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Abstract:
The Autonomous Robotic Patrolling and Surveillance environment (AuRoPaS) is a testbed
at the Automatic Control Laboratory of ETH Zurich to experimentally validate tracking,
observation, and monitoring strategies for security systems. The setup comprises two high
performance closed-circuit television (CCTV) cameras and mobile robots to simulate different
types of surveillance scenarios. We propose a velocity based model predictive control scheme
for the camera movements, which allows us to generate smooth trajectories and acquire stable
images from targets. Experimental results demonstrate the successful reference tracking of the
camera controller. We illustrate the integration of high level algorithms into the testbed by
applying two stochastic patrolling strategies. The patrolling performances are evaluated on a
scenario with moving targets visiting prioritized regions.

Keywords: Cameras, Predictive Control, Autonomous Mobile Robots, Surveillance Systems,
Patrolling, Implementation, Validation

1. INTRODUCTION

The scale and complexity of network systems has risen
significantly during the past few decades as a result of
technological advancement. This effect is clearly noticeable
in the area of surveillance systems where the number
of closed-circuit television (CCTV) cameras is constantly
growing, especially around safety critical areas like stadi-
ums, airports, road networks and railway stations. Using
these systems, it is possible to quickly react or even pre-
dict situations where crowd safety might be compromised.
However, in order to do so effectively, it is usually the job
of a human operator to identify such situations and notify
the relevant authorities. Due to the limitation of human
operators in analyzing multiple images simultaneously, it
is of interest to automate this process and have the CCTV
cameras automatically detect and report threats. Towards
this end we have developed a testbed to benchmark au-
tonomous patrolling strategies where the goal is to capture
a smart evader.

Researchers have been addressing the broad field of surveil-
lance systems from quite different perspectives. Tasks like
object identification and detection (see Lowe (1999), and
Comaniciu et al. (2003)) or face recognition (see Li and
Jain (2005)) are mainly addressed by the computer vision
community. An approach based on pursuit-evasion scenar-
ios has partially been addressed from the game theoretical
side for example in Vidal et al. (2002), and Meng (2008). A
survey on different methods can be found in Chung et al.
(2011). In the control community some algorithms have
been proposed (see for example Raimondo et al. (2010),
and Avni et al. (2008)) where the goal is to exploit the
dynamics of pan-tilt-zoom cameras (PTZ) to either extend
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the range of surveillance or improve the quality of the
obtained images. Another related field of research involves
the objective of patrolling areas to detect intruders, e.g.
Baseggio et al. (2010) and Basilico et al. (2009).

The wide range of applications, available systems and
scenarios make it difficult to evaluate and compare differ-
ent approaches in a systematic way. A few self contained
testbeds have been proposed so far. In order to evaluate the
tracking algorithm presented in Raimondo et al. (2010), an
early version of the AuRoPAS testbed was used consisting
of a single camera and small scale race cars as moving
targets. The target movement was not automated, thus
posing limitations on the reproducibility of experiments.
The authors in Salvagnini et al. (2011) utilize a single
PTZ camera and a projector to emulate moving targets,
achieve reproducibility of scenarios and evaluate tracking
algorithms.

In this work, we present an automated testbed to analyze
different kinds of surveillance tasks, with the focus on
PTZ cameras, in a reproducible fashion. To the best of
our knowledge we propose the first dual PTZ camera
setup utilizing real autonomous mobile robots as moving
targets. The major advantage is the possibility to run fully
automated and reproducible long times experiments. We
further propose a model based velocity controller for PTZ
cameras in order to obtain stable image acquisition which
is crucial in most image processing tasks. The capabilities
of the testbed are demonstrated with the comparison of
two patrolling strategies.

The remainder of this paper is organized as follows: the
experimental setup, consisting of a surveillance system and
automated mobile robots, is described in Section 2. In
Section 3 we present the camera models and the predictive
velocity controller. The two tested patrolling strategies are
introduced in Section 4 and all experimental results are
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provided in Section 5. We conclude the paper by pointing
out some final remarks and potential applications.

