next, we show how to encode Theorem 3 as a set contain-
ment problem. To make this computationally feasible, we
set Uq to be the γq level set of Vq.

We can formulate our Lyapunov conditions from Theorem
3 as a set containment. The ROA of the system is taken to
be every point contained in the set

⋃
q∈Q{x ∈ Dq|Vq(x) ≤

γq}. Our candidate Lyapunov functions are only required
to be valid over the set of states where our guards are
valid (positive) i.e.

⋂
(q,q′)∈E{x ∈ Dq|G(q,q′)(x) ≥ 0}.

For the γq-level set to be the ROA for discrete mode
q, the intersection of the γq-level set and Dq must lie
within the set of states that has a negative Lie derivative

{x ∈ Dq|∂Vq

∂x fq(x) < 0}. This gives the set containment:⋂
(q,q′)∈E

{x ∈ Dq|G(q,q′)(x) ≥ 0}
⋂
{x ∈ Dq|Vq(x) ≤ γq}

⊂ {x ∈ Dq|
∂Vq
∂x

fq(x) < 0} ∀q ∈ Q (4)

Similarly we look at the reset condition between two
modes. Consider two modes q and q′ such that mode
q transitions from q to q′ along guard G(q,q′) with the
reset map R(q,q′). We require that the states that are in
the ROA of mode q that intersect the guard g1,2 reset
inside the ROA of mode q′. This can be written as the set
containment:

{x ∈ Dq|x ∈ G(q,q′) = 0} ∩ {x ∈ Dq|Vq(x) ≤ γq}
⊂ {x ∈ Dq|Vq′(R(q,q′)(x)) ≤ γq′} ∀(q, q′) ∈ E (5)

From the set containment problem, we use the S-procedure
in Lemmas 1 and 2 to obtain the SOS optimization
program.

To incorporate the fact that Vq only needs to be positive
on Dq, we impose the relaxed condition found in [Pa-
pachristodoulou and Prajna, 2002]:

Vq(x)−
∑
q′ 6=q

G(q,q′)(x)tq,q′ > 0 (6)

where tq,q′ is a SOS polynomial.

Using the S-procedure in Lemma 1, we convert the Lya-
punov conditions (4) to:
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− ∂Vq
∂x

fq−(γq−Vq(x))sq,2−
∑
q′ 6=q

G(q,q′)(x)wq,q′ ∈ Σ[x]

(7)

where sq,2, wq,q′ ∈ Σ[x].

Using the extended S-procedure in Lemma 2, we convert
the guard condition (5) to:

(Vq−γq)yq,q′ +(γq′−Vq′(Re(x)))zq,q′ +Gijrq,q′ > Σ[x]
(8)

where yq,q′ , zq,q′ ∈ Σ[x] and rq,q′ ∈ R[x]. By allowing
pg,q,4,q′ to be any polynomial, we ensure that the guard
condition is only satisfied when the system hits the guard,
not before or after.

To provide a measurement of growth for the ROA of a
system, we use a shape function pq : Rn → R for all
q ∈ Q introduced in [Tan, 2008]. This provides an absolute
scale to measure the size of the ROA. Otherwise, due to
the scaling of Vq, γq can be arbitrarily large. The shape
function is chosen to reflect the relative importance of the
states and must be chosen appropriately. This constraint
is formulated as such:

{x|pq(x) ≤ βq} ⊂ {x|Vq(x) ≤ γq} ∀q ∈ Q (9)

This can be formulated as a SOS constraint as:

(γq − Vq)− (βq − pq)sq,3 ∈ Σ[x] ∀q ∈ Q (10)

Corollary 1. As a shorthand, we refer to
{tq,q′ , sq,2, si,3, wq,q′ , yq,q′ , zq,q′}(q,q)∈E as s, and {rq,q′}(q,q)∈E
as r. Consider a hybrid system, assume there exist {Vq}q∈Q
and s ∈ Σ[x], r ∈ R[x], γq, βq ∈ R ∀(q, q′) ∈ E such that

Vq(x)−
∑
q′ 6=q

G(q,q′)(x)tq,q′ ∈ Σ[x]

− ∂Vq
∂x

fq − (γq − Vq(x))sq,2 −
∑
q′ 6=q

G(q,q′)(x)wq,q′ ∈ Σ[x]

(γq − Vq)− (βq − pq)sq,3 ∈ Σ[x]

(Vq − γq)yq,q′ + (γq′ − Vq′(Re(x)))zq,q′

+G(q,q′)rq,q′ ∈ Σ[x] ∀j s.t. (q, q′) ∈ E
(11)

Then the origin is locally asymptotically stable with⋃
q{x|x ∈ Dq and Vq(x) ≤ γq} ⊂ A.

