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Abstract: In this paper a method for the design of state observers for a class of complex network
systems with nonlinear dynamics is presented. Necessary conditions on the dynamics of the
nodes are given, i.e. how the interconnection enters and which states have to be measured, such
that the arbitrary complex interconnection can be dealt with as an unknown input. Sufficient
existence conditions for an Unknown Input Observer (UIO) for this class of systems are stated
in terms of an LMI representing the dissipativity properties of the system. The design method
is applied to monitor an epidemic disease in a complex network.

1. INTRODUCTION

Analysis and control of dynamical systems interconnected
in a network structure, also referred to as Multi-Agent
Systems (MAS), has gained a lot of interest during the
past years due to its emerging variety of applications
[Mesbahi and Egerstedt, 2010, Ch. 1]. There exists a
wide range of real-world applications including but not
limited to sensor networks, coordination of autonomous
systems, i.e. groups of robots, computer networks like the
internet, energy networks like power grids, biological and
chemical networks, and social networks. Besides control
of the systems, monitoring of the system behavior is an
important task in system analysis. Practical engineering
systems are surveilled for safety and reliability, and state-
feedback controllers demand the knowledge of the system
state.

While linear observer design methods can be applied to lin-
early interconnected agents with linear dynamics [Siljak,
1991, Ch. 4], more complex networks, e.g. with nonlinear
dynamics and time-varying interconnections/structure,
are focus of ongoing research [Zecevic and Siljak, 2010,
Ch. 6]. Recently, an observer for systems with unknown
but bounded nonlinearities and linear time-varying (non-
switching) interconnections was proposed in [Menon and
Edwards, 2011]. Unless this study provided promising re-
sults, it is not clear how it could be extended to the case
of networks with known or unknown nonlinear intercon-
nections and possibly time-varying topology. The present
paper focuses on the observer design method for this class
of systems. As far as the authors know, this problem has
not yet been addressed in the literature. The consideration
of unknown topology rules out centralized observer design
approaches, and requires to consider the problem within
the framework of unknown input observers for nonlinear
systems. For this purpose, a dissipativity-based observer

design method as recently proposed in [Rocha-Cózatl and
Moreno, 2011] is applied. Necessary conditions for the
relative degree of the unknown input are derived and
sufficient conditions for the existence of the observer are
stated in terms of an (L)MI that can be solved using
standard numerical methods [Boyd et al., 1994]. In order to
illustrate the approach, the method is applied to monitor
the spread of an epidemic in a complex network of agents
that are susceptible, infected and/or in-quarantine (SIQ)
with a certain probability, respectively, [Bernal J. et al.,
2013].

1.1 Problem statement

Consider a network of N nonlinearly interconnected dy-
namical systems with nonlinear dynamics of the form

Ni :

{
ẋi = Aixi +Giϕi(t, xi) + Φi(t,x), xi(0) = xi,0,

yi = Cixi, i = 1, .., N,
(1)

where xi ∈ Rn and yi ∈ Rm are the state and the
output vectors, and Ai, Gi and Ci are constant matrices
of appropriate dimensions. The nonlinearity ϕi(t, xi) is an
s-dimensional vector, locally Lipschitz in xi and piecewise
continuous in t, and Φi(t,x) is a smooth nonlinear function
that depends on the state of the network x = (x1, .., xN ).

The objective is to design a decentralized state observer
for the system Ni (1) that, using the measured output
yi(t), provides a state estimation x̂i that asymptotically
converges to the actual state xi(t), i.e. limt→∞(x̂i(t) −
xi(t)) = 0.

1.2 Organization of the paper

The paper is organized as follows. In Section 2 we re-
call the results for dissipativity-based UIO design from
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[Rocha-Cózatl and Moreno, 2011], where a dissipativity
characterization of sufficient existence conditions for UIOs
is generalized for a class of nonlinear systems. In Section
3 the dissipativity-based method is used to design an
observer for a class of complex networks and the sufficient
conditions are derived. The proposed observer is applied
to monitor the epidemic spread in a complex network in
Section 4. To conclude, in Section 5 the proposed approach
is compared to previous ones in terms of the class of
systems it can be applied to.

