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Abstract: Path integral control solves a class of stochastic optimal control problems with a
Monte Carlo (MC) method for an associated Hamilton-Jacobi-Bellman (HJB) equation. The MC
approach avoids the need for a global grid of the domain of the HJB equation and, therefore, path
integral control is in principle applicable to control problems of moderate to large dimension. The
class of problems path integral control can solve, however, is defined by requirements on the cost
function, the noise covariance matrix and the control input matrix. We relax the requirements on
the cost function by introducing a new state that represents an augmented running cost. In our
new formulation the cost function can contain stochastic integral terms and linear control costs,
which are important in applications in engineering, economics and finance. We find an efficient
numerical implementation of our grid-free MC approach and demonstrate its performance and
usefulness in examples from hierarchical electric load management. The dimension of one of our
examples is large enough to make classical grid-based HJB solvers impractical.

1. INTRODUCTION

Stochastic optimal control is an important tool for con-
trolling or analyzing stochastic systems in many fields,
including engineering, economics and finance. In electric
power systems, for example, uncertainties from renewable
energy sources can be managed using stochastic optimal
control techniques (e.g. Anderson et al. [2011], Yang et al.
[2014]).

A popular method for stochastic optimal control is to
compute an optimal feedback map from the system state
to the control via dynamic programming (Bellman [1956]).
For systems modeled by stochastic differential equations
(SDEs), dynamic programing leads to a Hamilton-Jacobi-
Bellman (HJB) equation, whose viscosity solution corre-
sponds to the value function of the stochastic optimal
control problem (Fleming and Soner [2005]). An opti-
mal control strategy can be synthesized from information
about the value function.

The complexity and memory requirements of grid-based
partial differential equation (PDE) solvers increase expo-
nentially as the dimension of the system increases. This
makes grid-based methods impractical for problems of
large dimension. As an alternative to grid-based PDE
solvers one can use Monte Carlo (MC) schemes. This
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is the main idea in “path integral control” (Kappen
[2005a,b], Todorov [2009], Theodorou et al. [2010, 2011],
Morzfeld [2013]), which use the Feynman-Kac formula (see
e.g. Chorin and Hald [2013]), i.e. a path integral, to solve
a class of HJB equations. The current theory of path
integral control requires several assumptions about the
cost function, noise covariance and control input matrices.
These assumptions are often restrictive and can prevent
its broad application. A related method that can help
with the scaling of grid-based PDE solvers is the “max-
plus” method (McEneaney et al. [2008], McEneaney and
Kluberg [2009]).

Our goal is to extend path integral control to handle
more general cost functions, in particular costs involving
stochastic (Itô) integral terms or linear control costs. Cost
functions with stochastic integral terms are important in
dynamic contract problems where one needs to incorporate
the risk aversions of a principal and an agent into the
contract (e.g. Holmstrom and Milgrom [1987]); linear
terms in the control cost are important in hierarchical
electric load management problems (see Section 4). We
introduce a new state variable that integrates the running
costs from the initial time to the current time. We then
use dynamic programming to derive the HJB equation
associated with the control problem in the augmented
state space. We can use the Feynman-Kac formula to
solve the HJB equation because we do not introduce
any additional requirements on the control input matrix
or noise covariance matrix. Thus, we can solve control
problems with generalized costs using the path integral-
based method.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 6994



We use implicit sampling (Chorin and Tu [2009], Chorin
et al. [2010], Morzfeld et al. [2012], Morzfeld and Chorin
[2012], Atkins et al. [2013], Morzfeld [2013]) to evaluate
the Feynman-Kac formula numerically. Implicit sampling
is an MC sampling scheme that guides the samples to high-
probability regions via a numerical optimization. This can
be particularly advantageous (compared to traditional MC
sampling) if the running cost has deep wells (Kappen
[2005a], Morzfeld [2013]).

The efficiency and usefulness of our approach is demon-
strated with an example from hierarchical management of
groups of thermostatically controlled loads (TCLs). The
dimension of the state space of this example is large enough
to make grid based PDE solvers impractical.