This corollary follows from combining Theorem 3 and
Equations (6), (7), (8) and (10) and convert the positivity
constraints to SOS constraints.

Using Corollary 1, we write the optimization problem to
determine the ROA.

max
V,s∈Σ[x],h∈R[x]

∑
q∈Q

βq

such that

Vq(x)−
∑
q′ 6=q

G(q,q′)(x)tq,q′ ∈ Σ[x]

− ∂Vq
∂x

fq − (γq − Vq(x))sq,2 −
∑
q′ 6=q

G(q,q′)(x)wq,q′ ∈ Σ[x]

(γq − Vq)− (βq − pq)sq,3 ∈ Σ[x]

(Vq − γq)yq,q′ + (γq′ − Vq′(Re(x)))zq,q′

+G(q,q′)rq,q′ ∈ Σ[x] ∀j s.t. (q, q′) ∈ E (12)

The SOS constraints in this optimization can be converted
into SDP constraints (as discussed in Section 2.4). As this
optimization problem is bilinear in the decision variables
s, p and Vq, we solve this by fixing Vq and solving for s, p;
then fix s, p and solve for Vq. Further details can be found
in [Packard et al., 2009].

This optimization problem avoids having prior knowledge
of the switching times or stability across the entire guard
by dealing with set containments across the guard and
reset maps. Due to SOS programming, we are limited to
polynomial reset maps and Lyapunov functions without a
constant term.

4. MODELING TECHNIQUES

In this section we introduce the tools and techniques we
found helpful for approximating the ROA of a system using
SOS techniques.

4.1 Changing Coordinates

When modeling a system, there are often multiple ways of
choosing a descriptive set of states. While these different
models may be equivalent, a careful choice of variables
can reduce the intractability of certain problems. One of
the most restrictive problems we found were conditions
on the discrete dynamics between hybrid modes. When
searching for a ROA over several hybrid modes, we found
that having reset maps with non-constant terms resulted
in larger computed ROA level sets, and allowed intractable
problems to be solved (Section 5.5). This can be done by
rewriting the dynamics of the system using a different
choice of variables so that the reset map does not have
constant terms.

4.2 Guards

While guards are typically components of hybrid systems,
it is possible to use guards to reduce the state space
that the Lyapunov-like function is required to be valid.
Our SOS formulation only requires the Lyapunov-like
conditions on V to be valid over the set of states that
satisfy our guards[Papachristodoulou and Prajna, 2002].
This property can be used to remove regions of the
state space that have dynamics that limit the growth of
the region of attraction by allowing the ROA to violate
the properties of decresence etc. when outside the valid
domain.

4.3 Constraints

In contrast to guards, constraints ensure that a reachable
set stays within a desired state space, forcing the ROA
to always satisfy a set of given constraints. We present
this as a method of modeling physical constraints on the
system (the position of the object must stay above the
ground, the shock absorber cannot travel more than n
cm etc.). However, this is also a useful tool for bounding
the state space to allow for faster computation times.
In the case of globally stable systems, the ROA grows
unbounded, resulting in an error during optimization. By
constraining the ROA to stay within a subset of our space,
this unbounded growth can be limited.
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Constraints can be written as follows. Let {Ck}nk

k=0 : D →
R be the functions that constrain the state space of the
system. This restricts D to

⋂nk

k=0{x|Ck(x) ≥ 0}. We add
the set containment constraint: for all k = 1, . . . , nk,⋂

(q,q′)∈E

{x ∈ D|G(q,q′)(x) ≥ 0}
⋂
{x ∈ D|Vq(x) ≤ γq}

⊂ {x ∈ D|Ck(x) ≥ 0} ∀q ∈ Q
(13)

and use the S-procedure to obtain the SOS constraint.

4.4 Seeding

The initial ‘seed’ candidates for Vq, γq and βq must be
feasible for the optimization to begin. Small initial values
for γq are commonly used to allow for the initial shape
function to be the Lyapunov function for the linearized
system. A problem arises when the ROA is highly depen-
dent on repeated discrete transitions (Examples 5.4, and
5.5). Using small initial values would result in negligible
growth as the image of the reset map limits the size of the
domain. To overcome this, a large γ value is initially used
for the domain of the next mode, allowing the domain to
grow under the assumption the ROA in the next mode
is the entire space. When the ROA of the domain of the
next mode is computed, this assumption can be revoked
by reinitializing γ to a small initial value.