2. TEST BED ENVIRONMENT

The surveillance environment consists of a flat platform
with a 3.0 m × 2.5 m area and two PTZ CCTV cameras
mounted in 2 m distance to the surveillance space at a
height of 2.5 m where a “Logitech HD Pro Webcam C920”
is mounted, acting as a global eye. Images captured by
the global eye are used as feedback for the control of the
mobile robots and as a tool to verify the operation of the
PTZ camera controllers and patrolling strategies.

The computational tasks are split between an Intel Core
i5-760 2,8 GHz Windows PC with 8GB RAM, running all
camera related programs and surveillance algorithms, and
an Intel Core i5-2400 3.1 GHz Windows 7 PC with 8GB
RAM used in the communication, detection and path-
planning algorithms for the mobile robots. All developed
algorithms are programmed in C++ with a graphical user
interface developed with C# for the robot-management,
e.g., insertion and removal. A schematic of the system with
the software architecture is presented in Figure 1.

Robot Host PC

Navigation

EKF

Global Eye

Camera PC

High Level
Surveillance

Task

MPC

PTZ 1

PTZ 2

Low
Level

mobile robots

Fig. 1. Schematic of the testbed setup with global eye,
PTZ cameras and mobile robots. The solid arrows
depict communications links. The gray polygons on
the ground plane are the projected FOVs.

2.1 E-Puck Robot

One of the main goals of the testbed is the repeatability of
experiments. Towards this end we are employing several
low cost differential wheel robots (e-puck model Mondada
et al. (2009)) that are simple to control given position feed-
back. The used robot model has a diameter of 70 mm and
is equipped with a variety of passive and active sensors.
It can move with a maximal speed of 0.13 m/ s using two
individually controlled stepper motors with a resolution of
1000 steps per wheel rotation. The motor control loop is
run at a very high frequency making the input-to-velocity
relationship almost linear. Using these robots, it is possible
to run experiments over long time by making them follow
predefined trajectories. Moreover, for the robots to follow
state dependent randomized strategies, closed loop con-
trol can be used to generate their corresponding random
movements.

We modeled the robot as a discrete time unicycle model
of the form(

xk+1
yk+1
αk+1

)
=

(
xk
yk
αk

)
+

(
vk cos(αk)
vk sin(αk)

ωk

)
Tr (1)

where Tr is the sampling time, (xk, yk) the position on the
plane and αk the orientation at time step k. The inputs to
the model vk, ωk are the translational and angular velocity
respectively. These can be mapped to left and right wheel

speeds vL,vR using standard relations described in, e.g.,
Borenstein et al. (1996)

vk =
vR + vL

2
, ωk =

vR − vL
d

, vk = ωkr, (2)

where r is the radius of the circular path followed when
ωk 6= 0 and d = 4.21 cm is the distance between the wheels.

2.2 Detection Algorithms

The position and orientation of the robots is measured
using the global eye camera and the state information is
extracted from the images with a blob-detection algorithm.
The algorithm uses a a two-colored black and blue scheme,
where a smaller black dot is used to determine the robot
heading angle. Whenever multiple robots are deployed, we
use a variation of a probabilistic measurement association
approach (see e.g., Bar-Shalom et al., 2009) to correctly
assign robots and measurements. In addition, a standard
extended Kalman filter (EKF), based on the model (1),
was implemented to further improve the quality of the
measurements. The process is assumed to be affected by
zero-mean additive Gaussian noise. The details for the
implemented version can be found in Huck et al. (2014).

2.3 Communication and Control

The control structure, as shown in Figure 1, comprises a
generic high level navigation function running on the PC
and low-level controls on-board the e-pucks. The naviga-
tion function is running in closed loop, with a sampling
period of Tnav. It uses the EKF filtered measurements of
the robot states and sends the estimated position along
with the next reference position to the robot via Bluetooth.
A trajectory planner, generating a trajectory between the
actual position and the reference position, and the wheel
speed controller are implemented as low level controls.
Based on odometry, using model (1) and relations (2), the
wheel speed controller applies the velocity commands in
open loop. It can be seen from Figure 2 that the proposed
approach yields small errors and the on-board open loop
point tracking is sufficient for the e-puck robot. As a result,
we can treat the robot as a black box and switch between
different high level planning algorithms. Furthermore the
open loop approach allows us to limit the communication
requirements. Note that in this regard, an exact copy
of the low level controls, running at a sampling time of
Tr < Tnav, is implemented on the PC as well, to keep the
communications at a minimum. An example of a high level
navigation function is described later in Section 5.3.