2. DISSIPATIVITY-BASED UNKNOWN INPUT
OBSERVER

Since the observer design approach followed in this paper
is based on dissipativity, some basic notions, definitions
and results from [Hill and Moylan, 1980, Willems, 1972a,b]
are recalled in Sec. 2.1. The basic idea of dissipativity-
based UIO design from [Rocha-Cózatl and Moreno, 2011]
is presented in Sec. 2.2. This method allows to express the
sufficient condition for the existence of an UIO in terms of
an LMI as stated below.

2.1 Dissipativity

Dissipativity is a property of a dynamical system that
interrelates input-output and state properties with the tool
of (Lyapunov-like) storage functions.

Consider a nonlinear system

ΣNL :

{
ẋ = f(t, x, u), x(0) = x0,

y = h(t, x),
(2)

where x ∈ Rn, u ∈ Rp and y ∈ Rm are the state, input
and output vectors respectively. Without input u = 0,
f(t, 0, 0) = 0 and h(t, 0) = 0 at the origin x = 0.
The system ΣNL is called State Strictly Dissipative (SSD)
if there exist a continuously differentiable and positive-
definite storage function V : Rn → R, with V (0) = 0, a
supply rate ω : Rm × Rp → R and a constant ε > 0, such
that the dissipativity inequality

V̇ (x(t)) ≤ −εV (x(t)) + ω(y(t), u(t)) (3)

holds along any system trajectory. ω(y, u) has to be locally
integrable for all input-output pairs of ΣNL. If the supply
rate is a quadratic form

ω(y, u) =

[
y
u

]T [
Q S
S R

] [
y
u

]
(4)

with Q, S and R of appropriate dimensions, and Q and R
symmetric, the system is called SSD{Q,S,R}. In the special
case of LTI systems

ΣL :

{
ẋ = Ax+Bu, x(0) = x0,

y = Cx,
(5)

and for quadratic supply rates (4) restricted to quadratic
storage functions V = xTPx, P = PT > 0, dissipativity
can be characterized as in the following proposition.

Proposition 1. [Hill and Moylan, 1980]
System ΣL is SSD{Q,S,R} if and only if there exists a
matrix P = PT > 0 and a constant ε > 0 such that[

PA+ATP + εI PB
BTP 0

]
−
[
CTQC CTS
STC R

]
≤ 0. (6)

For the case of memoryless (or static) nonlinearities dissi-
pativity can be defined as stated next.

Definition 1. [Rocha-Cózatl and Moreno, 2011]
A time-varying memoryless nonlinearity ψ : [0,∞) ×
Rp → Rm, y? = ψ(t, u?), piecewise continuous in t and
locally Lipschitz in u?, such that ψ(t, 0) = 0, is dissipative
with respect to a quadratic supply rate ω(y?, u?) (4)
(D{Q,S,R}), if

ω(y?, u?) = ω(ψ(t, u?), u?) ≥ 0 ∀t ≥ 0, u? ∈ Rr. (7)

Remark 1 : Sector conditions for square nonlinearities
[Khalil, 2002], i.e. m = p, can be stated as dissipa-
tivity conditions in the following way: If the nonlinear-
ity ψ lies in the sector [K1,K2], i.e. it satisfies (y? −
K1u

?)T (K2u
?−y?) ≥ 0 which can be written as a dissipa-

tivity condition D{Q,S,R} with (Q,S,R) = (−I, 12 (K1 +

K2),− 1
2 (KT

1 K2 + KT
2 K1)), where I denotes the identity

matrix of appropriate dimension.