4.5 Scaling

When optimizing over state variables, it is useful to
keep their relative order of magnitude similar in size.
This prevents certain states ‘overpowering’ others during
optimization. It is also useful to avoid state variables from
becoming either too large or to small which can lead to
inaccuracies due to machine precision. We found that this
resulted in a faster computation times.

We do this by modifying Equation (7) by adding a scaling
term sq,1:

−∂Vq
∂x

fqsq,1− (γq −Vq(x))sq,2−
∑
q′ 6=q

G(q,q′)(x)wq,q′ ∈ Σ[x]

(14)
where sq,1, sq,2, wq,q′ ∈ Σ[x].

4.6 Bases and Degree for the SOS variables

A careful choice of both the monomial bases and degree
of the SOS variables is important for both computation
time as well as the final size of the ROA. Searching over
a higher degree Lyapunov function increases computation
time but may be able to determine a larger volume ROA
and improve problem tractability. The complexity of a
problem can be reduced by carefully selecting the base
monomials for the s variables.

4.7 Sweeping Lyapunov functions

The optimization problem in Equation (12) grows the
ROA with respect to the shape functions pq. To obtain
a larger ROA, we perform the optimization problem for
various shape functions p to ‘sweep’ out the state space. As
seen in Figure 1, a narrow shape function p can be used to

Fig. 1: Overlaying
several ROAs found
using the sweeping
method. Lyapunov
functions are shown
in red, and the true
ROA is outlined in
black.

search over a particular combination of states. The union
of the computed ROAs offer a better approximation of the
true ROA of the system.

4.8 Ensuring SOS

When performing each optimization step it is important
to check that the SOS constraints are satisfied by the
returned solutions. Depending on the SOS package and
the solver, the solutions that were reported as feasible may
turn out to be SOS to machine precision. To verify a re-
turned SOS variable, we perform post computation clean-
ing and checking. First, we replace any “small” coefficients
in the SOS variables with zeros, remove SOS variables
that are only SOS due to computational accuracy. The
variable is then converted into a matrix where different
matrix decompositions (Cholesky, EVD etc.) were used to
ensure the positive definiteness of the resulting matrix. If
the matrix is found to be positive definite after cleaning,
we then use the zeroed matrix as our SOS solution. This
process is repeated for every SOS variable. If any SOS
variable is not SOS, then that solution step is discarded
and repeated.

4.9 Slack

By adding a slack variable into our constraint we can
ensure that the computed ROA returned is within the
actual ROA of the system. Without this, the computed
ROA can overshoot the actual ROA due to rounding errors
when low order terms are removed. We can explicitly add a
slack term in the γ-step. Rather than finding SOS variables
such that the SOS problem presented in Equation (12) is
feasible, we instead try to minimize our slack variable S
under the conditions:

− ∂Vq
∂x

fqsq,1 − (γ − Vq(x))sq,2

−
∑
q′ 6=q

Gq,q′(x)wq,q′ − S ∈ Σ

S > 0.99999Sold

(15)

This process requires that the returned solution is close to
the previously computed solution [Lofberg, 2011].

5. EXAMPLES

In this section we cover a number of examples that
highlight important aspects and results of SOS modeling
and our framework. We implement these algorithms using
YALMIP and Mosek. All examples were run on a computer
with a Intel i5-2320 CPU running at 3GHz and 16Gb of
RAM.

In the following analysis we represent our hybrid systems
using the graphical notation seen in Figure 2.
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Fig. 2. Cartoon for the non-linear system. Mode 1 is
globally stable about the origin, while mode 2 is
unstable in x1 and is only locally stable in x0.

For clarity, we describe the features of the hybrid system
as illustrated in this figure. We represent different hybrid
modes by the rounded rectangles, with their name written
prominently inside. The continuous dynamics are written
inside each rectangle directly under the name of the mode.
At the base of the rectangle we write any constraints
imposed on the system. In this way, we can see mode 1 has
been constrained so that x1 ≤ 8. The discrete transitions
are indicated by an arrow indicating the direction of the
transition. At the tail of the arrow, we write the reset
condition, and at the tip we write the reset map. Looking
at the discrete transition from mode 2 to mode 1, we see
that whenever a trajectory satisfies the condition x1 ≤ 2,
it undergoes a discrete transition to mode 1. The states
are updated based on the update rule seen at the tip of
the arrow. In our example, we have a trivial reset map, x0

and x1 in mode 1 are taken to be the x0 and x1 in mode
2 respectively at the transition point.