3. CAMERA CONTROL

AuRoPaS uses two PTZ CCTV cameras of the type
Ulisse Compact from Videotec (2013) with optical zooms
of x10 and x32. The minimal zoom covers the whole
testbed and the field of view (FOV) using maximal zoom
approximately captures a single robot, which allows us to
simulate a broad range of small and large scale surveillance
scenarios from indoor and outdoor spaces. Both cameras
are connected through a serial link to the surveillance PC
and come with on-board velocity tracking controllers.

We use a standard pinhole camera model (e.g., Spong
et al., 2005, Chap. 11), to project the camera field of view
on the surveillance space. Using this projection map we
can translate the camera PTZ state to the positions on
the surveillance space that are covered. Controlling the
position of the FOV on the surveillance space (for a fixed
zoom level) is equivalent to controlling the pan and tilt
angles of the motors. As a result we have developed a
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Fig. 2. Position and orientation errors (in %) between
reference and measurement of an 80 min experiment
with 6 robots, executing a random walk with sampling
time of Tnav = 3.125 s. The trajectories generated on-
board were Dubins paths. The mean distance error is
1.7 cm and the mean angular error is 5.4 degrees.

model to describe the evolution of PT angles as a function
of the velocity input given to the on-board controllers.
In this work we propose a predictive control scheme to
achieve position reference tracking under constraints on
the smoothness of the velocity profile.

3.1 MPC Trajectory Tracking

The camera motion system consists of two independent
motors and a built-in controller, tracking the specified
pan and tilt motor velocities. Based on identification
experiments, we use a discrete linear single-integrator
model

pk+1 = Apk + Buk (3)

to capture the dynamics. The state pk = (θk, ψk) ∈
[0, 2π]2 consists of the pan and tilt angles of the camera
at time step k and the input uk = (vθ,k, vψ,k) consists of
the desired pan and tilt velocities. The system and input
matrices are given by A = I and B = I · Tm, where I is
the identity matrix of appropriate dimension and Tm the
sampling time of the system.

We apply a standard MPC scheme for reference tracking
(see e.g., Rawlings and Mayne, 2009) and solve the opti-
mization problem given by

min
uk

N∑
k=1

∆pTk+1Q∆pk+1 + uTkRuk+

+ σ(δθ,k + δψ,k) + ρ(δ2
θ,k + δ2

ψ,k)

subject to: p1 = p

pk+1 = Apk + Buk k = 1, . . . , N

‖uk − uk−1‖2 ≤ c k = 1, . . . , N

|∆θk| ≤ bθ + δθ,k k = 1, . . . , N

|∆ψk| ≤ bψ + δψ,k k = 1, . . . , N

δθ,k ≥ 0, δψ,k ≥ 0 k = 1, . . . , N

(4)

where Q � 0 and R � 0 are weight matrices to penalize
the deviation from the reference angles ∆pk = pref,k −
pk and the inputs respectively. A rate constraint c is
imposed on the inputs to enforce a smooth velocity profile.
Furthermore, we enforce box-constraints bθ, bψ on the
individual angles. While the rate constraints are always

to be met, a linear penalty term involving the relaxations
δθ and δψ is introduced in the cost function, to take
care of potential infeasibility due to the box constraints
on the angles. Consider

(
λ∗θ,k, λ

∗
ψ,k

)
∈ R2

+ to be the
Lagrange multiplier vector for the state constraints of
each step. If the penalty parameter is chosen to be σ ≥
‖
(
λ∗θ,k, λ

∗
ψ,k

)
‖∞ for all k = 1, . . . , N , it is known from

(Bertsekas, 1999, Chap. 5), that (4) recovers the same
solution u∗ of the problem without penalty term, if one
exists for the latter. The quadratic penalty term with
ρ > 0 assures strict convexity, such that the problem is
well conditioned and can be directly solved via a first
order method solver such as FiOrdOs (Ullmann, 2011).
The parameter ρ is a design choice and can be selected,
e.g., in the range of the weight matrices Q,R. The values
for all used parameters are given in the results section.