2.2 Unknown Input Observer design

In [Rocha-Cózatl and Moreno, 2011], a dissipativity-based
method to design an observer for nonlinear systems with
unknown input of the form

Σ :


ẋ = Ax+Gψ(t, σ) + ϕ(t, y, u)−Bw, x(0) = x0,

y = Cx,

σ = Hx,
(8)

is described, where x ∈ Rn, u ∈ Rp, w ∈ Rq, y ∈ Rm,
are the state, the known and unknown input, and the
measured output vectors, respectively. The unknown input
w is assumed to be a piecewise continuous time signal
and can be considered as arbitrary unbounded distur-
bance. The unmeasured or not measurable part σ ∈ Rr
is a linear function of the state, and A, G, B, C and
H are constant matrices of appropriate dimensions. The
nonlinearity ϕ(t, y, u) is locally Lipschitz in y, continuous
in u and piecewise continuous in t. The s-dimensional
vector ψ(t, σ) is assumed to be locally Lipschitz in σ and
piecewise continuous in t. It is assumed that there exists
a solution for Σ (8).

For this system an observer is proposed of the form

Ω :


ζ̇ = Aζ +Gψ(t, σ̂ +N(∆y)) + L(∆y) + ϕ(t, y, u),

ŷ = Cζ,

σ̂ = Hζ,

x̂ = Dζ + Ey,
(9)

with ∆y = ŷ − y and ζ(0) = ζ0, where the output
injection matrices L ∈ Rn×m and N ∈ Rr×m, and matrices
D ∈ Rn×n and E ∈ Rn×m are design variables. Ω (9) is a
copy of the the plant Σ (8) including two output injections
terms to ensure observer convergence.

Plant Σ (8) and observer Ω (9) together form a cascade
system with the dynamics of the state error e := ζ − x in
Lure form [Khalil, 2002]
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Σobse :



ė = ALe+Gv −Bw, e(0) = e0,

z = HNe,

ỹ = Ce,

v = − [ϕ(t, σ)− ϕ(t, σ + z)]︸ ︷︷ ︸
φ(t,z,σ)

,
(10)

with AL = A+LC and HN = H+NC, where ỹ := ŷ−y is
the output error, σ̃ := σ̂−σ and z := HNe = σ̃+Nỹ. Note
that the one-sided coupling of the error dynamics Σobse to
the plant through an incremental version of the system’s
nonlinearity φ(t, z, σ) = ϕ(t, σ)− ϕ(t, σ + z) is effected by
the unmeasured states σ.

For nonlinear systems of this form (with a linear forward
path and only a nonlinearity in the feedback path) dissi-
pativity can ensure stability as in the following lemma.

Lemma 2. [Hill and Moylan, 1980]
Consider the negative feedback interconnection between

a linear system and nonlinearity ψ of the form

ė = ALe+Gv, e(0) = e0,

z = HNe,

v = −φ(t, z).

(11)

If the linear system is SSD{−R,ST ,−Q}, then the origin
e = 0 of system (11) is globally exponentially stable for
every D{Q,S,R} nonlinearity φ.

Based on dissipativity, [Rocha-Cózatl and Moreno, 2011]
generalizes the sufficient existence conditions for an UIO
for LTI systems [Moreno, 2001, Rocha-Cózatl and Moreno,
2004], that can be expressed as a matrix inequality (MI)
(12).

Theorem 1. [Rocha-Cózatl and Moreno, 2011]
If there exist constant matrices P = PT > 0, L, N , S (of

full row rank) and a constant ε > 0, such that the MI P ? PG PB
GTP 0 0
BTP 0 0

−
−HT

NRHN HT
NS

T CTS
SHN −Q 0
SC 0 0

 ≤ 0, (12)

with P ? = P (A+LC) + (A+LC)TP + εI and HN = H+
NC, is satisfied, then

(1) There exist constant matrices L, N , S (of full row
rank) such that the observer error dynamics Σobse (10)
is SSD{0,ST , 0}.