The remainder of this paper is organized as follows.
In Section 2, we review path integral control and its
limitations. We explain our generalization in Section 3 and
also discuss our implementation with implicit sampling. In
Section 4 we apply our method to a problem in direct load
control.

2. REVIEW OF PATH INTEGRAL CONTROL

Consider a process {xt}0≤t≤T , xt ∈ Rn that is driven by
the stochastic differential equation (SDE):

dxt = [f(t, xt) +Kut]dt+ σdWt

x0 = x0,
(1)

where K ∈ Rn×m and σ ∈ Rn×n, and {ut}0≤t≤T , ut ∈
Rm is the control process; {Wt}t≥0 is an n-dimensional
Brownian motion on a suitable probability space.

Path integral control requires a cost function of the form

min
u∈U

E

[
Φ(xT ) +

∫ T

0

V (t, xt)dt+
1

2

∫ T

0

u>t Rut dt

]
(2)

where U is the set of feasible controls, R ∈ Rm×m is a given
positive definite matrix and Φ(xT ) and V (t, xt) are the
terminal and running costs, respectively (Kappen [2005a],
Theodorou et al. [2010]); the expected value is taken over
trajectories of (1).

Path integral control further requires that there exists a
constant λ such that

σσ> = λKR−1K>. (3)

This condition implies that the control input through a
subsystem (or a channel) with a higher noise variance is
cheaper than that through a subsystem with a lower noise
variance (Kappen [2005a]).

Dynamic programming can be used to derive the HJB
equation for a stochastic optimal control problem. This
HJB equation is generally nonlinear, however for the class
of problems defined by (2) and (3), a log-transformation
can be used to derive a linear HJB equation (Kappen
[2005a]). The solution of this linear HJB equation can be
found via the Feynman-Kac formula (a path integral).

In computations, one discretizes the path to obtain a con-
vergent approximation of the Feynman-Kac formula. MC
sampling can be used to evaluate this discretized path inte-
gral numerically and, thus, to find the solution of the HJB
equation. Specifically, MC schemes evaluate a solution of

the HJB equation locally without requiring the solution
nearby, so that there is no need for a (global) grid of the
domain. This feature makes path integral control with MC
sampling particularly effective and memory efficient when
applicable.

3. PATH INTEGRAL FORMULATION OF
STOCHASTIC OPTIMAL CONTROL WITH

GENERALIZED COSTS

Our goal is to develop a path integral method that can
handle cost functions that are more general than (2).
Specifically, consider a stochastic optimal control problem
of the form

min
u∈U

E

[
Φ

(
xT ,

∫ T

0

V (t, xt)dt+

∫ T

0

c(t)dxt

)

+
1

2

∫ T

0

u>t Rut dt

]
,

(4)

where Φ : Rn × R → R is a given function, and where
V (t, xt) ∈ R and c(t) ∈ R1×n are the running costs, the
latter being the running cost associated with a stochastic
state trajectory. This generalized cost function has been
used in dynamic incentive design problems to take into
account the principal’s and the agent’s risk aversions
(Holmstrom and Milgrom [1987], Ou-Yang [2003]). We will
further show that the generalized cost function can include
running costs that are linear in the control and discuss its
usefulness in hierarchical management for thermostatically
controlled loads (in Section 4).

3.1 The augmented system

We reformulate the stochastic optimal control problem
with generalized cost (4) to a related problem for which
we can derive the associated HJB equation. The key idea
is to introduce the new state variable

yt :=

∫ t

0

V (s, xs)ds+

∫ t

0

c(s)dxs, (5)

where the stochastic integral is in the Itô sense. Then, the
process {yt}0≤t≤T is driven by the following SDE:

dyt = [V (t, xt) + c(t)(f(t, xt) +Kut)]dt+ c(t)σdWt

y0 = 0,
(6)

where {Wt}t≥0 is the Brownian motion in (1). We can
define an augmented state space by (xt, yt). The stochastic
optimal control problem (4) can be rewritten in this
augmented state space as

min
u∈U

E

[
Φ (xT , yT ) +

1

2

∫ T

0

u>t Rut dt

]
(7)

where the expectation is over the trajectories of (1) and
(6).