4. PATROLLING STRATEGIES

Previous results (Raimondo et al., 2011) have illustrated
the benefit of randomized patrolling strategies as opposed
to deterministic strategies, where a smart evader can
avoid detection almost surely. As a result we focus on
the implementation and evaluation of stochastic patrolling
strategies and two different methods to demonstrate the
applicability on the testbed. The first strategy, referred to
as stochastic localization patrolling (SLP), was presented
in the earlier work of Huck et al. (2012), where knowledge
about the areas to be patrolled is incorporated via an
importance map, representing the priority or expected
importance of regions. A similar concept for mobile robots
on finite spaces can be found in Srivastava et al. (2009).
We compared this to another algorithm, called random
line patrolling (RLP), relying on information about the
important regions of the surveillance space.

The SLP strategy consists of three phases: a specification
phase, formalizing the patrolling objectives, a construction
phase, distributing the objectives to the cameras and the
final patrolling phase that uses a stochastic search algo-
rithm (Algorithm 1 below), to provide set-points to the
camera trajectory MPC introduced above. Let X ⊂ R2 de-
note the patrolling area and the pair (θ, ψ) the position of
the camera center in the local pan-tilt space Yi ⊂ [0, 2π]2

of camera i = 1, ..., N . From the specification phase we
assume to be given a scalar function C : X → [0, 1] called
the importance map. This is translated during the second
phase into probability distributions ξi on the local spaces
Yi. The distributions ξi indicate how often the camera
i should be at each angle configuration according to the
desired coverage of the corresponding part of X . For the
construction of the distributions ξi see Huck et al. (2012),
where two methods are proposed such that the coverage of
the global space resembles the given importance map. In
the third phase, a discrete time Markov Chain determines
the target position for the camera given the current angle
measurement. The transition probability of the chain de-
pends on the distribution ξi, such that the camera FOV
moves with constant velocity on straight lines through the
regions of low importance and changes direction whenever
the importance of the seen area is high. Results from recent
work (Huck and Lygeros, 2013) show that the applied
Markov chain is guaranteed to converge to a distribution
which qualitatively reflects the given distributions ξi.

The RLP strategy is also based on the knowledge of impor-
tant areas. In essence, we directly utilize the importance
map C constructed above, to determine movements of the
camera between regions of high priority in the patrolling
space X . The camera moves deterministically between
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Algorithm 1 Stochastic Localization Patrolling (SLP)

Require: Initial position p0 and camera heading angle φ0,
distribution ξ, velocity v̄

1: for k = 0→ Nref do

2: update pk+1 = pk + v̄
(

cosφk
sinφk

)
Tp

3: generate proposal angle φ̃k+1

4: calculate the acceptance probability α(ξ(pk), φk)
5:

update: θk+1 =

{
θ̃k+1 w. p. α(ξ(pk), φk)
θk w. p. 1− α(ξ(pk), φk)

6: set pref (k) = pk
7: set k = k + 1
8: end for
9: return pref

important areas but chooses randomly which area to visit
next. Algorithm 2 describes the steps of applying the RLP
method on the AuRoPas testbed when generating the
reference trajectory online. We first create a list of the
centers of important regions according to their assigned
priorities and normalize them. Second, the resulting distri-
bution is used to generate a trajectory of target positions
{pt,m=1,...,Nref

} via inverse transform sampling (e.g. De-

vroye, 1986). In contrast to the SLP strategy, this method
switches to the next target position only if the camera is
sufficiently close to the current set-point. We implemented
a rolling horizon-type approach by appending set-points
to the current trajectory. Consider at time k the N -step
solution (ui

∗)|k and the associated trajectory (pi
∗)|k to

problem (4) for given target positions pref,i = pt,m, where
i = k, ..., k + N . Similarly to the state constraints of the
MPC formulation, we consider a state of the solution to
be sufficiently close, if the conditions |∆θ∗i | ≤ bθ and
|∆ψ∗i | ≤ bψ hold. Assume the condition is fulfilled for state
pj for some j ∈ {k, ..., k+N}, then the prediction horizon
is shifted and all reference states pref,j , . . . ,pref,k+N are
set to the next target position pt,m+1. This set point
change is illustrated in Figure 3.