(2) Both conditions for the observer error dynamics Σobse
(10) without injection term (i.e. L = 0, N = 0) are
satisfied:
(a) It is minimum phase and
(b) It fulfills the relative degree condition

rank{CB} = rank{B} = q = dim(w). (13)

(3) There exists an UIO for Σ (8).

The proof was presented in [Rocha-Cózatl and Moreno,
2011].

Remark 2 : The MI (12) is nonlinear in the design parame-
ters but if one of the additional degrees of freedom (DOFs)
is fixed, e.g. N = N0 = 0, it becomes an LMI in P , PL,

ε and S that can be solved efficiently [Boyd et al., 1994].
The existence of a solution for the inequality is only a
sufficient condition for the existence of an UIO, and there
is no guaranteed method to find a value for N if it exists.

3. OBSERVER DESIGN FOR NETWORKS

In this section the method of dissipativity-based observer
design for complex networks is presented. The fundamen-
tal idea is to bring the network dynamics to the form Σ (8)
by dealing with the interconnections as unknown inputs,
such that the dissipativity-based UIO presented in Sec. 2.2
can be applied. The observer error dynamics form a Lure
system with only one nonlinearity in the feedback path
which is coupled to the unmeasured states of the plant. By
characterizing the nonlinearity in terms of dissipativity, a
sufficient existence condition for an UIO can be stated in
form of a Matrix Inequality (MI) (Sec. 2.2). If one of the
additional DOFs is fixed, an LMI is obtained that ca be
solved efficiently using standard numerical methods [Boyd
et al., 1994]. In the following, the procedure is presented in
detail and the necessary condition for the transformation
to the UIO form and sufficient conditions for the existence
of an UIO are stated.

Recalling the complex network dynamics Ni (1)

ẋi = Aixi +Giϕi(t, xi) + Φi(t,x), xi(0) = xi,0,

yi = Cixi, i = 1, .., N,

σi = Hixi,

(14)

the unknown interconnection Φi(t,x) can be replaced
by Biwi with unknown input wi and Bi containing the
information how, i.e. in which channels, the unknown input
enters the dynamics, and is selected such that

R(Bi) ⊇ span{Φi(t,x),∀x, t}, (15)

where R(Bi) denotes the range of the matrix Bi. There
exist solutions for the system if wi is smooth. Since
R(Bi) ⊇ span{Φi}, the solutions of system (16) contain
the solutions of Ni (1).

After this inclusion, the dynamics of the single agents
can be considered decoupled including a disturbance by
the interconnected environment. In the dynamics of the
decoupled agents, the nonlinearity Giϕi(t, xi) depends in
general on the whole state xi. It can be split up in a
part ϕ̃i(t, yi) that depends on the output of the measured
states yi and another one ψi(t, σi) that depends on the
unmeasured states σi. The nonlinear term ϕ̃i(t, y) can be
completely compensated (in the error dynamics) by adding
its copy to the observer dynamics. The nonlinear terms
in the measured channels can be neglected by considering
them as part of the unknown input. By this transformation
we finally obtain the form Σ (8) (without input ui = 0)

ẋi = Aixi +Giψi(t, σi) + ϕ̃i(t, yi)−Biwi, xi(0) = xi,0,

yi = Cixi, i = 1, .., N,

σi = Hixi.
(16)

It is critical how the unknown inputs enter the dynamics
and which states are measured for the existence of an UIO.
Bi and Ci have to satisfy the matchability condition (13)
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rank{CiBi} = rank{Bi} = qi = dim(wi),

which is a necessary assumption on the relative degree of
the unknown input. It is obvious that this condition can
only be satisfied if the number of outputs is greater or
equal the number of unknown input.

Consider the observer error dynamics Σobse (10)

Σobse,i :


ėi = AL,iei +Givi −Biwi, ei(0) = ei,0,

zi = HN,iei,

ỹi = Ciei,

vi = −φi(t, zi, σi),
to characterize the nonlinearity φi(t, zi, σi) in terms of dis-
sipativity. If the nonlinearity can be characterized dissipa-
tive to a quadratic supply rate D{Q,S,R}, e.g. by apply-
ing and transforming classical sector conditions [K1,K2],
the existence of an UIO can be checked by means of MI
(12). The result can be summarized as in the following
Theorem 2 which is a direct consequence of Theorem 1.