3.2 The HJB equation of the augmented system

We will now provide the details about the derivation of the
HJB equation for the augmented state space problem. This
will highlight that path integral control can be applied
to problems with generalized costs (4) provided that (3)
holds, while no additional restrictions are required.
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We define the value function of the stochastic optimal
control as

φ(x,y, t)

:= min
u∈U

Ex,y,t

[
Φ(xT , yT ) +

1

2

∫ T

t

u>s Rusds

]
,

(8)

where the expected values is taken over trajectories of (1)
and (6) starting at (xt, yt) = (x,y). Let

Λ(t) :=

[
In
c(t)

]
∈ R(n+1)×n,

where In denotes the n × n identity matrix, and σ̂(t) :=
Λ(t)σ. Dynamic programming gives the HJB equation

φt + min
a∈Rm

{
1

2
tr(σ̂σ̂>D2φ) + (f(t,x) +Ka)>Dxφ

+(V (t,x) + c(t)f(t,x) + c(t)Ka)Dyφ+
1

2
a>Ra

}
= 0

φ(x,y, T ) = Φ(x,y).
(9)

The minimizer in (9) is given by

a∗ = −R−1K̂(t)>Dφ, (10)

where K̂(t) = Λ(t)K and Dφ := (Dxφ,Dyφ) ∈ Rn+1.
Plugging this minimizer into (9), we obtain

φt +
1

2
tr(σ̂σ̂>D2φ) + f(x)>Dxφ+ (V (x) + cf(x))>Dyφ

− 1

2
Dφ>K̂R−1K̂>Dφ = 0,

(11)

with the same terminal condition.

Following Kappen [2005a], we define a new value function
by

ψ(x,y, t) = exp

(
−φ(x,y, t)

λ

)
,

for all (x,y, t) ∈ Rn × R × [0, T ], where the constant λ
satisfies the condition (3). A calculation shows that (3)
implies

σ̂(t)σ̂(t)> = Λ(t)σσ>Λ(t) = λK̂(t)R−1K̂(t)>. (12)

Substituting φ = −λ logψ in (11) and using (12) gives a
linear PDE for ψ:

ψt +
1

2
tr(σ̂σ̂>D2ψ) + f(x)>Dxψ

+ (V (x) + cf(x))>Dyψ = 0

ψ(x,y, T ) = exp

(
− 1

λ
Φ(x,y)

)
.

(13)

What we have shown is that the condition (3) is sufficient
to obtain a linear HJB equation (11) for the case of
generalized costs, i.e. path integral control is applicable
to problems with generalized cost functions provided that
(3) holds.

3.3 Implementation with implicit sampling

Upon solving (11) or (13) locally around (xt, yt) = (x,y)
at time t, an optimal control at time t can be determined
by

u∗t = −R−1K̂>Dφ(x,y, t).

Instead of solving (13) with a grid-based scheme, we use
the Feynman-Kac formula (e.g. Chorin and Hald [2013]):

ψ(x,y, t) = E
[
exp

(
− 1

λ
Φ(x̃T , ỹT )

)]
, (14)

where the expectation is taken over the stochastic pro-
cesses {x̃s}0≤s≤T and {ỹs}0≤s≤T driven by

dx̃s = f(s, x̃s)ds+ σdWs

dỹs = [V (s, x̃s) + c(s)f(s, x̃s)]ds+ c(s)σdWs

(x̃t, ỹt) = (x,y).

(15)

Note that the Brownian motion in the dynamics of ỹ is
the same as that in the dynamics of x̃. The Feynman-Kac
formula holds because the HJB equation (13) is linear and
parabolic. We use (14) to locally evaluate ψ at any (x,y, t)
without a grid (which is impractical in high dimensions).