A more complicated reset map can be seen in the Lunar
Lander example which we introduce in Section 5.5. Look-
ing at the reset map from mode 2 to mode 1 in Figure
11, we can see that the discrete reset a linear function. In
this example, state x0 in mode 1 is found by taking the
values of x0 and x2 in mode 2 and performing the update
x0 + m0

m0+m2
x2.

5.1 Non-linear Systems and Partially Stable Guards

The first system we look at has two non-linear modes and
a partially stable guard Figure 2. The computed ROA
for this system are shown in Figure 3. The Lyapunov-like
function in mode 1 takes its expected form of a circle of
radius 8 due to the constraint. Based on the dynamics
of mode 2, it is expected that the ROA would grow to
be a circle of radius 10. The discrete transition however
constrains this growth as the image of the guard must lie
within the ROA of mode 1. This leads to the ROA in mode
2 being confined by its image in mode 1.

5.2 Interaction of Two Guards

The next system is shown in Figure 4. This system consists
of three modes. Mode 1 is globally stable, and mode 3 is
unstable. Mode 2 has two discrete guards, transitioning to
mode 1 and mode 3 respectively.

The computed ROA for the hybrid system is shown in
Figure 5. Mode 1 is globally stable, as seen by the ROA
expanding up to the edge of its constraint. The discrete
guard in mode 2 is locally stable. The active subset of the
discrete transition is highlighted in cyan. Looking at the

(a) Mode 1 (b) Mode 2

Fig. 3. Computed ROA for the hybrid system illustrated
in Figure 2. ROA is shown in red, constraints in black
and guards are indicated by the shaded gray region.

Fig. 4. Hybrid model for our Two Guard system. Con-
tinuous dynamics are written inside each mode and
discrete dynamics are indicated by the arrows with
the guard condition on the tail and the reset map on
the tip.

image of this guard in mode 1, it may be expected that
the ROA in mode 2 could grow larger. However looking
in mode 2, we see that this is not the case. The second
discrete transition in mode 2 is globally unstable, limiting
the ROA of mode 2 to lie to the left of the line x0 = 1.

(a) Mode 1 (b) Mode 2

Fig. 5. Two of the three modes for our two guard system
with ROA indicated in red. Discrete transitions from
mode 2 to mode 1 and mode 2 to mode 3 are indicated
by the cyan and green lines respectively.

5.3 Changes in dimension

We introduce a hybrid system that can expand and con-
tract in dimension between each mode as shown in Figure
6. This system produces the ROA seen in Figure 7. As
illustrated, the ROA expands clearly in each mode show-
ing that systems of varying dimension can be analyzed
through SOS methods.
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Fig. 6. Hybrid model for our varying dimension system.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Fig. 7. Computed ROA for the hybrid system illustrated
in Figure 6. Discrete transitions from mode 2 to mode
1 is indicated by the green line pair and transitions
from mode 3 to mode 2 are shown as the cyan pair.

5.4 Bouncing Ball

One of the canonical examples for hybrid systems is the
bouncing ball- a system whose equilibrium only exists
due to an infinite number of discrete transitions in the
system. These systems can exhibit Zeno behavior whereby
an infinite number of discrete transitions can occur in finite
time.
Consider the system shown in Figure 8. Here we have a ball
modeled as a point mass, falling under gravity and resis-
tive forces that are proportional to velocity. We impose a
constraint on the maximum velocity to prevent the system
from becoming unbounded. Each time the ball collides, the
time between collisions decreases due to energy loss in the
system. In this manner, Zeno behavior is observed- over
a finite amount of time, the system can have an infinite
number of discrete transitions.
Figure 9 shows the computed ROA for this system as
well as two sample trajectories. Following these two tra-
jectories, we can see that the system is indeed stable
and performs an infinite number of smaller and smaller
transitions over finite time.

Fig. 8. Hybrid model for the bouncing ball system. The
Discrete transition maps states from mode 1, back
into mode 1 representing the near instantaneous
change in direction caused by the bounce.