Algorithm 2 Random Line Patrolling (RLP)

Require: Initial state p0 = (θ0, ψ0), initial target posi-
tions pt,0, cumulative distribution F over prioritized
positions

1: set k = 0, m = 0
2: set pref (i) = pt,m ∀i = 1, ..., N
3: loop
4: solve problem (4) → (pi

∗,ui
∗)|k

5: if for any j: |∆θ∗j | ≤ bθ and |∆ψ∗j | ≤ bψ then
6: set m = m+ 1
7: sample pt,m = F−1(U), U uniform on [0, 1]
8: end if
9: shift reference vector

pref (i)← pref (i+ 1) for i = 1, ..., N − 1
10: set (pref (j), . . . ,pref (N))← pt,m
11: apply u∗1|k to the camera

12: set k = k + 1
13: end loop

Note that the presented patrolling strategies can deter-
mine the next target position for the cameras online. How-
ever, for reasons of computational efficiency we generated
a list of reference positions in advance in both cases. In
contrast to a deterministic strategy, a smart evader with

pt,m

pt,m+1

c

k +Nk

c

j

Fig. 3. Camera trajectory (solid lines) for two MPC
iterations (blue, red), with dynamic augmentation
of the references (dashed lines). In the first iter-
ation, the state at time step j ends up in the
specified distance to pt,m, such that the reference
states pref (j), . . . ,pref (N) are set to the new setpoint
pt,m+1 for the second iteration. The dashed-dotted
lines at the bottom illustrate the corresponding time
horizons.

full knowledge of the importance map and the applied
strategies can observe the movement of the camera and
anticipate a possible next target but will never know the
actual realization of the followed path.

5. RESULTS

5.1 Camera Identification & Controller Settings

The intrinsic and extrinsic parameters of the cameras were
estimated according to Raimondo et al. (2010); Table 1
shows the most relevant, with camera height H, offset D
with respect to the pan rotational axis and spatial offsets
xoff, yoff, zoff of the optical center to the tilt coordinate
system. For this work, we focus on the pan-tilt control and
assume a constant field of view. To this end, the given focal
length λ corresponds to fixed zoom levels of the cameras,
which were chosen as a trade-off between FOV size and
image resolution, over the whole pan-tilt range.

H D xoff yoff zoff λ
Camera 1 2.5 0.124 0.1485 -0.0275 0.02 0.0297
Camera 2 2.5 0.125 -0.01 0.0437 0.0917 0.0448

Table 1. Parameters of the deployed Ulisse
Compact cameras.

The sampling time used in (3) was conservatively chosen
to be Tp = 0.25 s, based on the limits of the serial link
to the cameras. We found a period of about 160 ms to
result in a conflict free communication of read-out requests
and control commands. On average, 11 ms were required
to solve problem (4) and about 70 ms for the read out of
the angle encoders.

The weight matrices for the trajectory controller were
chosen to be

Q =
[
1 0
0 1

]
, R =

[
0.6 0
0 0.8

]
,

the penalty parameter chosen as σ = 500, ρ = 1 and the
constraint limits were set to

bθ = 0.5 bψ = 0.3, c = 0.3/Tm.

Note, that c is a constraint on the discrete changes of the
inputs and is therefore depending on the sampling time.
Based on qualitative studies the velocity constraints were
chosen to be 1◦/ s to ensure smooth image acquisition over
the whole range of camera movements.
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5.2 Tracking Performance

To asses the tracking performance of the model predictive
controller, independent of the patrolling strategies, we
tested several trajectories defined on the global space X .
Figure 4 shows the movement calculated by the MPC and
the tracking achieved on the actual setup for the curved
reference path. To carry out this experiment a line was
drawn onto the global space, recorded with the global eye
camera and imported into the simulation.

The achieved trajectory was assessed by first mounting a
laser pointer onto the camera and adjusting it to the center
of the camera image and then recording the movement
(green circled path) of the laser point with the global eye
camera. The main source of errors is the quantization of
the mapping X → Y given by the pinhole camera pro-
jection model. Note that the quantization is conceptually
not necessary, but allows us to use a look-up table for the
FOV, which has clear computational advantages.
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Fig. 4. Tracking results of the MPC controller. The red
connected line indicates the reference trajectory on
the relevant space. The blue dotted line indicates the
trajectory achieved by the model predictive controller
and the green circled line the actual movement of the
image center. Left: Results recorded on the surveil-
lance space for camera 2. Right: Results recorded on
the pan-tilt space for camera 2.