We first approximate the Feynman-Kac formula, and dis-
cretize the time interval [0, T ] with {ti}Mi=0, where ti = i∆t
and ∆t := T

M . Let {xi}Mi=j and {yi}Mi=j be the discretized
trajectories (15) of x̃s and ỹs for s ∈ [tj , T ], respectively,
starting from (xj ,yj) = (x,y). Recall that the Brownian
motion in the dynamics of ỹ is the same as that in the dy-
namics of x̃. Therefore, the uncertainty in the path {yi}Mi=j
is determined by the uncertainty in the path {xi}Mi=j and

the probability distribution of the path {xi}Mi=j defines the

probability of the paths {xi}Mi=j and {yi}Mi=j . We can thus
use

ψ(x,y, tj) ≈
∫
dxj+1 . . .

∫
dxM p(xj+1, . . . ,xM )

× exp

(
− 1

λ
Φ(xM ,yM )

)
.

(16)

to approximate (14). When computing yM , we can use the
fact that ỹ satisfies (15) to find that

yM = yj+

M∑
i=j+1

V (ti,xi)∆t+

M∑
i=j+1

c(ti)(xi−xi−1), (17)

converges to ỹT of the second equation in (15) as ∆t→ 0.

To evaluate the discretized path integral (16) we use MC
sampling. For example, we can generate Q trajectories

{(x(q)
i ,y

(q)
i )}Mi=j of (15) starting from (x

(q)
j ,y

(q)
j ) = (x,y),

q = 1, . . . , Q. The MC approximation of (16) then becomes

ψ(x,y, tj) ≈
1

Q

Q∑
q=1

exp

(
− 1

λ
Φ
(
x
(q)
M ,y

(q)
M

))
. (18)

As the number of samples Q goes to infinity, the right-
hand side converges weakly to the value function, and an
optimal control can be synthesized as

u∗tj = −R−1K̂(tj)
>Dφ(x,y, tj),

where Dφ(x,y, tj) is computed via numerical differentia-
tion (e.g. forward or centered differences). In practice, we
cannot use “infinitely” many samples. In fact we may only
be able to generate a few (O(1000)) samples. In this case,
this “standard MC scheme” can fail, in particular if the
running cost b has deep wells (Kappen [2005a], Theodorou
et al. [2010], Morzfeld [2013]). Deep but thin wells in V
imply that many trajectories of (15) end up where V is
large and thus contribute little to the approximation (18)
of ψ. This pitfall can be overcome if one guides the samples
to remain where the running cost V is small.
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Here, we achieve this guiding effect via implicit sampling,
which takes the running cost into account when generating
the samples (Chorin and Tu [2009], Chorin et al. [2010],
Morzfeld et al. [2012], Morzfeld and Chorin [2012], Atkins
et al. [2013], Morzfeld [2013]). To use implicit sampling,
we first substitute p(xj+1, . . . ,xM ) in the path integral
formula (16)

p(xj+1, . . . ,xM ) =

M∏
i=j+1

p(∆xi)

= (2πdet(σσ>∆t))−(M−j)/2

× exp

−1

2

M∑
i=j+1

q>i (σσ>∆t)−1qi

 ,

where qi := ∆xi − f(ti−1,xi−1)∆t and

∆xi := xi − xi−1 ∼ N (f(ti−1,xi−1)∆t, σσ>∆t). (19)

We can then rewrite (16) as

ψ(x,y, tj) ≈ (2πdet(σσ>∆t))−(M−j)/2∫
dxj+1 · · ·

∫
dxM exp(−F (x)),

where x := (xj+1, . . . ,xM ) ∈ Rn(M−j) and

F (x) =
1

λ
Φ(xM ,yM ) +

1

2

M∑
i=j+1

[
q>i (σσ>∆t)−1qi

]
and yM is given by (17). Note that the running cost V is
included in F , i.e. F contains information about where V
is large and where it is small.

The high-probability samples (those that correspond to a
small running cost) are in the neighborhood of where F is
small, i.e. in the neighborhood of the minimizer

µ := arg min
x

F (x).

We can generate samples in this neighborhood by mapping
the high probability region of a “reference variable” ξ to
this neighborhood. Here, we choose a Gaussian reference
variable ξ ∼ N (0, In(M−j)), and a linear mapping

x = µ+ L−1ξ, (20)

where L is a Cholesky factor of the Hessian H = LL> of
F evaluated at the minimizer µ.