Theorem 2.
If Bi is chosen such that R(Bi) ⊇ span{Φi(t,x),∀x, t}
and satisfies rank{CiBi} = rank{Bi} = qi = dim(wi), and
there exist constant matrices Pi = PTi > 0, Li, Ni, Si (of
full row rank) and a constant εi > 0, such that the MI (12) P ?i PiGi PiBi
GTi Pi 0 0
BTi Pi 0 0

−
−HT

Ni
RiHN,i H

T
N,iS

T
i CTi Si

SiHN,i −Qi 0
SiCi 0 0

 ≤ 0,

with P ?i = Pi(Ai + LiCi) + (Ai + LiCi)
TPi + εiI, is sat-

isfied ∀i = 1, .., N , then the observer Ω (9) asymptotically
converges to the actual state of network N (1).

MI (12) contains the arguments Pi, Li, εi, Ni and Si,
besides the system parameters in matrices Ai, Bi, Ci, Gi
and Hi, and information about the nonlinearity Qi, Si,
Ri. The inequality is nonlinear in the entries PiAL,i +
ATL,iPi + εiI = PiAi + PiLiCi + ATi Pi + CTi L

T
i Pi + εiI

and −HT
N,iRiHN,i = −(Hi + NiCi)

TRi(Hi + NiCi). By
fixing one of the additional DOFs, i.e. Ni = Ni,0 = 0
(and replacing the product Pi times Li by a new variable
PLi), an LMI is obtained that can be solved efficiently
[Boyd et al., 1994], for example in MATLAB with the the
optimization toolbox YALMIP [Löfberg, 2004].

Notes on implementation: If an objective function is pro-
vided to the solver, it tries to optimize its value subject
to the provided constraints. Since the UIO design problem
is just a feasibility problem L(x) < R(x) = 0 (and no
objective function is provided), the solver tries to minimize
t and maximize the gap of inequality L(x) < t∗I+R(x) to
obtain a value. Since the matrix has to be negative semi -
definite, the value t only converges numerically to zero for
a feasible solution (and the solver gives a warning about
the possibility of marginal infeasibility). Furthermore, it
can be possible to fix more parameters (sometimes by
guessing), e.g. fix the Lyapunov matrix Pi to a diagonal
structure to reduce the number of parameters and speed
up the computation significantly, or to use the identity
matrix. The parameter εi (in combination with Pi) con-
tains information about the rate of convergence. It is also

advisable to avoid very large observer gains Li containing
the inverse of Pi. The DOFs can be used by the designer for
optimization, but it is difficult to give necessary conditions
for inequality (12) to be solvable (besides the conditions
required of other methods that are generalized) and needs
further studies.

Remark 3 : Compared to the very restrictive conditions for
exact error linearization that can only be applied to a very
small class of systems, the approximate error linearization
using dissipativity used in this approach can deal with a
larger class of systems [Moreno, 2005]. As mentioned above
it is difficult and needs further studies to give conditions
under which inequality (12) is solvable. But since the pro-
posal is a generalization of other known methods like the
High-Gain Observer (HGO), the conditions required by
these methods provide a characterization [Rocha-Cózatl
and Moreno, 2011]. The existence of an convergent ob-
server depends on two properties: (i) the input-output
(relative degree) structure between unknown inputs and
measured outputs, and (ii) the shape of the nonlinearities
determining a sector condition.

Remark 4 : Compared to the approach of [Menon and
Edwards, 2011], that applies a Sliding Mode Observer
(SMO) to deal with the nonlinearities as unknown inputs,
the method proposed in this paper can deal with a wider
class of systems because the nonlinearities can explicitly
be taken into account. Furthermore, by considering the
interconnections as unknown input, the approach can deal
with arbitrary complex interconnections. They could be
nonlinear and time-varying, and thereby also include the
case of switching topologies. The parameters or the whole
function of the interconnection or the structure of the
network can be unknown as it can reasonably be the case
for large and complex real-world networks like biological
networks, social networks, or the internet.