The maximum and mean 2-norm errors of the tracking
controller are reported in Table 2 for the camera angle
readouts (subscript r) in the cameras pan-tilt space and
the laser measurements from the world coordinate frame.

error \ path straight curved edged
meanr 0.57 0.54 0.55
maxr 0.66 0.72 0.64
mean 5.6 7.2 6.6
max 7.4 12.9 9.1

Table 2. Tracking errors for a straight line, a
curved path and an edged path. The top rows
show the pan-tilt errors in degrees and lower
rows the errors on the patrolling space in cm.

5.3 Patrolling Scenario

To evaluate the performance of a patrolling strategy, we
have assumed the existence of an object identification
algorithm that determines whether a target or evader
has appeared on the FOV. We employ again a standard
OpenCV based blob detection algorithm directly on the
images acquired by the pan-tilt cameras. We consider
detections all situations where a large enough blue object
is observed on the image.

We consider the following scenario to compare the perfor-
mance of the two patrolling strategies described in Sec-
tion 4. The targets move through the surveillance space

between positions of interest in a random order according
to an assigned likelihood. Using this list, we generate the
importance map for the cameras representing the priorities
expected by the system designer which (in general) differ in
shape and value from the truth, as illustrated in Figure 5.
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Fig. 5. Top: Waypoints of the robots on X (dashed black
square) shown as circles with blue numbers indicating
their importance to the robot. The designed impor-
tance map is depicted by red squares with red num-
bers indicating the expected importance. The RLP
will move between the centers of the squares. Bottom
left: SLP guidance distribution ξ2 for camera 2 where
red color indicates high probability and dark blue the
non-accessible part of the space. Bottom right: Actual
distribution of pan-tilt positions obtained after 30k
steps of the SLP.

The patrolling strategies were run for 15 min, while the
detections of the robot were counted online. For the
SLP the same design choices were used as reported
in Huck et al. (2012). Table 3 summarizes the perfor-
mance results of both strategies and an additional static
scenario, where each camera was fixed to one impor-
tant location. A demonstration video of the experiments
with RLP and SLP strategies can be found on the web
(http://www.youtube.com/usr/ETHZurichIfA).

Strategy RLP SLP Static
Camera 1 average 59.3 21.7 17.3
Camera 1 maximum 65 27 18
Camera 2 average 67.7 20.3 13
Camera 2 maximum 71 24 15

Table 3. Average number of detections for RLP
and SLP as well as for the cameras kept on
the topmost and the lowermost position with
importance 5 from Figure 5. All three experi-

ments were repeated three times for 900 s.

In the particular patrolling scenario considered we ex-
pected the RLP strategy to perform better since it mimics
the movement of the evader between important regions.
However, knowing the RLP strategy, it is straightforward
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to devise an evading strategy that will avoid detection.
In contrast, the SLP strategy deviates from the important
regions and randomly scans the whole area making it more
difficult for a smart evader to visit all important regions
while staying undetected.

6. CONCLUSION

We presented a dual camera testbed with the capabilities
to simulate a wide range of surveillance tasks. One of
the key characteristics of the setup is that all processes
are automated in order to obtain accurate statistical data
to evaluate the performance of randomized algorithms.
The proposed framework and test bed can be extended
to multiple cameras in a straightforward way. In order to
ease image processing tasks we suggested a model based
approach for the control of pan-tilt cameras that achieves
smooth image acquisition. The controller was evaluated
experimentally and demonstrated excellent performance
in tracking pan-tilt positions while satisfying predefined
motor acceleration constraints. Part of our future work
will be directed towards including the zoom variable in
the presented optimization problem.

We used the proposed testbed to evaluate the performance
of two randomized patrolling algorithms against an evader
utilizing the same type of information about the surveil-
lance space. Our next step will be to design smart evaders
assuming they can observe the camera position at every
decision step to design feedback evading strategies. Finally,
we are interested in the design of cooperative patrolling
strategies where the cameras exchange and exploit infor-
mation about their current positions when making a move
in the pan-tilt space.
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