To see why (20) maps the high probability region of ξ to
the neighborhood of µ, note that (20) implies that

F̃ (x)− ζ =
1

2
ξ>ξ, (21)

where ζ := minx F (x) and where

F̃ (x) = ζ +
1

2
(x− µ)>H(x− µ)

is the Taylor expansion to order 2 of F . High-probability
samples of ξ are in the neighborhood of the origin, and
hence, the right hand side of (21) is small with high
probability. Accordingly, the left hand side of (21) is also
small with high probability and, therefore, the solutions of
(21) are close to the minimizer µ of F̃ , which is also the
minimizer of F .

The sampling equation (20) defines an invertible change
of variables from x to ξ, which can be used to write (16)
in terms of the reference variable ξ

ψ(x,y, tj) ≈ (2πdet(σσ>∆t))−
M−j

2

∫
dξ1 · · ·

∫
dξn(M−j)

× exp

(
−ζ + F̃ (x(ξ))− F (x(ξ))− 1

2
ξ>ξ

)
det(J),

where J = ∂x/∂ξ = L−1. Since ξ ∼ N (0, In(M−j)), we
may also write

ψ(x,y, tj) ≈
Eξ[exp(−ζ + F̃ (x)− F (x))]

(det(σσ>∆t))
M−j

2 det(L)
.

Our implicit sampling-based path integral algorithm can
be summarized in three steps:

(1) Generate samples, ξ(q), q = 1, . . . , Q, from ξ ∼
N (0, In(M−j));

(2) Transform the samples through the mechanism (20),
i.e., x(q) = µ+ L−1ξ(q);

(3) Evaluate the value function ψ at (x,y, tj) as

ψ(x,y, tj) ≈
1

Q

Q∑
q=1

exp(−ζ + F̃ (x(q))− F (x(q)))

(det(σσ>∆t))
M−j

2 det(L)
.

For more detail about implicit sampling in the context of
path integral control see Morzfeld [2013].

4. HIERARCHICAL MANAGEMENT FOR
STOCHASTIC THERMOSTATICALLY

CONTROLLED LOADS

We consider a scenario in which a utility company manages
the operation of thermostatically controlled loads (TCLs),
such as air conditioners, to minimize payments in the real-
time market and the discomfort of the consumers. If the
utility controls all of the TCLs by monitoring all of the
system states (e.g. indoor temperatures), the synthesis
of an optimal control is intractable due to high system
dimension.

To overcome the system dimension issue, we propose the
hierarchical management framework in Fig. 1. A similar hi-
erarchical load control framework is proposed in Callaway
and Hiskens [2011]. We assume that all of the TCLs are air
conditioners and that exactly one TCL controls the indoor
temperature of a single room. The TCLs are classified
into n types, which differ in their temperature-TCL model
characteristics (see section 4.1). The key components of the
hierarchical management are the local controllers. Local
controller i determines which subset of type i TCLs should
be turned on at each time t ∈ [0, T ]. Local controller i
communicates with type i TCLs to gather the data of the
indoor temperatures, and then ranks the TCLs from the
highest to lowest discomfort level (the precise definition
of the discomfort level is given Section 4.2). Each local
controller also reports the average indoor temperature to
the central controller.

The central controller, which communicates only with
the local controllers, computes each TCL group’s op-
timal power consumption by considering the average
temperature-TCL models of all of the groups. Note that
the total dimension of the averaged systems is much less
than that of all of the temperature-TCL systems. The
central controller then delivers group i’s optimal power
consumption to local controller i for i = 1, . . . , n.
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central 
controller

local
controller

local
controller

local
controller

· · ·· · · · · ·

type 1 
TCLs

type 2 
TCLs

type 3 
TCLs

{

· · · · · · · · ·
{ {

Fig. 1. Hierarchical control for three types of TCLs.

After receiving the optimal power consumption level, local
controller i determines the numberO∗ of TCLs that should
be turned on by dividing the optimal level by one TCL’s
nominal power consumption. The local controller changes
the operation of the TCL with the highest rank (the one
with the highest discomfort level): i.e., if the TCL is off,
the local controller turns it on. The local controller then
considers the TCL with the second highest rank, and so
on. It stops making changes once the number of TCLs that
are on is equal to O∗.
We consider the central controller’s problem of determin-
ing the optimal power consumptions of all of the TCL
groups. This stochastic optimal control problem is solved
by the generalized path integral method with implicit
sampling.