This approach raises the question of applicability in the
case that some information about the interconnections,
i.e. the form of the interconnection with uncertain edge
weights, or only measurements in some of the nodes are
available. While the rate of convergence of the UIO is
restricted by the zero-dynamics of the observer error, in
the other extreme of full information about the intercon-
nections the network dynamics could be fully observable,
and thereby arbitrary fast state estimation by an observer
like the Luenberger is possible. The possibility to do this
depends on the specific network dynamics in consideration
and has to be analyzed for the specific example.

4. EPIDEMICS MONITORING

To illustrate the proposed network observer, we want to
monitor the spread of a virus in a network of intercon-
nected systems with the states of susceptibility (S), in-
fection (I) and quarantine (Q) considering the SIQ-model
from [Bernal J. et al., 2013]

ṗi = −τipi + (1− pi − qi)[1− ζi(p)],

q̇i = τipi − [1− µi(qi)]qi,
(17)
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where pi and qi denote the probabilities of agent i to
be infected or in quarantine, respectively. The transition
probability from state (I) to (Q) is a constant parameter

τi. ζi(p) =
∏N
j=1[1− rij(t)βpj(t)] is the probability of not

becoming infected in one time unit that depends on the
connection to the neighbors rij(t), their infection states
pj(t) and the probability of infection during a single con-
tact β. In this set-up the transition probability from (Q)

to (S) µi(qi) =
k0,i

q2
i
−2k1,iqi+k2,i , k0,i, k1,i, k2,i > 0, k2,i > k21,i

is represented by a nonlinearity.

If it is assumed that the connections rij(t) are time-varying
and cannot be known for all time instances t, or if the
structure of the network is unknown, the above model (17)
can be written alternatively as

ṗi = −(1 + τi)pi − qi + wi,

q̇i = τipi − ϕi(qi),
(18)

with unknown input wi = 1− (1−pi−qi)ζi(p) ∈ [0; 1] and
ϕi(qi) = [1− µi(qi)]qi.

Since the unknown input enters in the state pi, measuring
all values pi, i.e. yi = pi, i = 1, .., N , satisfies the necessary
relative degree condition (13). Applying the proposed
dissipativity-based UIO Ω (9) with Ni = 0,∀i , where p̂i
and q̂i denote the observer states, yields dynamics of the
errors ep,i = p̂i − pi and eq,i = q̂i − qi[
ėp,i
ėq,i

]
=

[
−(1 + τi) + L1,i −1

τi + L2,i 0

] [
ep,i
eq,i

]
+

[
0
1

]
vi +

[
1
0

]
wi,

vi = − [ϕ(qi)− ϕ(qi + eq,i)] .
(19)

Since the states pi are measured, i.e. p̂i ≡ yi ≡ pi and
ep,i ≡ 0, the system (19) is minimum-phase and the
so-called reduced-order observer converges asymptotically
(Fig. 3) if the origin of the error dynamics

ėq,i = − [ϕ(qi + eq,i)− ϕ(qi)] (20)

is asymptotically stable. This is the case if ϕ is strictly
increasing, e.g.

k2,i > k21,i + k0,i. (21)

If the measured states pi shall also be estimated by the so-
called full-order observer, e.g. to reconstruct the unknown
input wi, the observer gain has to satisfy L1,i < 1 + τi
in order to converge. The zero-dynamics of the error (20)
can be decoupled from the unknown input by choosing
L2,i = −τi in (19) and than equal the dynamics of the
reduced-order observer (20). For a non-vanishing unknown
input or persistently acting disturbance, i.e. in the endemic
case, the state estimate only converges to a tube around
the real state of the plant (Fig. 2) as can be seen in the
steady state of the error dynamics:

ėp,i = (−1− τi + L1,i)ep,i − eq,i + wi = 0

⇒ ep,i =
1

1 + τi − L1,i
(wi −��*

0
eq,i).