5.5 Lunar Lander

Our final example is that of a moon lander, a variant of the
mass-spring vertical hopper system. Consider the system

Fig. 9. Computed ROA for the hybrid system illustrated
in Figure 8. The ROA is shown in red, and the
guard and its image are shown in cyan and dark cyan
respectively. Two system trajectories are shown in
green and blue.

seen in Figure 11. The system consists of two masses that
are coupled by a spring and a damper which make up the
shock absorber system. The shock absorber has a physical
length limit, and the total length cannot exceed 0.8m in
either direction. These masses have two inputs that can
be used to apply a force on the two masses. Our design
problem is to find a ROA for the system given a control law
such that the such that the shock absorber never exceeds
its maximum length.

Fig. 10. Diagram of the Lunar Lander system. Coordinate
frames, location of the centers of mass, spring and
damper couplings and thrusters are all indicated.

The system consists of two modes, an aerial mode and a
ground mode. These two modes have different continuous
dynamics, with the ground mode consisting of purely a
mass-spring-damper system, while the aerial mode also
includes the falling dynamics. Our hybrid transitions are
taken to be when the lower mass touches the ground and
when the forces on the lower mass change sign, causing
the foot to rise. The dynamics were chosen to provide a
polynomial reset map without a constant term.

Figure 12 shows several important features that can be
used for analysis of our system. First, it sets limitations on
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Fig. 11. Hybrid model of the Lunar Lander system

(a) Mode 1 (b) Mode 2

Fig. 12. ROA (red) for the Lunar Lander. Left: Phase
diagram of the Ground mode with the state being
the variable x̄2 which represents the offset of the top
mass from the mass center, Right: Phase diagram of
the Aerial mode with the states being the height of
the mass center above the ground x̄1 (top) and the
deviation from the mass center of the top mass x̄2

(bottom). Discrete transitions from mode 2 to mode
1 are shown by the pink plane in mode 2 to the
pink oval in mode 1 (overlapping the ROA in mode 1
completely), and the discrete transition from mode 1
to mode 2 is the cyan line in mode 1 transitioning to
the cyan hypersurface in mode 2.

the airborne speed and positions that will result in a safe
landing that does not damage the landing gear. Second,
it shows that the system has a stable equilibrium point in
the ground mode where it is at rest.

6. CONCLUSION

We present a theorem and numerical method for stability
analysis of hybrid systems that can handle stability over
only a subset of the guard and does not require prior
knowledge of switching times and common equilibrium
among all the discrete modes. The method is based on
polynomial and piecewise polynomial Lyapunov functions.
We use SOS programming to find the level sets of multiple
Lyapunov functions to find local ROAs for autonomous
hybrid systems without input. We also list many methods
which were implemented to get the SOS program to run
find the ROA for several examples.

There are a number of limitations with using the SOS
approach for finding the ROA of a system. These problems
arise through issues in problem formulation as well as the
solvers being used.

When formulating an SOS problem, we are constrained
to solving polynomial systems. This means that the con-
tinuous and discrete dynamics of the system need to be
represented in polynomial form which may cause approx-
imation errors. We found that reset maps could not have
any constant terms. For systems such as Example 5.5,
this can be avoided through coordinate changes, adding
additional complexity. The initial conditions of a system
need to be valid for the system to grow. While this can be
simple for trivial systems, it can be more challenging for
more complicated, real-world systems, especially systems
that only exhibit stability through discrete switching. This
is a major limitation as it often requires the initial shape
function to be chosen intelligently before the SOS proce-
dure can be started.

There are also challenges in solving these SOS problems.
To solve an SOS problem, an SDP solver needs to be
used. SDP problems are challenging which can lead to
computation errors. This can result in SOS polynomials
being returned that are not positive and solvers only
providing valid results for certain numbers of guards and
constraints. Our formulation is bilinear in the decision
variables, requiring multiple iterations for a solution and
may converge to a local minimum. The solution given
by a solver is highly dependent on the order of the SOS
variables that are being looked over. If a problem requires
a high order Taylor expansion, the combination of large
order SOS variables combined with high ordered dynamics
can lead to a prohibitively large problem that can take
hours to complete each step.

Future work includes determining how to intelligently
chose the shape function and the degrees of the slack vari-
ables. Given more powerful SDP solvers, these limitations
may be mitigated, but presently they pose a significant
challenge when trying to find the ROA using SOS meth-
ods. Recent methods using occupation measures [Henrion
and Lasserre, 2012, Henrion and Korda, 2013, Majumdar
et al., 2013] may be used to eliminate the bilinearity of the
optimization problem.
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