4.1 Stochastic indoor temperature-TCL Model

Let Θi,j
t be the indoor air temperatures at time t that are

controlled by TCL j of type i for j = 1, . . . , Ni, where
Ni is the number of type i TCLs. The equivalent thermal
parameter (ETP) model suggests that the dynamics of the
temperatures depend on the conductance Ri,j between the
outdoor air and indoor air and the conductance Ci,j of
the indoor air and the thermal mass (Sonderegger [1978]).
We assume that TCLs of the same type have the same
thermal parameters: i.e., Ri := Ri,j and Ci := Ci,j for j =
1, . . . , Ni. Let Θi

t be the average indoor air temperature at

time t, i.e., Θi
t := 1

Ni

∑Ni

j=1 Θi,j
t . We consider the following

stochastic model for the average temperatures:

dΘi
t =

[
αi(Θ

O,i
t −Θi

t)− κi
uit
Ni

]
dt+ σidW

i
t (22)

where αi = Ri/Ci. Here, uit denotes the total power con-

sumption of the type i TCLs and ΘO,i
t denotes the (day-

ahead) forecast of the average outdoor air temperature
at time t. We use the forecast shown in Fig. 2 for our
simulations. The effect of the forecast error is modeled by
the stochastic term σidW

i
t .

Let xit := Θi
t for i = 1, . . . , n, ut := (u1t , . . . , u

n
t ), Wt :=

(W 1
t , . . . ,W

n
t ), and let K and σ be n×n diagonal matrices

whose ith diagonal entries are −κi/Ni and σi, respectively.
With this notation, we can compactly write the stochastic
temperature-TCL model for all types as

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 1627

28

29

30

31

32

33

time (h)

te
m

pe
ra

tu
re

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 160.026

0.027

0.028

0.029

0.03

0.031

0.032

pr
ic

e 
(d

ol
la

r)

Fig. 2. A forecast of outdoor air temperature, ΘO
t (blue),

and an energy price profile, p(t), in the real-time
market (red).

dxt = [f(t, xt) +Kut]dt+ σdWt, (23)

where

fi(t,x) := αi(Θ
O,i
t − xi)

for i = 1, . . . , n. The central controller determines the
total power consumption vector u using this stochastic
temperature-TCL model to achieve the objective discussed
below.

4.2 Control objectives

A control objective is to keep the discomfort level small.
The discomfort level should be small if the average indoor
temperatures are within a given temperature range, [Θ,Θ].
The discomfort level increases significantly as the indoor
temperature drops below Θ or increases above Θ. To model
this characteristic of the discomfort level, we define

b̄(xt) :=

n∑
i=1

Nibi(xt),

where

bi(xt) := η1
[
exp(η2(xit −Θ)) + exp(η2(Θ− xit))

]
for some positive constants η1 and η2.

Another control objective is to minimize the cost for
real-time balancing of the supply and demand. Suppose
that the day-ahead energy purchases are sufficiently small
and therefore any power supplied to the TCLs must be
purchased in the real-time market. The balancing cost in
the real-time market at time t is computed as p(t)1ut,
where p(t) is the unit price of power in kW at time t (see
Fig. 2) in the real-time market and 1 is a 1 by n vector
whose elements are all 1’s.

The central controller can determine an optimal power
consumption strategy for each TCL group by solving the
stochastic optimal control problem:

min
u∈U

E

[∫ T

0

b̄(xt) + p(t)1ut +
1

2
u>t Rut dt

]
subject to (23).

(24)

Note that this problem cannot be solved with the path
integral method as described in Section 2 due to the term
p(t)1ut, which is linear in control. However, we can solve
this problem with our generalized formulation of path
integral control.