(22)

This area can be made arbitrary small by increasing the
absolute value of the observer gain L1,i << 0. An exten-
sion of the proportional observer by an integral component
of the observer error as proposed in [Moreno, 2008] can
compensate the remaining offset and the error converges

asymptotically to zero.

The observer is simulated for a scale-free network of N =
500 nodes (Fig. 1). In Fig. 2 the norm of the estimates and
the true values of the states p = (p1, .., pN ) are depicted for
the endemic case with uniformly distributed random τi ∈
[0.1; 0.3], β = 0.5 and for two proportional observers with
the gains L1,i = −1 and L1,i = −10, ∀i, respectively. The
remaining offset against the true value becomes smaller
with a larger absolute value of the observer gain. The
proportional-integral observer with LI,i = −1 (and L1,i =
0), ∀i, can compensate this offset. The estimates of the
states q = (q1, .., qN ) converge asymptotically to the real
value with the same behavior for all observers (Fig. 2)
because this part of the error dynamics is decoupled by
choosing L2,i = −τi and asymptotically stable for all k0,i,
k1,i, k2,i chosen from a uniform distribution that satisfies
Eq. (21).

Fig. 1. Force-directed layout of scale-free network with
N = 500 nodes.
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Fig. 2. Full-order observer estimates in state p
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Fig. 3. Reduced-order observer estimates in state q

Considering an unknown input the output has to be
measured in every node and the rate of convergence
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of the observer is restricted by the internal nonlinear
system dynamics and there is no possibility to increase
it. Furthermore, the stability depends on the (nominal)
nonlinearity and there is no way to increase the robustness
(by the observer correction term).

5. CONCLUSION AND OUTLOOK

In this paper a state observer design method for complex
networks dynamics based on dissipativity was developed
and presented. The proposed approach was applied to
monitor an epidemic in a complex network based on an
SIQ-model. The proposed full-order observer form was ex-
tended to converge under persistently acting disturbances.

The proposed network state observer can be applied to a
wide class of systems. The network agents can have non-
linear dynamics and the form of the interconnection can
be arbitrary complex, i.e. nonlinear, time-varying, time-
switching or even unknown if the topology of the network
is unknown. As long as the interconnections satisfy the
necessary rank condition on the relation in which states
they enter the dynamics of the agents and which states
are measured, the network dynamics can be transformed to
the UIO form. Compared to a recent approach of [Menon
and Edwards, 2011] that applies an SMO to a network with
linear interconnections to treat the nonlinearities as distur-
bances, the proposed dissipativity-based approach can deal
with a wider class of systems since the nonlinearity can
be explicitly taken into account. Compared to the SMO
the proposed observer can deal with unbounded unknown
inputs and the design simplifies to solving an LMI while it
can be difficult to find a sufficiently large observer gain for
the SMO. Furthermore, in contrast to the SMO the pro-
posed UIO can deal with unbounded unknown inputs. A
full characterization of the class of systems requires further
studies although it is characterized as the generalization
of other methods like the High-Gain Observer (HGO). For
the transformed system a sufficient existence condition for
an UIO is presented in terms of an LMI that can be solved
efficiently and yields the observer parameters.

The approach is illustrated for the example of monitoring
an epidemic in a complex network based on a nonlinear
SIQ-model. A reduced-order observer is obtained that con-
verges asymptotically if the dynamics are detectable. The
full-order observer is extended by an integral component
to converge under a non-vanishing unknown input in the
endemic case.

Aspects which should be analyzed in future studies are:

• the detectability/observability-analysis w.r.t.
· the sensor locations and
· the level of information about the interconnec-

tions, i.e. parametric uncertainties;
• the characterization of the class of systems
• and the optimization of the additional DOFs.
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