Specifically, we use the stochastic temperature-TCL model

(23) and the fact that E[
∫ T
0
p(t)1K−1σdWt] = 0 to rewrite

the objective of (24) as
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Fig. 3. Comparison of the grid-based method and the path
integral-based method: (a) computed optimal control
and (b) corresponding state trajectory.

min
u∈U

E

[∫ T

0

b̄(xt)− p(t)1K−1f(t, xt)dt

+

∫ T

0

p(t)1K−1dxt +
1

2

∫ T

0

u>t Rut dt

]
.

Let V (t,x) := b̄(x) − p(t)1K−1f(t,x) and c(t) :=
p(t)1K−1. We introduce a new state variable driven by
the following SDE:

dyt = [V (t, xt) + c(t)(f(t, xt) +Kut)]dt+ c(t)σdWt

= [b̄(xt) + c(t)Kut]dt+ c(t)σdWt

(25)

with y0 = 0. In augmented state space, we obtain a
stochastic optimal control problem with cost function

min
u∈U

E

[
yT +

1

2

∫ T

0

u>t Rut dt

]
subject to (23) and (25).

We apply the generalized path integral method described
in Section 3.3 to solve this problem.

4.3 Numerical tests

Single TCL type We first consider the case in which all of
the TCLs are of the same type. The grid-based method is
applicable to this simple example so that we can compare
results obtained via the grid-based method to path integral
control. We set N1 = 100, α1 = 0.4834, κ1 = 2.5, σ1 = 0.2,

η1 = 1, η2 = 5, R = 4.6875 × 10−2, Θ = 18, Θ = 22 and
Θ0 = 23.

For the path integral method, we use 300 nodes for the
time discretization of the time interval [11h, 16h], and 5
samples generated via implicit sampling. For the grid-
based method, we use a varying number of nodes (51, 101
and 401) to discretize the state space. The varying number
of nodes is used to study the convergence of the grid-based
method as the discretization is refined. Both methods lead
to a control that induces overcooling before 12pm when the
energy price is low even though the outdoor temperature
is not high during this period.

Fig. 3 indicates that the optimal control and correspond-
ing state trajectory obtained by the grid-based method
approach those obtained by the path integral method as
the number of nodes increases. In fact, The difference
between the indoor temperature with the optimal control
obtained by the path integral method and that with the
optimal control obtained by the grid method (with 401
nodes) is less than 1%. This observation suggests that the
path integral method is accurate, i.e., the local solution of
the HJB equation we obtain via implicit sampling is the
desired viscosity solution because the grid-based solution
converges to the viscosity solution as the discretization is
refined (e.g. Sethian [1999], Osher and Fedkiw [2002] and
the references therein).

Six types of TCLs We now consider a more realis-
tic scenario with six types of TCLs. The dimension of
this problem is large enough to make the grid-based ap-
proach impractical. We set α = (0.4834, 0.6043, 0.7251,
0.8460, 0.9669, 1.0877) and Θ = 21.5; all other parameters
are as above. We use 100 nodes for the time discretization
and 56 = 15625 samples generated by implicit sampling
because using 5 samples gives a good result in the case of
single TCL type.

We observe that as αi increases, the heat conduction from
the outside to the inside increases. Because we assume
that the outdoor temperature is higher than the indoor
temperature (see Fig. 2), a TCL in a room with a higher
αi consumes more power to reduce the discomfort level.
As expected, the optimal power consumption of the type
6 TCLs (those with the highest α) is the highest, and that
of the type 1 TCLs (those with the lowest α) is the lowest
(see Fig. 3 (a)). This is in line with what we intuitively
expect from an optimal control.

5. CONCLUSIONS AND FUTURE WORK

We generalize the path integral-based method for stochas-
tic optimal control to handle a more general class of cost
functions, by introducing a new state. Our generalization
makes path integral control more broadly applicable, in
particular to applications in engineering, economics and
finance. Furthermore, our memory efficient methodology is
applicable to problems where most current techniques fail,
because it does not require a global grid for discretizing the
domain of the HJB equation.

In the future, we plan to relax the condition on the noise
covariance and control input matrices. Another interesting
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Fig. 4. (a) Computed optimal control and (b) correspond-
ing state trajectory.

direction would be to develop the path integral method for
differential games.
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